• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in Studies of Genetic Improvement of Sugarcane

    2016-03-17 21:26:56,,,,,
    Asian Agricultural Research 2016年11期

    , , , , ,

    Guangzhou Sugarcane Industry Research Institute/Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou 510316, China

    1 Introduction

    Sugarcane (Saccharumspp.) is the largest sugarcane crop in China and the world. Sucrose accounts for more than 75% of the total sugar yield of the world, and more than 90% of China’s sugar yield. Sugarcane is also the first generation bioenergy crop, and it can be used as renewable energy for production of fuel ethanol and biomass products. From the 1970s, many countries started formulating the clean energy strategy of developing fuel ethanol to replace oil. Among these countries, Brazil was most successful in using sugarcane to produce fuel ethanol as power energy of automobile. In 1979, the first bioenergy automobile using fuel ethanol as drive appeared. By 2003, there were 15.5 million cars using mixed fuel of ethanol and oil, and there were 2.2 million cars completely using ethanol as the fuel[1]. In 2010, the yield of bioenergy using sugarcane as main material had replaced about 47.6% energy consumption of Brazil, bringing it to be the country with highest bioenergy utilization rate[2]. Sugarcane is the generally recognized C4 plant with high photosynthetic rate and dry matter accumulation ability[3-4], and is the crop with highest per unit are yield up to one ton[5]. According to statistics of the Food and Agriculture Organization (FAO), in 2011/2012 sugarcane crushing season, the total sugarcane yield of Brazil reached 7.34×108t, with the per unit area yield up to 76.45 t/hm2. In India and China, the planting area, total yield, and average yield of sugarcane was 4.94×106hm2, 3.42×108t, and 69.25 t/hm2, 1.73×106hm2, 1.15×108t, 66.52 t/hm2separately.

    2 Target of sugarcane genetic improvement

    Sugarcane is an essential sugar crop and energy crop, and its variety improvement is receiving close attention. Sugarcane has unique genetic mode. It is allopolyploid crop generated through a series of hybridization of polyploidSaccharumofficinarumL. (2n= 80,X= 10) as female parent andSaccharumspontaneumL. (2n= 40~128,X= 8) as male parent. The number of chromosomes is 100-150, about 75%-85% fromSaccharumofficinarumL., and 15%-25% fromSaccharumspontaneumL. In the first and second time of hybridization process, chromosomes were delivered in 2n+nspecial manner. Agronomic characters such as sugar content and yield of hybrid generation were rapidly recovered and stabilized. This process is called nobility process of sugarcane[7]. However, such unique genetic mode increases the difficulty in sugarcane genetic improvement. With rapid development of modern biotechnology, and drop of genome sequencing costs, the development of sugarcane functional genomics and structural genomics plays a great role in promoting further development of sugarcane genetic improvement. Variety is the key for development of the sugarcane industry. Fine variety not only increases the per unit area yield and sucrose content, reduces production costs, but also extends the crushing period, increases equipment utilization rate of sugar factory, and obtains higher economic benefits. With reference to sugarcane production and development in China and foreign countries, it is necessary to constantly upgrade varieties, to promote sustainable and healthy development of sugarcane industry and satisfy the market demands. According to requirements of modern sugarcane industry, the sugarcane breeding targets can be classified into two types: (i) improvement of variety traits, including improving sugar content (sucrose content, brix, apparent purity, and gravity purity), increasing yield (tillering capacity, effective stalk number, stalk diameter, plant height, growth rate, sprouting rate, and ratoon performance), increasing stress resistance (disease resistance, insect resistance, lodging resistance, drought resistance, cold resistance and barren resistance), and selecting varieties (sugarcane hair and defoliation)[8-9]; (ii) cultivation of different purposes of varieties, mainly including sugar type sugarcane (fiber fraction ≤14%), energy type sugarcane (fiber fraction ≥30%), and sugar energy type sugarcane (fiber fraction < 30%)[10].

    3 Advances in conventional breeding of sugarcane

    3.1DevelopmentstagesofsugarcanebreedingThe development of sugarcane breeding can be divided into 5 stages[9]. (i) The stage of breeding using tropical strain. This stage started from 1858 when Barbados reported that sugarcane can bear fruit. At this stage, main characteristics of varieties included high sugar content, low fiber fraction, high purity, low adaptation, weak ratoon, and poor disease resistance, such as H109, B716, and Q813,etc[11]. (ii) The stage of breeding using nobility process to select noble varieties. In 1885, Soltwedel made experiment of hybridization between sugarcane and Erianthus arundinaceus[12]; in 1893, Moquette and Wakker obtained hybrid variety of tropical strain Black Cheribon and Indian strain Gansha[13]; in 1897, Kobus hybridized Indian strain Chunni and tropical strain[14]; in 1911, Wilbrink successfully hybridized Indian strain Gansha and tropical strain[15]; later, Jeswiet backcrossed the tropical strain with the hybrid generation obtained by Wilbrink, rapidly recovered and stabilized sugar content and yield of hybrid generation[16]; in 1921, Jeswiet successfully bred POJ2878 fine variety through hybridization[17]. This stage opened the curtain of interspecific hybridization, and recovered and stabilized sugar content and yield of hybrid generation, and bred excellent varieties with high sugar content, high fiber fraction, high adaptation, strong ratoon, and high disease resistance, such as Co281 and Co290[18]. (iii) The stage of breeding using noble varieties. From 1930 to 1950, it was the stage of hybridization using noble varieties to select excellent new varieties. Typical examples included Co419 bred using POJ2878 × Co290 in 1937, popular NCo310 in the 1950s and 1960s bred in 1939, and H32-8560 bred by Hawaii Research Center in 1945 (accounting for more than 60% of the local planting area)[17]. This stage mainly used noble varieties to hybridize and breed more germplasm resources. (iv) The stage of breeding using noble hybrid varieties. From 1950 to 1965, noble hybrid varieties were used to select modern sugarcane varieties with high sugar content, high yield, high stress resistance, and excellent ratoon, and these new varieties were distributed in all sugarcane planting areas[19]. At this stage, excellent germplasm resources bred through nobility process were used as hybrid parent, to further consolidate excellent genes and select better modern sugarcane varieties. (v) The stage of expanding variety genetic constitution source. At this stage, it mainly was engaged in rapidly improving sugar content, yield and other agronomic traits through constant hybridization or backcrossing to increase fundamental substances[20].

    3.2BreedingofsugarcanevarietiesinbothChinaandforeigncountriesNew sugarcane varieties bred by foreign countries mainly include RB varieties bred by Brazilian Federal University and IAC varieties bred by Campinas Agricultural Research Institute of Sao Paulo[21], such as RB99395 and IAC86-2210; CP series, H series, and HoCP series bred by USDA ARS Sugarcane Field Station Canal Point, Hawaii Research Institute, and Louisiana Sugarcane Research Institute[22]; Co997, Co1001, and Co527 bred by India[22]; Q174, Q205, and Q208 bred by Australia[23]; POJ and EK varieties bred by Indonesia. The breeding of sugarcane in China can be divided into 3 stages[24-25]. (i) Breeding of local varieties. This stage was marked by planting local varieties as sugar refining materials, typical varieties included bamboo cane, reed cane, and Rohan cane. (ii) Introduction of foreign varieties. At this stage, foreign varieties were introduced and popularized, and typical varieties included POJ2878, POJ2725, NCo310, Co290, Co 281, CP49-50, and CP34-120. (iii) Self-breeding varieties. At this stage, varieties bred by China started replacing foreign varieties. In recent years, self-breeding varieties of varieties mainly included Yuetang, Guitang, Mintang, Yunzhe, Liucheng, and Taitang. At present, new Taitang 22, Yutang 93-159, Yutang 00-236, Guitang 21, and Liucheng 05-136 take up the dominant position of sugarcane planting in China. However, the growth rate for sugar content and yield of new sugarcane varieties becomes smaller and smaller. This can be proved by evaluation of 4 main varieties, Yuetang 85-177, Yuetang 99-66, Yuetang 00-236, and Yuetang 03-393. Waclawovskyelal.[26]found that the growth rate of sugarcane yield in the world remained at 1%-1.5% in recent years, and it will decline in future. This may be largely because breeding parent mainly comes from F4 and F4 of POJ2878[27]and germplasm resources for improvement are very limited. In this situation, biotechnology may become the key for sugarcane genetic improvement.

    4 Advances in studies of sugarcane genetic improvement through biotechnology

    4.1SugarcanegenomicsSugarcane genomics is an indispensable tool for future sugarcane improvement. However, complex genome of allopolyploid and interspecific hybridization of modern strains hinder studies of sugarcane genomics and application of genomics in sugarcane breeding process. By now, in NCBI database, there are 31555 nucleotide sequences (including 1216 mRNA sequences) available from different sugarcane varieties and 284818 EST sequences (http://www.ncbi.nlm.nih.gov/). These EST sequences come from cDNA library and many transcripts of more than 70 varieties of sugarcane, and materials mainly include seedlings, roots, stalks, leaves, flowers, and seeds of sugarcane, and callus treated by nonbiological stress and seedlings infected by endogenous nitrogen-fixing bacteria[28]. At present, bacterial artificial chromosome (BAC) library for sugarcane is built by hybrid strain R570 with number of chromosome of 2n= 115. This library contains 283158 clones and covers 1.3 times of polyploidy genome of this variety (it is predicted that the genome is 10 Gb)[29]. It is reported that scientists from Brazil and other countries are building fine physical map for this BAC library[30]. Meanwhile, scientists are building BAC library and the library clone sequencing for Brazilian variety SP80-3280[31]. Besides, in cooperation with Shenzhen BGI, Sugarcane Research Center of Chinese Academy of Agricultural Science is building BAC library and whole genome sequencing for thin stalk wild sugarcane variety GXS87-16 (2n=64)[32]. The building of sugarcane BAC library and detailed physical map information are of utmost importance to understanding structure of sugarcane genome. In the whole genome sequencing, sorghum is a crop with close affiliation with sugarcane, and its genome sequence is of much help for studies of sugarcane genome, and completion of sorghum genome sequencing provides important comparative genomics tool for sugarcane genomic studies[33-34]. Wangetal.[35]carried out hybridization in BAC library using 1961 single copy sorghum oligonucleotide probes and sugarcane commercial variety R570, obtained 20 sugarcane BACs, with each BAC corresponding to sorghum chromosome arm. About 95.2% sequences of coding area of sugarcane BACs match the sorghum sequences. If using sorghum genome as template to sequence the contig, it can cover 78.2% of 20 BACs. About 53.1% sugarcane BACs match sorghum sequences. In areas that can be linked, 209 genes of sugarcane have been annotated, 202 sorghum genes have been annotated, including 17 genes unique to sugarcane, and all have been verified by sugarcane expressed sequence tags (ESTs), in 12 genes unique to sorghum, only one has been verified by sorghum ESTs. In 17 genes unique to sugarcane, 12 genes do not have matching protein in GenBank non-redundant protein database, and they may other types of protein participating in coding sugarcane special process. Relative to the sugarcane, lineal homological area of sorghum expands, which is realized mainly through increase in reverse transcription transposon. Therefore, sugarcane and sorghum genomes are collinear in most gene areas. Sorghum genome can be used as DNA assembly template of allopolyploid sugarcane genomes.

    4.2SugarcaneTransgenetechnologyThe in vitro culture and regeneration system technology have been established and gradually improved since 40 years ago[36], which is very important for development of sugarcane genetic transformation system. Nevertheless, aneuploidy polyploidy, huge genome and complex genetic background of sugarcane present the problem of low transformation efficiency of transgene technology. Since gene gun method (particle bombardment) features not subject to host, wide target receptor type, high controllability, simple and rapid operation, it is a method mainly used in the early period of the sugarcane transgene technology[37-38]. With constant development and optimization of genetic transformation methods with features of low costs, high success rate, and single copy of allogenic genes, and high genetic stability, it has been widely applied in sugarcane transgene technology[39]. In the process of sugarcane genetic transformation, main restrictive factors include low transformation efficiency, active transgene, mutation in body cell clone, and difficult backcrossing[40]. It is thus required to further optimize the transformation method, better control the transgene expression, and realize stable expression. The sugarcane transgene studies focus on increasing sucrose accumulation, stalk yield, improving disease resistance and stress resistance[40-45]. Researches indicate that genes participating in metabolism of cell wall have differences in expression[40]. Through cDNA-SCoT analysis of ratoon stunting disease induced sugarcane difference expression gene, they found many genes participating in interaction of ratoon stunting disease[46]. Through subtractive library technology and cDNA chip technology analysis, SSADH related to sugarcane water stress response was screened[47]. Through excessive expression or downward modulation of virus coat protein, mRNA exerts resistance against SCMV[48], SCYLV[49], and FDV[50]. Through adjusting expression of Sc-ERS gene, it is able to strenthen photosynthesis of sugarcane leaves and improve drought resistance of sugarcane[51]. These key genes are favorable for cultivation of new sugarcane varieties with high yield, high sugar content, and high adaptation. At present, non-commercial sugarcane transgene strains have made breakthrough advances and some strains are undergoing the field experiment[21,40]. However, limitation of regulations of transgenic crops will retard the release of commercial transgenic varieties. Therefore, the breeding and application of a new transgenic variety takes a considerable long time.

    4.3MolecularmarkerassistedbreedingAt present, the number of sugarcane chromosomes for genetic mapping analysis is more than 100, but genome sequence for molecular marker is very limited. Most genetic maps are based on dominant markers, which are used as single dose markers. Posterity segregation ratio exists as per 1:1 (marked as "1"), does not exist (marked as "0") for statistical analysis. For allopolyploid sugarcane, such statistical method will only provide an approximate value when estimating the recombination rate and linkage; besides, some evidences indicate that single dose marker only detects about 70% polymorphism loci[52]. 13 sugarcane mapping groups were used to build 18 molecular genetic linkage map, and 1500-2000 markers were used[53], including RFLP[54], AFLP[55], TRAP[54], EST-SSR[56]and DART[57], indicating all built sugarcane genetic maps are incomplete. To obtain high density genetic maps covering the whole sugarcane genome, it needs developing more SNP markers. However, through QTL positioning of sugarcane related traits, it has obtained QTL loci related to disease resistance, stress resistance, yield, and sugar content[58-62]. Because of complexity of sugarcane genome, for target traits, most genomes can not be scanned, and such defect limits the application of the molecular marker assisted selection. At the same time, the sugarcane genetic mode indicates that the genetic linkage unbalance widely exists[63]. When trait related molecular markers are used to determine QTL of sugarcane through linkage analysis and correlation analysis, low density marker and rough genetic statistical methods are still relatively difficult. In sugarcane breeding, it is a challenging task to use molecular marker assisted selection. Many important traits are jointly determined by many trait loci, and each trait only contributes a little to the overall phenotype[64]. The sugarcane QTL positioning is mainly based on single dose marker analysis or composite interval mapping[63]. To obtain effective results, it needs developing new research models and statistical methods, and also considers influence of interaction between QTL and environment and gene correlation. Therefore, there are still many challenges to be solved in sugarcane molecular marker assisted breeding.

    5 Conclusions

    Sugarcane is an essential sugar crop and energy crop, and its variety improvement is receiving close attention. Traditional breeding and cultivation techniques have contributed a lot to increasing sugarcane yield and sucrose content. With rapid development of modern biotechnology, relying on its importance in agriculture and industries, sugarcane attracts many scientists to make joint efforts in molecular biology, bioinformatics, and genetics. Besides, with application of new generation of low cost DNA sequencing technology, the allopolyploid sugarcane genome sequencing which was costly in the past becomes possible. In future, biotechnology genetic improvement technique will accelerate the progress of traditional sugarcane breeding and cultivate more excellent sugarcane varieties.

    [1] BORRERO MAV, PEREIRA JTV, MIRANDA EE. An environmental management method for sugar cane alcohol production in Brazil [J]. Biomass and Bioenergy, 2003, 25(3): 287-299.

    [2] HOFSETZ K, SILVA MA. Brazilian sugarcane bagasse: Energy and non-energy consumption[J]. Biomass and Bioenergy, 2012, 46: 564-573.

    [3] RAE AL, JACKSON MA, NGUYEN CH,etal. Functional specialization of vacuoles in sugarcane leaf and stem[J]. Tropical Plant Biology, 2009,2(1): 13-22.

    [4] ARNOULT S, BRANCOURT-HULMEL M. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding [J]. Bioenergy Research, 2015, 8(2):1-25.

    [5] LOOMIS RS, WILLIAMS WA. Maximum crop productivity: an estimate[J]. Crop Science, 1963, 3(1): 67-72.

    [6] FAO. FAOSTAT data [EB/OL]. http://faostat3.fao.org/home/index.html, 2011.

    [7] BUTTERFIELD MK, D’HONT A, BERDING N. The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology [J]. Proc S Afr Sug Technol Ass, 2001, 75: 1-5.

    [8] LI QW, DENG HH. Major problems and strategy in sugarcane breeding and variety extension in China [J]. Sugarcane and Canesugar, 2011(4): 70-76. (in Chinese).

    [9] MING R, MOORE PH, WU K,etal. Sugarcane improvement through breeding and biotechnology[J]. Plant Breeding Reviews, 2006, 27: 15.

    [10] LOUREIRO ME, BARBOSA MHP, LOPES FJF,etal. Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol [M]. Routes to cellulosic ethanol, Springer New York, 2011: 199-239.

    [11] KENNEDY AJ, RAO PS, ORIOL P. Handbook, October 2000[J]. Cirad, 2011.

    [12] STEVENSON GC. Genetics and breeding of sugar cane [M]. London: Longmans, Green, 1965.

    [13] JESWIET J. The development of selection and breeding of the sugar cane in Java [C]. Proc Congr Intern Soc Sugar Cane Techn, 1930, 3: 44-57.

    [14] SMARTT J, SIMMONDS NW. Evolution of crop plants. ed. 2[J]. Longman Scientific & Technical, 1995.

    [15] ETHIRAJAN AS. Sugarcane hybridization techniques [Z]. In: anonymous (eds.), Copersucar International Sugarcane Breeding Workshop. Copersucar, Brazil, 1987: 129-148.

    [16] SIMMONDS NW. Evolution of crop plants [M]. (London):Longman Group Ltd.,1976.

    [17] JESWIET J. The development of selection and breeding of the sugar cane in Java [C]. Proc Congr Intern Soc Sugar Cane Techn., 1930: 44-57.

    [18] ROACH BT. Origin and improvement of the genetic base of sugarcane[J]. Proc Aust Soc Sugar Cane Technol, 1989, 11: 34-47.

    [19] TEW TL. World sugarcane variety census-year 2000 [J]. Sugar Cane International, March/April 2003: 12-18.

    [20] WALKER DIT. Manipulating the genetic base of sugarcane[C]//Copersucar International Sugarcane Breeding Workshop. Copersucar, Piracicaba, Brazil. 1987: 321-334.

    [21] CHEAVEGATTI-GIANOTTO A, ABREU HMCD, ARRUDA P,etal. Sugarcane (Saccharum × officinarum): a reference study for the regulation of genetically modified cultivars in Brazil[J]. Tropical plant biology, 2011.

    [22] DUNCKELMAN PH, BREAUX RD. Breeding sugarcane varieties for Louisiana with new germplasm[J]. Proc Int Soc Sugar Cane Technol, 1972, 14: 233-239.

    [23] HEINZ DJ. Wild Saccharum species for breeding in Hawaii[J]. Proc Int Soc Sugar Cane Technol, 1967, 12: 1037-1043.

    [24]LI QW, CHEN ZY, LIANG H. Modern sugarcane improvement technology [M]. Guangzhou: South China University of Technology Press, 2000: 11-13.

    [25] CHEN RK, XU LP, LIN YQ,etal. Modern sugarcane genetics and breeding [M].Beijing: China Agriculture Press, 2011: 2-12.

    [26] WACLASOVSKY AJ, SATO PM, LEMBKE CG,etal. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content[J]. Plant Biotechnol J, 2010, 8:263-276.

    [27] JACKSON PA. Breeding for improved sugar content in sugarcane[J]. Field Crops Research, 2005, 92(2): 277-290.

    [28] MANNERS JM, CASU RE. Transcriptome analysis and functional genomics of sugarcane[J]. Tropical Plant Biology, 2011, 4(1): 9-21.

    [29] TOMKINS JP, YU Y, MILLER-SMITH H,etal. A bacterial artificial chromosome library for sugarcane [J]. Theoretical and Applied Genetics, 1999, 99(3-4): 419-424.

    [30] SETTA ND, METCALFE CJ, CRUZ GMQ,etal. Building the sugarcane genome for biotechnology and identifying evolutionary trends[J]. Bmc Genomics, 2014, 15(4):1-18.

    [31] DAL-BIANCO M, CARNEIRO MS, HOTTA CT,etal. Sugarcane improvement: how far can we go [J]. Current Opinion in Biotechnology, 2012, 23(2): 265-270.

    [32] LI YR, YANG LT. Research and development priorities for sugar industry of China: Recent research highlights[J]. Sugar Tech, 2015, 17(1):9-12.

    [33] BEDELL JA, BUDIMAN MA, NUNBERG A,etal. Sorghum genome sequencing by methylation filtration [J]. PLoS Biology, 2005, 3(1): 13.

    [34] AITKEN KS, MCNEIL MD, BERKMAN PJ,etal. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane.[J]. Bmc Plant Biology, 2014, 14(1):190-190.

    [35] WANG J, ROE B, MACMIL S,etal. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J]. BMC Genomics, 2010, 11(1): 261.

    [36] LAKSHMANAN P, GEIJSKES J, AITKEN KS,etal. Sugarcane biotechnology: the challenges and opportunities[J]. In Vitro Cell Dev Biol-Plant, 2005, 41:345-363.

    [37] LI YR. The application of biotechnology in sugarcane [M]. Beijing: China Agriculture Press, 2009. (in Chinese).

    [38] WENG LX, DENG HH, XU JL,etal. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials[J]. Transgenic Research, 2011, 20(4): 759-772.

    [39] MANICKAVASAGAM M, GANAPATHI A, ANBAZHAGAN VR,etal. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds [J]. Plant Cell Reports , 2004, 23(3): 134-143.

    [40] HPTTA CT, LEMBKE CG, DOMINGUES DS,etal. The biotechnology roadmap for sugarcane improvement[J]. Tropical Plant Biology, 2010, 3(2): 75-87.

    [41] DEBIBAKAS S, ROCHER S, GARSMEUR O,etal. Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association[J]. Theoretical & Applied Genetics, 2014, 127(8):1719-1732.

    [42] ZHANG M, ZHUO X, WANG J,etal. Phosphomannose isomerase affects the key enzymes of glycolysis and sucrose metabolism in transgenic sugarcane overexpressing the manA gene.[J]. Molecular Breeding, 2015, 35(3):1-10.

    [43] PRIJI PJ, HEMAPRABHA G. Sugarcane specific drought responsive candidate genes belonging to ABA dependent pathway identified from basic species clones of Saccharum sp. and Erianthus sp.[J]. Sugar Tech, 2014, 17(2):130-137.

    [44] MCINTYRE CL, GOODE ML, CORDEIRO G,etal. Characterisation of alleles of the sucrose phosphate synthase gene family in sugarcane and their association with sugar-related traits[J]. Molecular Breeding, 2015, 35(3):1-14.

    [45] CHEN ZL, GUI YY, QIN CX,etal. Isolation and expression analysis of sucrose synthase gene (ScSuSy4) from sugarcane[J]. Sugar Tech, 2015, 18(2): 134-140.

    [46] CASU RE, JARMEY JM, BONNETT GD,etal. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by affymetrix gene chip sugarcane genome array expression profiling [J]. Funct Integr Genomics, 2007, 7(2): 153-167.

    [47] CHEN MH, ZHANG BQ, SONG XP,etal. cDNA-SCoT analysis of differentially expressed genes in sugarcane induced by Leifsonia xyli subsp, xyli [J]. Acta Agronomica Sinica, 2013, 39(6): 1119-1126. (in Chinese).

    [48] ZHANG JS, GUO CF, WANG BM,etal. Cloning and expression analysis of a water stress-induced ALDH gene from sugarcane [J].Scientia Agricultura Sinica, 2009, 42(8): 2676-2685. (in Chinese).

    [49] GILBERT RA, GLYNN NC, COMSTOCK C,etal. Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus[J]. Field Crops Research, 2009, 111(1-2): 39-46.

    [50] ZHU YJ, MCCAFFERTY H, OSTERMAN G,etal. Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane[J]. Transgenic Research, 2011, 20(3): 503-512.

    [51] MCQUALTER RB, DALE JL, HARDING RM,etal. Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene[J]. Australian Journal of Agricultural Research, 2004, 55(2): 139-145.

    [52] WEI YW. Studies on gene differential expressions regulated with ethephon and cloning of ethylene receptor gene Sc-ERS in sugarcane (Saccharum officinarum L.) [D]. Nanning: Guangxi University, 2007. (in Chinese).

    [53] ALWALA S, KIMBENG CA. Molecular genetic linkage mapping in Saccharum: strategies, resources and achievements [M]. CRC Press, Science Publishers, 2010.

    [54] WU R, MA CX, WU SS,etal. Linkage mapping of sex-specific differences[J]. Genetical Research, 2002, 79(1): 85-96.

    [55] ANDRU S, PAN YB, THONGTHAWEE S,etal. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers [J]. Theoretical and Applied Genetics, 2011, 123(1): 77-93.

    [56] LIU XL, MAO J, LU X,etal. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers [J]. Acta Agronomica Sinica, 2010, 36(1): 177-183. (in Chinese).

    [57] OLIVEIRA KM, PINTO LR, MARCONI TG,etal. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross[J]. Molecular Breeding, 2007, 20(3): 189-208.

    [58] WANG J, ROE B, MACMIL S,etal. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J]. BMC Genomics, 2010, 11:261.

    [59] MARGARIDO GRA, PASTINA MM, SOUZA AP,etal. Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits[J]. Molecular Breeding, 2015, 35(8):1-15.

    [60] BANERJEE N, SIRAREE A, YADAV S,etal. Marker-trait association study for sucrose and yield contributing traits in sugarcane ( Saccharum spp. hybrid) [J]. Euphytica, 2015, 205(1):185-201.

    [61] SANTOS FRC, PINTO LR, CARLINI-GARCIA LA,etal. Marker-trait association and epistasis for brown rust resistance in sugarcane[J]. Euphytica, 2014, 203(3):533-547.

    [62] GOUY M, ROUSSELLE Y, CHANE AT,etal. Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane[J]. Euphytica, 2015, 202(2):269-284.

    [63] PASTINA MM, PINTO LR, OLINEIRA KM,etal. Molecular mapping of complex traits [C]. Henry RJ, Kole C. Genetics, Genomics and Breeding of Sugarcane. CRC Press, Science Publishers,2010.

    [64] WEI X, JACKSON P A, HERMANN S,etal. Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane[J]. Genome, 2010, 53(11): 973-981.

    欧美日本视频| 午夜精品一区二区三区免费看| 成人永久免费在线观看视频| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 美女被艹到高潮喷水动态| 九九在线视频观看精品| 搡女人真爽免费视频火全软件 | 男人和女人高潮做爰伦理| 亚洲不卡免费看| 欧美绝顶高潮抽搐喷水| 女人高潮潮喷娇喘18禁视频| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 淫妇啪啪啪对白视频| 在线观看66精品国产| 在线观看一区二区三区| 男女视频在线观看网站免费| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添小说| av在线蜜桃| 国产精品,欧美在线| 欧美xxxx黑人xx丫x性爽| 欧美成人免费av一区二区三区| 在线播放无遮挡| 国产乱人视频| 亚洲精品色激情综合| 日韩高清综合在线| 亚洲av成人精品一区久久| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 99riav亚洲国产免费| 法律面前人人平等表现在哪些方面| 内射极品少妇av片p| 国产三级在线视频| 久久6这里有精品| 特大巨黑吊av在线直播| 岛国在线观看网站| 欧美+亚洲+日韩+国产| 亚洲国产欧美人成| 老司机午夜十八禁免费视频| 亚洲av中文字字幕乱码综合| 日本五十路高清| 亚洲无线在线观看| 欧美3d第一页| 香蕉久久夜色| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 又爽又黄无遮挡网站| 18+在线观看网站| 91字幕亚洲| АⅤ资源中文在线天堂| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 在线观看66精品国产| 99久久精品热视频| 欧美乱妇无乱码| 亚洲人成网站高清观看| 欧美三级亚洲精品| 97超视频在线观看视频| 给我免费播放毛片高清在线观看| 怎么达到女性高潮| 97碰自拍视频| 欧美成人性av电影在线观看| 欧美成人免费av一区二区三区| 岛国在线观看网站| 久久久久久久久久黄片| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 久久久久久九九精品二区国产| 亚洲熟妇熟女久久| aaaaa片日本免费| 亚洲国产欧美网| 日韩欧美国产一区二区入口| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 搞女人的毛片| 国产伦精品一区二区三区视频9 | 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 国产成人影院久久av| 午夜久久久久精精品| 一区二区三区激情视频| 久久久久久国产a免费观看| 一进一出抽搐动态| 99国产精品一区二区三区| 91av网一区二区| 最近最新中文字幕大全免费视频| 国产综合懂色| 国产极品精品免费视频能看的| 男女床上黄色一级片免费看| bbb黄色大片| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 久久亚洲真实| 中文字幕人妻熟人妻熟丝袜美 | 操出白浆在线播放| 午夜福利成人在线免费观看| 脱女人内裤的视频| 91麻豆av在线| 一本精品99久久精品77| 欧美一区二区精品小视频在线| 久久香蕉国产精品| 成年女人毛片免费观看观看9| 欧美日韩瑟瑟在线播放| 国内揄拍国产精品人妻在线| 久久久色成人| 久久久久久久久中文| 女人高潮潮喷娇喘18禁视频| 日韩欧美精品免费久久 | 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 国产高清视频在线观看网站| 热99re8久久精品国产| 国产午夜精品论理片| 成人三级黄色视频| 国模一区二区三区四区视频| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 一夜夜www| 99热这里只有精品一区| 久久精品91蜜桃| 亚洲熟妇熟女久久| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 久久精品影院6| 欧美色欧美亚洲另类二区| 欧美精品啪啪一区二区三区| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 中文字幕av在线有码专区| 日本与韩国留学比较| 亚洲国产精品成人综合色| av黄色大香蕉| 国产三级在线视频| 老鸭窝网址在线观看| xxx96com| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 亚洲精品一区av在线观看| 女人十人毛片免费观看3o分钟| 亚洲第一电影网av| 91久久精品电影网| 香蕉丝袜av| 精品久久久久久成人av| 国产高潮美女av| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 国产精品久久电影中文字幕| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址| 午夜福利18| 免费看十八禁软件| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 嫩草影院入口| 久久久久久久久中文| 在线观看一区二区三区| 三级毛片av免费| 欧美不卡视频在线免费观看| 国产三级黄色录像| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 午夜福利高清视频| 嫩草影院入口| 香蕉久久夜色| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 亚洲精品亚洲一区二区| 久久精品91无色码中文字幕| netflix在线观看网站| 中文字幕高清在线视频| 亚洲电影在线观看av| 在线视频色国产色| 乱人视频在线观看| 久久性视频一级片| 精品久久久久久久久久久久久| 少妇高潮的动态图| 搡老岳熟女国产| 久久久久久大精品| 美女cb高潮喷水在线观看| svipshipincom国产片| 国产亚洲精品一区二区www| 国内少妇人妻偷人精品xxx网站| 少妇的逼好多水| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频| 麻豆成人av在线观看| 欧美bdsm另类| 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 亚洲成人精品中文字幕电影| 最近在线观看免费完整版| 一本综合久久免费| 麻豆国产97在线/欧美| 老司机午夜福利在线观看视频| 在线天堂最新版资源| 国产精品自产拍在线观看55亚洲| 九色国产91popny在线| 亚洲精品一区av在线观看| 最后的刺客免费高清国语| 看黄色毛片网站| 一区福利在线观看| 国内精品久久久久久久电影| 亚洲电影在线观看av| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 欧美日本亚洲视频在线播放| 欧美日韩一级在线毛片| 中文资源天堂在线| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 午夜福利视频1000在线观看| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡| 国产一区二区激情短视频| 欧美一级毛片孕妇| 日韩人妻高清精品专区| 午夜福利视频1000在线观看| 国产精品99久久99久久久不卡| 噜噜噜噜噜久久久久久91| 中文在线观看免费www的网站| 日本与韩国留学比较| 毛片女人毛片| 欧美日韩精品网址| 日韩欧美免费精品| 天堂av国产一区二区熟女人妻| 日本 av在线| 国产麻豆成人av免费视频| 国产精品99久久99久久久不卡| 波多野结衣高清作品| 亚洲成人久久爱视频| 欧美中文日本在线观看视频| 精品一区二区三区av网在线观看| 小说图片视频综合网站| 欧美午夜高清在线| 18禁裸乳无遮挡免费网站照片| 国产高清videossex| 女同久久另类99精品国产91| 久久久久久久久大av| 黄片大片在线免费观看| 91麻豆av在线| 国产乱人伦免费视频| 国产精品av视频在线免费观看| 嫩草影院入口| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 少妇丰满av| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 91av网一区二区| 好男人在线观看高清免费视频| 国产乱人伦免费视频| av在线天堂中文字幕| 国产探花在线观看一区二区| 久久中文看片网| 免费看日本二区| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 精品国产亚洲在线| 老鸭窝网址在线观看| 一本综合久久免费| 欧美性猛交╳xxx乱大交人| 久久久久久久亚洲中文字幕 | 欧美成人性av电影在线观看| 欧美乱色亚洲激情| or卡值多少钱| 久久久精品大字幕| 色吧在线观看| 色尼玛亚洲综合影院| 搡老岳熟女国产| 中文字幕精品亚洲无线码一区| 亚洲一区二区三区色噜噜| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 免费av毛片视频| 成熟少妇高潮喷水视频| 国产野战对白在线观看| 国内精品久久久久久久电影| 一区二区三区高清视频在线| 午夜精品久久久久久毛片777| 久久香蕉精品热| 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| netflix在线观看网站| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 黄色女人牲交| 亚洲av不卡在线观看| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 九九在线视频观看精品| a在线观看视频网站| 精品福利观看| 亚洲七黄色美女视频| 好看av亚洲va欧美ⅴa在| 有码 亚洲区| 欧美一级a爱片免费观看看| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 午夜福利成人在线免费观看| 一a级毛片在线观看| 国产成人欧美在线观看| 男女午夜视频在线观看| 欧美丝袜亚洲另类 | 在线观看66精品国产| 18禁美女被吸乳视频| 中文字幕高清在线视频| 久久久精品欧美日韩精品| 国产精品野战在线观看| 九九热线精品视视频播放| 成人欧美大片| 床上黄色一级片| 欧美一级a爱片免费观看看| 美女黄网站色视频| 久久国产精品人妻蜜桃| 久久中文看片网| 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 国产精品国产高清国产av| 搡女人真爽免费视频火全软件 | 久久久国产成人免费| 亚洲最大成人中文| 国产精品av视频在线免费观看| 99在线视频只有这里精品首页| 欧美日本视频| 国产不卡一卡二| 亚洲国产色片| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 成人av在线播放网站| 在线a可以看的网站| 日本免费a在线| av在线天堂中文字幕| 欧美极品一区二区三区四区| 日韩免费av在线播放| 国产亚洲av嫩草精品影院| 午夜日韩欧美国产| 18禁国产床啪视频网站| 久久精品国产99精品国产亚洲性色| 日韩免费av在线播放| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 亚洲熟妇中文字幕五十中出| 国产久久久一区二区三区| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 亚洲七黄色美女视频| 99久久精品一区二区三区| 男女床上黄色一级片免费看| 在线播放国产精品三级| av欧美777| 国产视频内射| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 欧美在线黄色| 中文字幕精品亚洲无线码一区| 两个人的视频大全免费| 国产成人影院久久av| h日本视频在线播放| 成人午夜高清在线视频| 日韩欧美在线乱码| 色吧在线观看| 又爽又黄无遮挡网站| 亚洲真实伦在线观看| 午夜老司机福利剧场| 成人18禁在线播放| h日本视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| www国产在线视频色| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕 | 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| av黄色大香蕉| 在线视频色国产色| 给我免费播放毛片高清在线观看| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| 亚洲最大成人中文| 国产精品日韩av在线免费观看| 亚洲av不卡在线观看| 成年女人看的毛片在线观看| 麻豆久久精品国产亚洲av| 日本免费a在线| 免费人成在线观看视频色| 国产伦精品一区二区三区视频9 | 99热这里只有精品一区| 91字幕亚洲| 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费 | 免费观看精品视频网站| 热99在线观看视频| 老司机午夜十八禁免费视频| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 一夜夜www| 少妇的逼水好多| 亚洲精品色激情综合| 中出人妻视频一区二区| 最好的美女福利视频网| 99精品久久久久人妻精品| 男人舔奶头视频| 成年女人毛片免费观看观看9| 草草在线视频免费看| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 久久精品亚洲精品国产色婷小说| 精品久久久久久久末码| 我的老师免费观看完整版| bbb黄色大片| 午夜福利18| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 亚洲午夜理论影院| 亚洲欧美日韩卡通动漫| 国产99白浆流出| 在线免费观看不下载黄p国产 | 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 欧美最黄视频在线播放免费| 舔av片在线| 亚洲国产精品合色在线| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 国产97色在线日韩免费| 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 久久精品国产清高在天天线| 麻豆一二三区av精品| 免费看美女性在线毛片视频| av天堂中文字幕网| 一进一出抽搐动态| 美女免费视频网站| 午夜久久久久精精品| 国产精品三级大全| 岛国在线观看网站| 一本一本综合久久| 色在线成人网| 色尼玛亚洲综合影院| 免费高清视频大片| 国产免费男女视频| 美女cb高潮喷水在线观看| 成人国产一区最新在线观看| 精品久久久久久成人av| 亚洲熟妇熟女久久| 成人高潮视频无遮挡免费网站| 成人无遮挡网站| 亚洲成人久久性| 欧美中文日本在线观看视频| 丰满人妻一区二区三区视频av | 免费高清视频大片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲人成网站在线播放欧美日韩| 嫁个100分男人电影在线观看| 欧美+亚洲+日韩+国产| 久久草成人影院| 精品乱码久久久久久99久播| 18+在线观看网站| 母亲3免费完整高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 婷婷丁香在线五月| 一二三四社区在线视频社区8| 国产伦在线观看视频一区| 久久久久国内视频| 伊人久久大香线蕉亚洲五| 午夜福利成人在线免费观看| АⅤ资源中文在线天堂| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| 日本五十路高清| 亚洲男人的天堂狠狠| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 免费看十八禁软件| 国产乱人视频| 日本三级黄在线观看| 99在线人妻在线中文字幕| 国产午夜精品论理片| 十八禁人妻一区二区| 国产极品精品免费视频能看的| 桃色一区二区三区在线观看| 国产精品,欧美在线| 韩国av一区二区三区四区| 老鸭窝网址在线观看| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 九色成人免费人妻av| 久久精品国产亚洲av涩爱 | 啦啦啦韩国在线观看视频| 免费观看人在逋| 欧美三级亚洲精品| 免费看日本二区| 亚洲国产欧洲综合997久久,| 757午夜福利合集在线观看| 国产亚洲精品久久久com| 无遮挡黄片免费观看| 日本一本二区三区精品| 搡老妇女老女人老熟妇| 999久久久精品免费观看国产| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 欧美日韩瑟瑟在线播放| 在线观看日韩欧美| 国产不卡一卡二| 丁香六月欧美| 最近最新免费中文字幕在线| 午夜福利在线在线| 国产 一区 欧美 日韩| 舔av片在线| 亚洲中文字幕日韩| 免费看日本二区| 哪里可以看免费的av片| 岛国在线观看网站| 熟女人妻精品中文字幕| av欧美777| 中文字幕av在线有码专区| 欧美成人一区二区免费高清观看| 此物有八面人人有两片| 国产aⅴ精品一区二区三区波| 免费看美女性在线毛片视频| 国内精品美女久久久久久| 人妻久久中文字幕网| 亚洲国产欧美人成| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 久久亚洲精品不卡| 亚洲国产欧美网| 男人的好看免费观看在线视频| 在线视频色国产色| 日日夜夜操网爽| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 亚洲久久久久久中文字幕| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 亚洲精品456在线播放app | 亚洲精品色激情综合| 欧美精品啪啪一区二区三区| 一进一出抽搐动态| 国产91精品成人一区二区三区| 特级一级黄色大片| 欧美日韩一级在线毛片| 精品国产三级普通话版| 午夜免费男女啪啪视频观看 | 国产av在哪里看| 亚洲在线自拍视频| 欧美激情在线99| 亚洲专区中文字幕在线| 国产又黄又爽又无遮挡在线| 亚洲七黄色美女视频| 久久精品人妻少妇| xxx96com| 最近最新中文字幕大全免费视频| 成人国产一区最新在线观看| 真实男女啪啪啪动态图| 51午夜福利影视在线观看| 国产乱人视频| 九色国产91popny在线| 成人午夜高清在线视频| 久久香蕉精品热| 精品熟女少妇八av免费久了| 午夜影院日韩av| 欧美日韩亚洲国产一区二区在线观看| www.色视频.com| 日韩大尺度精品在线看网址| 国产精品三级大全| 国产探花极品一区二区| 欧美成人a在线观看| 欧美日韩黄片免| 国内精品久久久久久久电影| 久久精品国产自在天天线| 日本一本二区三区精品| 中文字幕熟女人妻在线| 婷婷亚洲欧美| 真人一进一出gif抽搐免费| 午夜福利在线在线| 法律面前人人平等表现在哪些方面|