耿遠明 申曉青 徐平平
1.南方醫(yī)科大學(xué)珠江醫(yī)院口腔科 廣州 510282;2.廣東省口腔醫(yī)院?南方醫(yī)科大學(xué)附屬口腔醫(yī)院口腔頜面外科 廣州 510280
生物力刺激和促絲裂原激活蛋白激酶對骨改建的影響
耿遠明1申曉青1徐平平2
1.南方醫(yī)科大學(xué)珠江醫(yī)院口腔科 廣州 510282;2.廣東省口腔醫(yī)院?南方醫(yī)科大學(xué)附屬口腔醫(yī)院口腔頜面外科 廣州 510280
生物力信號轉(zhuǎn)導(dǎo)是骨生物學(xué)研究的熱點之一。通過研究流體剪切力、細胞外基質(zhì)形變等生物力刺激下成骨細胞系的應(yīng)答發(fā)現(xiàn),生物力信號轉(zhuǎn)導(dǎo)涉及促絲裂原激活蛋白激酶(MAPK)信號轉(zhuǎn)導(dǎo)通路在內(nèi)的多種信號系統(tǒng)。生物力刺激作用于整聯(lián)蛋白、鈣離子通道和脂筏等感受器,激活MAPK信號轉(zhuǎn)導(dǎo)通路并通過級聯(lián)反應(yīng)調(diào)節(jié)下游分子的活性,如核心結(jié)合因子-α1和激活蛋白1等轉(zhuǎn)錄因子,進而調(diào)控成骨細胞的功能。同時生物力刺激誘導(dǎo)的MAPK信號轉(zhuǎn)導(dǎo)通路與雌激素受體、甲狀旁腺素受體和1,25-二羥膽骨化醇受體等信號轉(zhuǎn)導(dǎo)通路存在交聯(lián)作用,是生物力信號轉(zhuǎn)導(dǎo)的重要途徑。
成骨細胞系; 生物力信號轉(zhuǎn)導(dǎo); 促絲裂原激活蛋白激酶
生物力刺激是調(diào)節(jié)骨組織改建的關(guān)鍵因素之一,利用生物力刺激調(diào)節(jié)骨組織改建被廣泛運用于口腔科和骨科等臨床實踐中。例如在正畸治療時,牙體移動前方的骨受到壓力,造成骨吸收;牙體移動后方的骨則受到牽張力,刺激骨形成,占據(jù)牙體前移后遺留的空間。細胞將生物力刺激轉(zhuǎn)化為調(diào)控細胞活動的生物學(xué)信號的過程,即生物力信號轉(zhuǎn)導(dǎo),是骨生物學(xué)的研究熱點。成骨細胞系在骨改建中發(fā)揮著關(guān)鍵性的作用,是目前研究骨組織生物力信號轉(zhuǎn)導(dǎo)的主要對象。Klein-Nulend等[1]在研究中發(fā)現(xiàn),生物力刺激可影響成骨細胞系的各個分化階段:從前體干細胞到骨細胞。生物力刺激信號轉(zhuǎn)導(dǎo)涉及多種信號系統(tǒng),其中促絲裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)信號轉(zhuǎn)導(dǎo)通路研究較為廣泛。本文就MAPK在成骨細胞系生物力刺激信號轉(zhuǎn)導(dǎo)中的作用及其上下游信號轉(zhuǎn)導(dǎo)通路等研究進展作一綜述。
一種假說認為,骨基質(zhì)受力使骨陷窩小管系統(tǒng)(lacunar canalicular system,LCS)內(nèi)產(chǎn)生液體流動,流體剪切力(fluid shear stress,F(xiàn)SS)作用于骨細胞以調(diào)節(jié)成骨細胞和破骨細胞的功能[2]。此假說得到了一些體外試驗的支持,但目前的問題在于:1)FSS多作用于二維培養(yǎng)的細胞,與生理條件的三維環(huán)境差異巨大,基本無法描述假說中的受力條件[3];2)體外條件下能夠引起應(yīng)答的刺激強度遠遠高于生理條件[4];3)骨細胞在LCS中的細胞突相互連接并處于動態(tài)變化中,這使得FSS在解釋骨改建現(xiàn)象時變得極為復(fù)雜[5]。
另一種假說為常用的受力模型為細胞外基質(zhì)(extracellular matrix,ECM)形變。ECM形變直觀上可以模擬細胞在骨基質(zhì)中的狀態(tài),但其效應(yīng)與FSS并非完全相同,提示其仍然具有一定的局限性[6]。從更廣泛意義的上看,ECM形變和FSS以及靜水壓和離心力等其他形式的生物力刺激的共同效應(yīng)是使細胞形變,產(chǎn)生細胞膜與基質(zhì)結(jié)合處應(yīng)力或細胞膜張力的變化,誘導(dǎo)刺激整聯(lián)蛋白(舊稱整合素)、生物力敏感離子通道和脂筏等感受器產(chǎn)生生物學(xué)信號[7]。在尚無研究說明這些細胞形變方式的生物學(xué)意義的前提下,為討論方便,本文將其描述為生物力刺激。
在MAPK信號轉(zhuǎn)導(dǎo)通路中至少有細胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)1/2、P38MAPK和c-Jun N-末端激酶(c-Jun N-terminal kinase,JNK)參與了成骨細胞系的生物力學(xué)信號轉(zhuǎn)導(dǎo),誘導(dǎo)成骨細胞分化及程序性死亡,調(diào)節(jié)破骨細胞的分化誘導(dǎo)。生物力刺激可通過激活ERK1/2誘導(dǎo)成骨分化。此過程中核心結(jié)合因子-α1(core binding factor α1,CBFA1)等成骨特異性轉(zhuǎn)錄因子表達及活性增加,伴隨堿性磷酸酶(alkaline phosphatase,AKP)、1型膠原和骨鈣蛋白等多種成骨分化標(biāo)志物的表達上調(diào)[8]。P38MAPK在成骨細胞受到生物力刺激時磷酸化增加[9],然而并不誘導(dǎo)成骨分化[10]。過強的生物力刺激可誘導(dǎo)成骨細胞程序性死亡。生物力刺激誘導(dǎo)鈣流形成,產(chǎn)生活性氧族,激活JNK并誘導(dǎo)細胞表達腫瘤壞死因子受體超家族成員成纖維細胞生長因子誘導(dǎo)早期反應(yīng)蛋白14(fibroblast growth factor-inducible-14,F(xiàn)n14),F(xiàn)n14的配體具有程序性細胞死亡誘導(dǎo)活性[11]。
成骨細胞通過產(chǎn)生骨保護蛋白(osteoprotegerin,OPG)和核因子-κB受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANKL)調(diào)節(jié)破骨細胞的分化。生物力刺激通過激活P38MAPK調(diào)控成骨細胞中RANKL和OPG的表達[12]。生物力刺激誘導(dǎo)的P38MAPK激活與單核細胞趨化蛋白(monocyte chemoattractant protein,MCP)3表達相關(guān),MCP3可促進破骨前體細胞的趨化[11]。
3.1整聯(lián)蛋白
整聯(lián)蛋白是一種異二聚體跨膜蛋白,胞外部分與ECM中特定的氨基酸序列結(jié)合致其發(fā)生構(gòu)象變化,將外界信息導(dǎo)入細胞內(nèi)[13]。MAPK信號轉(zhuǎn)導(dǎo)通路可接受來自整聯(lián)蛋白的信號整合。整聯(lián)蛋白通過α-輔肌動蛋白或黏著斑蛋白與MAPK信號轉(zhuǎn)導(dǎo)通路產(chǎn)生相互作用[14]。整聯(lián)蛋白β1亞基敲除可抑制生物力刺激誘導(dǎo)的ERK上調(diào),而β5亞基敲除可增強ERK的上調(diào)[15]。
整聯(lián)蛋白屬于無酶活性受體,通過其他激酶激活MAPK信號轉(zhuǎn)導(dǎo)通路,例如局部黏著斑激酶(focal adhesion kinase,F(xiàn)AK)、Src家族激酶(Src family kinase,SFK)、Rho鳥苷三磷酸(guanosine triphosphate,GTP)等。FAK通過樁蛋白(paxillin)和踝蛋白(talin)與整聯(lián)蛋白結(jié)合,導(dǎo)致FAK酪氨酸(tyrosine,Tyr)397自磷酸化并激活;FAK Tyr397磷酸化后與SFK等結(jié)合,誘導(dǎo)其他位點的磷酸化;FAK Tyr863的磷酸化使FAK與P130Cas和Grb2的結(jié)合性增強;FAK Tyr925的磷酸化促進FAK與Grb2的結(jié)合[16]。Grb2與FAKSOS(son of sevenless)形成聚合體,是生物力刺激誘導(dǎo)ERK1/2和JNK激活的關(guān)鍵步驟[17]。
激活狀態(tài)的SFK向細胞附著位點轉(zhuǎn)位,通過肉豆蔻?;蚺c胞膜結(jié)合,與整聯(lián)蛋白β3的C端序列結(jié)合,調(diào)節(jié)細胞黏附及遷移[18]。受到生物力刺激后,骨細胞核內(nèi)的SFK活性增加,Src與富脯氨酸的酪氨酸激酶2形成復(fù)合體并進入細胞核與甲基結(jié)合結(jié)構(gòu)域蛋白2結(jié)合,調(diào)控環(huán)加氧酶(cyclooxygenase,COX)2和骨橋蛋白的表達[19]。盡管生物力刺激可以激活Src,但抑制Src并不能影響生物力刺激誘導(dǎo)的ERK1/2磷酸化[20]。整聯(lián)蛋白介導(dǎo)的生物力刺激信號轉(zhuǎn)導(dǎo)也受到Rho GTP酶的調(diào)控。ECM的生物力學(xué)性可通過RhoA及下游的Rho相關(guān)卷曲蛋白激酶(Rho-associated coiled-coil protein kinase,ROCK)調(diào)控MAPK的活性,從而影響成骨細胞的分化[21]。成骨細胞受到生物力刺激時,通過RhoA/ROCK依賴的ERK1/2激活,可誘導(dǎo)骨橋蛋白和COX2的表達[9]。
3.2鈣離子通道
當(dāng)成骨細胞受到生物力刺激之時,可以發(fā)生鈣閃爍現(xiàn)象[22]。阻斷生物力敏感鈣離子通道(biological force sensitive calcium channel,BSCC)或電壓力敏感鈣離子通道(voltage force sensitive calcium channel,VSCC)可降低生物力刺激誘導(dǎo)的骨形成[7]。一種假說認為,生物力刺激使胞膜表面產(chǎn)生牽張應(yīng)力,相應(yīng)的錨繩作用于與之密切聯(lián)系的BSCC并致其開放[23];當(dāng)BSCC介導(dǎo)的膜電位去極化達到一定閾值時,VSCC開放,從而形成鈣內(nèi)流[2]。生物力刺激誘導(dǎo)的鈣閃爍依賴外源性鈣流,也須要內(nèi)源性鈣離子的釋放[24]。細胞質(zhì)鈣離子濃度的變化,促進腺苷三磷酸的釋放,通過旁分泌激活細胞嘌呤能受體P2X7,激活磷酸酯酶C(phospholipase C,PLC)分解4,5-二磷酸脂酰肌醇(phosphatidylinositol 4,5-bisphosphate,PIP2)為1,4,5-三磷酸肌醇(inositol 1,4,5-triphosphate,IP3)和1,2-二酯酰甘油(1,2-diacylglycerol,DAG),IP3通過IP3受體激活內(nèi)源性鈣離子的釋放,同時激活蛋白激酶C(protein kinase C,PKC),從而激活ERK1/2及P38MAPK信號轉(zhuǎn)導(dǎo)通路的信號轉(zhuǎn)導(dǎo)[25]。
鈣離子與鈣調(diào)蛋白(calmodulin,CaM)結(jié)合,從而激活鈣調(diào)蛋白依賴性激酶(CaM kinase,CaMK)[26]。在成骨細胞中,生物力刺激誘導(dǎo)的鈣流激活CaMK,進而激活促絲裂原激活蛋白激酶激酶激酶(mitogen-activated protein kinase kinase kinase,MAPKKK)轉(zhuǎn)化生長因子活化激酶(transforming growth factor-β-activated kinase,TAK) 1,TAK1激活JNK和P38MAPK信號通路,上調(diào)白細胞介素-6的表達[27]。
3.3脂筏
脂筏是細胞膜上由膽固醇與鞘磷脂類物質(zhì)結(jié)合而成的動態(tài)微結(jié)構(gòu)域。在成骨細胞中,脂筏與生物力刺激誘導(dǎo)的MAPK激活相關(guān)。H-Ras的激活依賴于脂筏結(jié)構(gòu)的存在;清除脂筏膽固醇,可抑制生物力刺激對Ras/ERK的激活,從而削弱對RANKL的表達抑制[28]。窖蛋白(caveolin)通過與整聯(lián)蛋白的作用激活ERK并與無翅型小鼠乳房腫瘤病毒整合位點家族(wingless-type mice mammary tumour virus integration site family,WNT)/ β-連環(huán)蛋白信號轉(zhuǎn)導(dǎo)通路交聯(lián)[29]。窖蛋白通過內(nèi)吞作用調(diào)控P2X7受體在成骨細胞內(nèi)的時空分布,從而調(diào)控生物力刺激誘導(dǎo)的鈣流[30]。
MAPK激活后,其構(gòu)象發(fā)生變化,磷酸化底物并調(diào)節(jié)其功能。在成骨細胞系生物力信號轉(zhuǎn)導(dǎo)中,MAPK磷酸化的底物包括轉(zhuǎn)錄因子CBFA1和激活蛋白(activator protein,AP)1。
4.1CBFA1
CBFA1在軟骨內(nèi)成骨和膜內(nèi)成骨的成骨細胞分化中必不可少,是成骨細胞分化的重要標(biāo)志物。在生物力信號轉(zhuǎn)導(dǎo)中,CBFA1是ERK1/2的作用底物。生物力刺激骨細胞后,ERK1/2激活,導(dǎo)致其入核增加,磷酸化CBFA1的絲氨酸(serine,Ser)301和Ser309位點,提高CBFA1的活性[31]。其他一些與成骨分化相關(guān)的轉(zhuǎn)錄因子,如遠端較小同源異形盒(distal-less homeobox,DLX)5和成骨細胞特異性轉(zhuǎn)錄因子(osterix,Osx)等,也受到MAPK的磷酸化調(diào)節(jié)。DLX5的Ser34和Ser217被P38MAPK磷酸化而激活,上調(diào)Osx的表達[32];Osx的Ser73和Ser77可被P38MAPK磷酸化,促進纖維調(diào)節(jié)蛋白和骨涎蛋白等的轉(zhuǎn)錄[33]。目前,尚無確切的證據(jù)表明,生物力刺激誘導(dǎo)的P38-MAPK激活與DLX5及Osx的轉(zhuǎn)錄活性相關(guān)。
4.2AP1
AP1是由FOS/FRA(c-Fos、c-FosB、FRA1/ 2)、c-Jun(c-Jun、c-JunD、c-JunB)、活化轉(zhuǎn)錄因子/環(huán)腺苷酸反應(yīng)元件結(jié)合蛋白和巨噬細胞活化因子等轉(zhuǎn)錄因子亞家族成員形成的均異質(zhì)二聚體,調(diào)控細胞的增殖、分化和程序性細胞死亡。AP1并非Osx,但卻在成骨細胞分化的早期基因表達中起重要的作用,調(diào)控多種標(biāo)志基因的表達,如骨鈣蛋白、骨橋蛋白和骨粘連蛋白等[34]。MAPK依賴的AP1激活主要發(fā)生在成骨細胞受生物力刺激的早期。在細胞受到生物力刺激的極早期(3~6 h),ERK1/2和JNK的活性增加,激活c- Jun,使其核轉(zhuǎn)移增加,與DNA的結(jié)合力上升,上調(diào)1型膠原和基質(zhì)金屬蛋白酶1的表達[35]。
生物力刺激信號轉(zhuǎn)導(dǎo)是一個涉及多種信號轉(zhuǎn)導(dǎo)的復(fù)雜過程,MAPK信號轉(zhuǎn)導(dǎo)通路與其他信號轉(zhuǎn)導(dǎo)通路存在著交聯(lián)作用。
5.1雌激素
雌激素既是一種重要的性激素,也是一種骨改建的重要調(diào)節(jié)因子。生物力刺激可以通過激活ERK1/2提高雌激素受體的磷酸化水平,產(chǎn)生和雌激素類似的效應(yīng)[36]。在成骨細胞中,雌激素與生物力刺激對MAPK的激活具有協(xié)同作用,雙因素刺激明顯較單因素增加了ERK1/2和P38MAPK的激活以及c-FOS和COX-2基因的表達[37]。雌激素可提高骨細胞連接蛋白(connexin,CX)43的表達水平,增加細胞間的通信效率,提高細胞對生物力刺激的敏感,增加ERK1/2的激活水平[38]。
5.2甲狀旁腺素
甲狀旁腺素(parathyroid hormone,PTH)是鈣穩(wěn)態(tài)的主要調(diào)節(jié)激素。PTH結(jié)合G蛋白偶聯(lián)受體后激活環(huán)腺苷酸/蛋白激酶(protein kinase,PK)A和PKC/Ca2+信號轉(zhuǎn)導(dǎo)通路,通過激活PKA及促絲裂原激活蛋白激酶1抑制ERK1/2和JNK的活性,從而抑制細胞外刺激對ERK1/2和JNK的激活[39];但這一機制是否存在于生物力刺激的轉(zhuǎn)導(dǎo),尚無文獻明確說明。PTH可以降低維持骨穩(wěn)態(tài)所必須的生物力刺激強度,其機制可能為通過增加解聚細胞骨架蛋白,提高BSCC的開放率(而非VSCC)來提高成骨細胞對生物力刺激的敏感性,增加刺激后胞內(nèi)鈣離子濃度[40]。
5.31,25-二羥膽骨化醇
1,25-二羥膽骨化醇(1,25-dihydroxycholecalciferol,1,25-(OH)2D3)是一種調(diào)節(jié)骨代謝的脂溶性激素,可使鈣磷從骨組織中釋放,維持血漿鈣磷的正常水平。1,25-(OH)2D3與其受體結(jié)合,誘導(dǎo)成骨細胞表達RANKL,促進破骨細胞的分化[41];敲除MAPK磷酸酶1可抑制1,25-(OH)2D3受體的激活,下調(diào)RANKL的表達[42]。1,25-(OH)2D3的功能受到細胞色素P(cytochrome P,CYP)24的調(diào)節(jié),CYP24通過羥基化1,25-(OH)2D3使其失活,生物力刺激可以抑制成骨細胞CYP24的轉(zhuǎn)錄,抑制MPAK可以進一步增強生物力刺激的對CYP24的抑制。
MAPK信號轉(zhuǎn)導(dǎo)通路接受了來自刺激感受器的信號整合,并將信號轉(zhuǎn)導(dǎo)給下游的效應(yīng)分子,使細胞作出應(yīng)答,在成骨細胞系生物力信號轉(zhuǎn)導(dǎo)中扮演了重要的角色。目前,生物力信號轉(zhuǎn)導(dǎo)研究的體外模型多樣,不同的MAPK在不同的刺激中發(fā)揮不同甚至相矛盾的作用。解決這一問題,首先要明確細胞對生物力刺激的感受方式以及各個潛在感受器之間的相互作用。對骨組織超微結(jié)構(gòu)研究的深入,將有助于體外模型的進一步優(yōu)化。成骨細胞系的各個分化階段均能對生物力刺激進行應(yīng)答,可能也是造成MAPK激活方式不同的原因,但尚無研究說明不同分化階段的細胞生物力信號轉(zhuǎn)導(dǎo)存在怎樣的差異,以及這些差異的生物學(xué)意義。這些問題仍須在今后的研究中進一步探討。
生物力刺激作用于整聯(lián)蛋白,誘導(dǎo)與整聯(lián)蛋白關(guān)系密切的FAK、SFK和RhoA產(chǎn)生活性變化,從而激活ERK1/2和JNK;生物力刺激也可誘導(dǎo)外源性和內(nèi)源性鈣流,通過PKC和CaMK等激活MAPK;脂筏在細胞受到生物力刺激后,一方面影響鈣通道的開放,另一方面可通過Ras等激活ERK1/2;轉(zhuǎn)錄因子AP1的活性受到MAPK的調(diào)節(jié);ERK1/2的激活可以促進CBFA1的作用,可以調(diào)節(jié)細胞成骨分化。
[1] Klein-Nulend J, Bakker AD, Bacabac RG, et al. Mechanosensation and transduction in osteocytes[J]. Bone, 2013, 54(2):182-190.
[2] Price C, Zhou X, Li W, et al. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence forload-induced fluid flow[J]. J Bone Miner Res, 2011, 26(2):277-285.
[3] Joukar A, Niroomand-Oscuii H, Ghalichi F. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar-canalicular interstitial fluid flow[J]. Comput Methods Programs Biomed, 2016, 133:133-141.
[4] Metzger TA, Schwaner SA, LaNeve AJ, et al. Pressure and shear stress in trabecular bone marrow during whole bone loading[J]. J Biomech, 2015, 48 (12):3035-3043.
[5] Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction[J]. Ann N Y Acad Sci, 2010, 1192:22-428.
[6] Gardinier JD, Majumdar S, Duncan RL, et al. Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts[J]. Cell Mol Bioeng, 2009, 2(1):133-143.
[7] Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone[J]. Gene, 2012, 503(2):179-193.
[8] Zhang P, Wu Y, Jiang Z, et al. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling[J]. Int J Mol Med, 2012, 29(6):1083-1089.
[9] Hamamura K, Swarnkar G, Tanjung N, et al. RhoA-mediated signaling in mechanotransduction of osteoblasts[J]. Connect Tissue Res, 2012, 53(5):398-406.
[10] Zhang P, Wu Y, Dai Q, et al. p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain[J]. Mol Cell Biochem, 2013, 378(1/2):19-28.
[11] Matsui H, Fukuno N, Kanda Y, et al. The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts[J]. J Biol Chem, 2014, 289(10):6438-6450.
[12] Yamamoto K, Yamamoto T, Ichioka H, et al. Effects of mechanical stress on cytokine production in mandible-derived osteoblasts[J]. Oral Dis, 2011, 17 (7):712-719.
[13] Thi MM, Suadicani SO, Schaffler MB, et al. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin[J]. Proc Natl Acad Sci USA, 2013, 110(52):21012-21017.
[14] Boccafoschi F, Mosca C, Bosetti M, et al. The role of mechanical stretching in the activation and localization of adhesion proteins and related intracellular molecules[J]. J Cell Biochem, 2011, 112(5):1403-1409.
[15] Yan YX, Gong YW, Guo Y, et al. Mechanical strain regulates osteoblast proliferation through integrinmediated ERK activation[J]. PLoS ONE, 2012, 7(4): e35709.
[16] Papusheva E, Mello de Queiroz F, Dalous J, et al. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility[J]. J Cell Sci, 2009, 122(Pt 5):656-666.
[17] Wang B, Du T, Wang Y, et al. Focal adhesion kinase signaling pathway is involved in mechanotransduction in MG-63 cells[J]. Biochem Biophys Res Commun, 2011, 410(3):671-676.
[18] Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways[J]. J Cell Sci, 2012, 125(Pt 13):3025-3038.
[19] Hum JM, Day RN, Bidwell JP, et al. Mechanical loading in osteocytes induces formation of a Src/ Pyk2/MBD2 complex that suppresses anabolic gene expression[J]. PLoS ONE, 2014, 9(5):e97942.
[20] Morgan JM, Wong A, Genetos DC, et al. Src is sufficient, but not necessary, for osteopontin induction in osteoblasts[J]. Biorheology, 2011, 48(1):65-74.
[21] Khatiwala CB, Kim PD, Peyton SR, et al. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK [J]. J Bone Miner Res, 2009, 24(5):886-898.
[22] Roy B, Das T, Mishra D, et al. Oscillatory shear stress induced calcium flickers in osteoblast cells[J]. Integr Biol, 2014, 6(3):289-299.
[23] Thompson WR, Modla S, Grindel BJ, et al. Perlecan/ Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone[J]. J Bone Miner Res,2011, 26(3):618-629.
[24] Huo B, Lu XL, Guo XE. Intercellular calcium wave propagation in linear and circuit-like bone cell networks[J]. Philos Trans A Math Phys Eng Sci, 2010, 368(1912):617-633.
[25] Liu D, Genetos DC, Shao Y, et al. Activation of extracellular-signal regulated kinase(ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts[J]. Bone, 2008, 42(4):644-652.
[26] Kim BJ, Lee YS, Lee SY, et al. Afamin stimulates osteoclastogenesis and bone resorption via Gicoupled receptor and Ca2+/calmodulin-dependent protein kinase(CaMK) pathways[J]. J Endocrinol Invest, 2013, 36(10):876-882.
[27] Fukuno N, Matsui H, Kanda Y, et al. TGF-β-activated kinase 1 mediates mechanical stress-induced IL-6 expression in osteoblasts[J]. Biochem Biophys Res Commun, 2011, 408(2):202-207.
[28] Rubin J, Murphy TC, Rahnert J, et al. Mechanical inhibition of RANKL expression is regulated by HRas-GTPase[J]. J Biol Chem, 2006, 281(3):1412-1418.
[29] Gortazar AR, Martin-Millan M, Bravo B, et al. Crosstalk between caveolin-1/extracellular signalregulated kinase(ERK) and β-catenin survival pathways in osteocyte mechanotransduction[J]. J Biol Chem, 2013, 288(12):8168-8175.
[30] Gangadharan V, Nohe A, Caplan J, et al. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts[J]. Am J Physiol Cell Physiol, 2015, 308(1):C41-C50.
[31] Li Y, Ge C, Long JP, et al. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor [J]. J Bone Miner Res, 2012, 27(6):1263-1274.
[32] Ulsamer A, Ortu?o MJ, Ruiz S, et al. BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38[J]. J Biol Chem, 2008, 283(7):3816-3826.
[33] Ortuno M J, Ruiz-Gaspa S, Rodriguez-Carballo E, et al. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix[J]. J Bio Chem, 2010, 285(42):31985-31994.
[34] Matsumoto T, Kuriwaka-Kido R, Kondo T, et al. Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling[J]. Endocr J, 2012, 59(2):91-101.
[35] Kook SH, Jang YS, Lee JC. Involvement of JNKAP-1 and ERK-NF-κB signaling in tension-stimulated expression of typeⅠcollagen and MMP-1 in human periodontal ligament fibroblasts[J]. J Appl Physiol, 2011, 111(6):1575-1583.
[36] Jessop HL, Sjoberg M, Cheng MZ, et al. Mechanical strain and estrogen activate estrogen receptor alpha in bone cells[J]. J Bone Miner Res, 2001, 16(6): 1045-1055.
[37] Yeh CR, Chiu JJ, Lee CI, et al. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-integrin[J]. J Bone Miner Res, 2010, 25(3):627-639.
[38] Ren J, Wang XH, Wang GC, et al. 17β-estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells[J]. Bone, 2013, 53(2):587-596.
[39] Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton[J]. Curr Opin Pharmacol, 2015, 22:41-50.
[40] Zhang JS, D Ryder K, A Bethel J, et al. PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated 2+ signaling in osteoblasts[J]. J Bone Miner Res, 2006(11):1729-1737.
[41] van der Meijden K, Bakker AD, van Essen HW, et al. Mechanical loading and the synthesis of 1,25 (OH)2D in primary human osteoblasts[J]. J Steroid Biochem Mol Biol, 2016, 156:32-39.
[42] Griffin AC 3rd, Kern MJ, Kirkwood KL. MKP-1 is essential for canonical Vitamin D-induced signaling through nuclear import and regulates RANKL expression and function[J]. Mol Endocrinol, 2012, 26 (10):1682-1693.
(本文采編 王晴)
Effects of biological stress and mitogen-activated protein kinase on bone remodeling
Geng Yuanming1, Shen Xiaoqing1, Xu Pingping2.
(1. Dept. of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; 2. Dept. of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Stomatological Hospital of Southern Medical University, Guangzhou 510280, China)
This study was supported by the National Natural Science Foundation of China(81271187) and Guangdong Provincial Science and Technology Plan Projects(2011B080701099, 2013B021800319).
Studies on mechanotransduction have focused on stomology-related bone biology. In in mechanotransduction, cellular responses to mechanical stress, such as fluid shear stress or matrix deformation in vitro, involve multiple signal pathways, including mitogen-activated protein kinase pathway. This pathway is activated through integrin, calcium channel, and lipid raft under mechanical stress and regulates downstream signal molecules, such as transcription factor core binding factors α1 and activator protein-1. Crosstalks are present between mechanical stress-induced mitogen-activated protein kinase pathway and other receptor pathways(such as estrogen, parathyroid hormone, and 1,25-dihydroxy-cholecalciferol receptor pathways). These crosstalks are important regulatory mechanisms of mechanotransduction.
osteoblast linage; biological force signal transduction; mitogen-activated protein kinase
Q 256
A [doi] 10.7518/gjkq.2016.06.018
2015-12-23;
2016-06-01
國家自然科學(xué)基金(81271187);廣東省科技計劃項目(2011B080701099,2013B021800319)
耿遠明,博士,Email:150449101@qq.com
徐平平,教授,博士,Email:xupingping_gd@163.com