張友明 朱紅濤
?
Wnt信號(hào)通路與心血管疾病的研究進(jìn)展
張友明 朱紅濤
Wnt信號(hào)通路是一種多元復(fù)雜的級(jí)聯(lián)放大信號(hào)通路,參與心血管系統(tǒng)的發(fā)育,正常生理狀態(tài)下Wnt信號(hào)通路通常是靜止的,在心血管疾病狀態(tài)下可被激活。該文介紹了Wnt信號(hào)通路在動(dòng)脈粥樣硬化、心肌梗死、心肌肥厚、心力衰竭以及心律失常發(fā)病中的作用,探討其在心血管疾病診治中的潛在價(jià)值。
Wnt信號(hào)通路;心血管疾病
Wnt信號(hào)通路是一種多元復(fù)雜的級(jí)聯(lián)放大信號(hào)通路,參與調(diào)控細(xì)胞增殖、分化、凋亡等多個(gè)病理生理過(guò)程。研究表明,Wnt信號(hào)通路在心血管系統(tǒng)發(fā)育過(guò)程中起重要作用,正常生理狀態(tài)下Wnt信號(hào)通路通常是靜止的,心血管疾病狀態(tài)下可被激活。
Wnt的命名來(lái)源于果蠅的無(wú)翅基因Wingless和乳腺癌小鼠中克隆出的原癌基因Int,由兩者合并而成[1],其編碼的Wnt蛋白是一種分泌型糖蛋白,由350~400個(gè)氨基酸組成。目前,Wnt蛋白家族包括至少19個(gè)成員。
Wnt基因調(diào)控的信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)稱為Wnt信號(hào)通路,主要由細(xì)胞外Wnt蛋白、細(xì)胞膜受體、胞漿內(nèi)信號(hào)轉(zhuǎn)導(dǎo)部分和核內(nèi)轉(zhuǎn)錄調(diào)控部分組成,分為經(jīng)典型和非經(jīng)典型。經(jīng)典型是指Wnt蛋白與細(xì)胞表面卷曲蛋白(FZD)受體結(jié)合,胞漿內(nèi)的β-連環(huán)蛋白(β-catenin)累積增加,進(jìn)入細(xì)胞核與核內(nèi)轉(zhuǎn)錄因子作用并促進(jìn)特定基因表達(dá)。非經(jīng)典型又稱不依賴β-catenin信號(hào)通路,Wnt蛋白與細(xì)胞表面FZD受體結(jié)合,胞漿內(nèi)主要涉及Wnt/Ca2+信號(hào)轉(zhuǎn)導(dǎo)通路[包括Wnt/Ca2+/鈣調(diào)蛋白激酶Ⅱ(CaMKⅡ)、Wnt/Ca2+/蛋白激酶-C(PKC)和Wnt/Ca2+/鈣調(diào)神經(jīng)磷酸酶(Calcineurin)]和Wnt/平面細(xì)胞極性(PCP)信號(hào)轉(zhuǎn)導(dǎo)通路[包括GTP酶(Rho和Rac)/ c-Jun氨基末端激酶(JNK)]。
除了Wnt蛋白,Wnt通路抑制劑DKK和分泌型卷曲相關(guān)蛋白(sFRP)也可以通過(guò)不同途徑影響Wnt配體-受體相互作用,調(diào)節(jié)Wnt信號(hào)轉(zhuǎn)導(dǎo)。低密度脂蛋白受體相關(guān)蛋白(LRP)是一種輔助受體,與細(xì)胞表面FZD受體形成Wnt受體復(fù)合物,DKK與LRP5/6結(jié)合,使Wnt受體復(fù)合物構(gòu)象發(fā)生改變,阻斷信號(hào)轉(zhuǎn)導(dǎo)。sFRP具有與FZD受體類似的半胱氨酸富含區(qū)域,在細(xì)胞外可結(jié)合Wnt蛋白,抑制其與FZD受體結(jié)合,從而阻斷信號(hào)轉(zhuǎn)導(dǎo)。此外,Wnt抑制因子-1(WIF1)、腎素受體(RR)以及胰島素樣生長(zhǎng)因子結(jié)合蛋白-4也具有抑制Wnt信號(hào)轉(zhuǎn)導(dǎo)作用,但目前研究尚不充分。
在許多器官發(fā)育過(guò)程中Wnt 信號(hào)通路起重要作用,參與調(diào)控組織形態(tài)、非對(duì)稱細(xì)胞的分化以及組織細(xì)胞自我更新等生物過(guò)程。心臟發(fā)育過(guò)程包括心襻、腔室、間隔及瓣膜形成,Wnt配體、FZD受體及細(xì)胞外Wnt通路抑制物在這些過(guò)程中均有不同程度表達(dá)[2]。此外,Wnt信號(hào)通路在血管發(fā)育早期也起著關(guān)鍵作用,內(nèi)皮細(xì)胞可表達(dá)一系列Wnt、FZD基因以及Wnt通路調(diào)節(jié)因子DKK和sFRP,其中Wnt3a和Wnt5a可增強(qiáng)胚胎干細(xì)胞源內(nèi)皮細(xì)胞分化[3-4]。
動(dòng)脈粥樣硬化(AS)形成是一個(gè)復(fù)雜的過(guò)程,內(nèi)皮細(xì)胞受損、內(nèi)皮下脂質(zhì)堆積、血管平滑肌細(xì)胞增殖遷移和局部炎癥反應(yīng)等是其發(fā)病過(guò)程中的關(guān)鍵因素。
2.1 Wnt信號(hào)通路與內(nèi)皮功能和炎癥反應(yīng)
血管內(nèi)皮細(xì)胞受損、炎癥和促血栓形成基因表達(dá)上調(diào)、炎癥細(xì)胞聚集于內(nèi)皮下被認(rèn)為是AS的起始階段。當(dāng)內(nèi)皮細(xì)胞激活或受損時(shí),可表達(dá)Wnt蛋白(Wnt2、-3、-4、-5、-7、-8、-9和-11)、FZD(FZD1~10,除了FZD3)受體以及其他Wnt信號(hào)通路相關(guān)分子(LRP5、LRP6、sFRP1、sFRP3、DKK1和DKK3)[5]。在AS好發(fā)區(qū)域(低切應(yīng)力區(qū)),內(nèi)皮細(xì)胞中β-catenin表達(dá)增加[6]。Wnt信號(hào)通路在內(nèi)皮細(xì)胞炎癥反應(yīng)中也起重要作用。將Wnt5a與內(nèi)皮細(xì)胞共同孵育1 h,發(fā)現(xiàn)炎癥因子白細(xì)胞介素(IL)-1α、IL-6和IL-8表達(dá)上調(diào),延長(zhǎng)孵育時(shí)間,炎癥因子表達(dá)量進(jìn)一步增加,Wnt5a可能是通過(guò)Ca2+/PKC激活核因子κB(NF-κB)引起炎癥因子表達(dá)增加[7]。上述研究說(shuō)明經(jīng)典型Wnt信號(hào)通路在內(nèi)皮細(xì)胞激活或受損早期發(fā)揮重要作用,而非經(jīng)典型Wnt信號(hào)通路主要參與隨后的炎癥反應(yīng)。
2.2 Wnt信號(hào)通路與血管平滑肌增殖、遷移
AS病灶中炎癥反應(yīng)微環(huán)境可改變血管平滑肌(VSMCs)的表型,隨后VSMCs不斷增殖,遷移至內(nèi)膜下,分泌細(xì)胞外基質(zhì)使內(nèi)膜增厚并形成斑塊纖維帽。VSMCs增殖和遷移均受Wnt信號(hào)通路調(diào)節(jié)。研究證實(shí),經(jīng)典型Wnt4/FZD1通路參與血管內(nèi)膜增厚[8],非經(jīng)典型Wnt信號(hào)通路的下游成分CaMKⅡ和JNK可促進(jìn)VSMCs增殖[9]。此外,Wnt3a可上調(diào)整合素激酶基因表達(dá)和增強(qiáng)β1-整合素活性,從而提高VSMCs遷移和黏附能力[10]。而Kindlin2小干擾RNA可抑制Wnt3a誘導(dǎo)的VSMCs增殖和遷移[11]。
2.3 Wnt信號(hào)通路與血管鈣化
血管鈣化是AS的重要特征,與斑塊大小呈正相關(guān)。血管鈣化過(guò)程中,VSMCs凋亡或表型轉(zhuǎn)化為成骨樣細(xì)胞,分泌細(xì)胞外基質(zhì)濃縮鈣磷,促進(jìn)鈣化形成。Wnt/β-catenin信號(hào)通路激活可調(diào)節(jié)成骨細(xì)胞分化和新骨形成,其中β-catenin和骨形態(tài)發(fā)生蛋白-2(BMP2)起重要作用[12]。研究發(fā)現(xiàn),將人VSMCs與磷酸鹽和骨化三醇孵育,細(xì)胞核內(nèi)β-catenin水平明顯增加,BMP2、成骨樣細(xì)胞轉(zhuǎn)錄因子-2(Msx2)和骨鈣蛋白mRNA表達(dá)上調(diào), DKK1可抑制磷酸鹽和骨化三醇誘導(dǎo)的上述改變[13]。此外,鎂可通過(guò)抑制Wnt/β-catenin信號(hào)通路逆轉(zhuǎn)VSMCs鈣化[14]。
研究發(fā)現(xiàn)急性心肌梗死(AMI)后Wnt信號(hào)通路相關(guān)分子表達(dá)發(fā)生改變。將小鼠冠狀動(dòng)脈前降支結(jié)扎誘導(dǎo)AMI,1周后梗死區(qū)Wnt10b、FZD1、-2、-5、-10和SFRP1 mRNA表達(dá)上調(diào),Wnt7b、FZD8 mRNA表達(dá)下調(diào),F(xiàn)ZD3、-4、-6和-7 mRNA表達(dá)無(wú)改變[15]。另一項(xiàng)研究也發(fā)現(xiàn)在小鼠前降支結(jié)扎5 d后,梗死區(qū)Wnt4 mRNA表達(dá)增加[16]。在大鼠AMI后3 d,外周血清sFRP2水平達(dá)最高峰,而2周后卻幾乎檢測(cè)不到[17]。此外,在心肌梗死的肉芽組織中可檢測(cè)到內(nèi)皮細(xì)胞β-catenin[18]和Wnt10b[19]表達(dá)增加。
如上所述,AMI后心臟Wnt信號(hào)通路被激活,由此推測(cè)Wnt信號(hào)通路在后期心臟修復(fù)中可能起重要作用。研究發(fā)現(xiàn),sFRP2能抑制心肌成纖維細(xì)胞Ⅰ型膠原的合成、成熟及沉積,AMI大鼠模型體內(nèi)注射sFRP2,2周后左室纖維化程度明顯降低[17]。而另一研究發(fā)現(xiàn),在sFRP2敲除的AMI小鼠模型中,心肌纖維化水平也明顯降低。造成上述不同觀點(diǎn)可能與內(nèi)外源性sFRP2有關(guān)[20]。在AMI小鼠模型中,DKK2可明顯減小梗死面積和纖維化程度,同時(shí)還可以減少心肌凋亡和增加毛細(xì)血管再生[21]。與DKK3+/+同窩小鼠相比,AMI后1周DKK3-/-小鼠心肌細(xì)胞凋亡增加,炎癥反應(yīng)加劇,左室功能惡化[22]。將經(jīng)典型Wnt信號(hào)通路激動(dòng)劑Wnt3a注入梗死邊緣區(qū)可明顯增加梗死范圍和左室容積[23]。相反,Wnt10b可促進(jìn)損傷區(qū)域血管新生、減少心肌纖維化及縮小梗死面積,從而改善左室功能[19]。這說(shuō)明經(jīng)典型Wnt信號(hào)通路在心肌梗死中的確切作用尚不完全清楚。
心肌肥厚是心臟對(duì)負(fù)荷增加后的適應(yīng)性改變,其主要特征為蛋白合成增加和單個(gè)心肌細(xì)胞增大。Wnt信號(hào)通路在心肌肥厚的發(fā)展過(guò)程中發(fā)揮重要作用。
散亂蛋白(Dvl)由500~600個(gè)氨基酸組成,經(jīng)典型和非經(jīng)典型Wnt信號(hào)通路均需要激活胞質(zhì)內(nèi)Dvl以募集下游蛋白。許多研究已證實(shí)Dvl蛋白與心肌肥厚相關(guān),在主動(dòng)脈縮窄術(shù)誘導(dǎo)的左室心肌肥厚模型中,Dvl1表達(dá)水平明顯增加。而采用轉(zhuǎn)基因技術(shù)使小鼠體內(nèi)Dvl1過(guò)表達(dá),發(fā)現(xiàn)小鼠12周齡時(shí)已出現(xiàn)嚴(yán)重心肌肥厚[24]。此外,對(duì)Dvl1-/-小鼠行主動(dòng)脈縮窄術(shù),發(fā)現(xiàn)小鼠左室壁未增厚,心臟質(zhì)量未增加,β-catenin含量降低[25]。核質(zhì)穿梭蛋白(Dpr1)是Wnt信號(hào)通路中的一種成分,在細(xì)胞/組織內(nèi)能夠與Dvl相互作用,研究發(fā)現(xiàn)Dpr1可通過(guò)與Dvl2結(jié)合,激活Wnt/β-catenin通路,誘導(dǎo)心肌肥厚[26]。同樣,在Wnt5a介導(dǎo)的Wnt非經(jīng)典信號(hào)通路中,Dpr1可通過(guò)激活Wnt/PCP/JNK通路誘導(dǎo)心肌肥厚,相反,抑制Dpr1可阻止心肌肥厚[27]。糖原合成酶激酶-3β(GSK-3β)為Dvl下游基因,可使激活蛋白-1、β-catenin磷酸化,抑制其功能,誘導(dǎo)心肌肥厚。其中,GSK-3β活化程度在心肌肥厚中起重要作用。GSK-3β過(guò)度激活可抑制生理性和病理性心肌肥厚;而GSK-3β活性抑制僅見(jiàn)于嚴(yán)重心力衰竭患者,不見(jiàn)于心肌肥厚患者[28]。
心力衰竭是多種心臟疾病的終末階段,目前的治療不能治愈心力衰竭,僅能延緩病情惡化。越來(lái)越多的證據(jù)發(fā)現(xiàn)Wnt信號(hào)通路參與心臟重構(gòu)和心力衰竭進(jìn)程,認(rèn)為Wnt信號(hào)通路可能成為心力衰竭防治的新靶點(diǎn)。
Schumann等[29]最早發(fā)現(xiàn)心力衰竭患者sFRP3和sFRP4 mRNA水平上調(diào),可能與β-catenin表達(dá)下調(diào)和心肌細(xì)胞凋亡相關(guān)。Askevold等[30]發(fā)現(xiàn)心力衰竭患者血清sFRP3水平明顯增加,sFRP3基礎(chǔ)水平的三分位數(shù)與心血管全因死亡率顯著相關(guān)。雖然也有研究認(rèn)為 sFRP3預(yù)測(cè)心血管事件的證據(jù)不足[31],但sFRP3在心力衰竭中的作用仍值得進(jìn)一步研究。Wnt信號(hào)通路在心功能恢復(fù)過(guò)程中也具有重要作用。在左室輔助裝置治療心力衰竭過(guò)程中,血清sFRP1水平降低[32]。心力衰竭動(dòng)物模型TO2系倉(cāng)鼠體內(nèi)sFRP2表達(dá)增加,心肌纖維化顯著,予抗sFRP2抗體治療2周,發(fā)現(xiàn)左室射血分?jǐn)?shù)明顯增加,心肌纖維化程度降低50%以上[33]。主動(dòng)脈縮窄術(shù)誘導(dǎo)心力衰竭過(guò)程中GSK-3β基因過(guò)度表達(dá)[34],抑制GSK-3β表達(dá)有利于心力衰竭治療。最近研究發(fā)現(xiàn)GSK-3β激活可改善心肌肌絲Ca2+敏感性,推測(cè) GSK-3β可能成為提高心臟收縮功能的新靶點(diǎn)[35]。
心律失常發(fā)病機(jī)制通常被分為沖動(dòng)起源異常和傳導(dǎo)異常。連接心肌細(xì)胞的潤(rùn)盤組織是心臟電沖動(dòng)正常傳導(dǎo)的先決條件,分為黏附連接復(fù)合體和間隙連接復(fù)合體。間隙連接復(fù)合體由連接蛋白(Cx)組成,心臟中的Cx主要分為Cx40 、Cx43和Cx45亞型[36]。經(jīng)典型Wnt信號(hào)通路可調(diào)節(jié)Cx43蛋白表達(dá)??焖俅碳ば律笫笮募〖?xì)胞發(fā)現(xiàn)細(xì)胞核β-catenin表達(dá)水平增加,快速刺激1 h后發(fā)現(xiàn)Cx43蛋白表達(dá)也明顯增加[37]。
Wnt信號(hào)通路參與多種疾病過(guò)程,各文獻(xiàn)報(bào)道Wnt信號(hào)通路激活或抑制的結(jié)果不一致,可能與疾病涉及不同類型細(xì)胞和Wnt信號(hào)通路并非單獨(dú)發(fā)揮作用有關(guān)。目前多數(shù)研究的數(shù)據(jù)來(lái)自動(dòng)物模型,尚缺少相關(guān)臨床數(shù)據(jù)。對(duì)Wnt信號(hào)通路的深入研究將為心血管疾病的診治提供新的思路和干預(yù)靶點(diǎn)。
[1] Johnson ML, Rajamannan N. Diseases of Wnt signaling[J]. Rev Endocr Metab Disord, 2006,7(1-2):41-49.
[2] Brade T, M?nner J, Kühl M. The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart[J]. Cardiovas Res, 2006,72(2):198-209.
[3] Yang DH, Yoon JY, Lee SH, et al. Wnt5a is required for endothelial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/beta-catenin and protein kinase Calpha[J]. Circ Res, 2009,104(3):372-379.
[4] Wang H, Charles PC, Wu Y, et al. Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells[J]. Circ Res, 2006,98(10):1331-1339.
[5] Franco CA, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel?[J]. Curr Opin Genet Dev, 2009,19(5):476-483.
[6] Gelfand BD, Meller J, Pryor AW, et al. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression[J]. Arterioscler Thromb Vasc Biol, 2011,31(7):1625-1633.
[7] Kim J, Kim J, Kim DW, et al. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling[J]. J Immunol, 2010,185(2):1274-1282.
[8] Tsaousi A, Williams H, Lyon CA, et al. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening[J]. Circ Res, 2011,108(4):427-436.
[9] Cipolletta E, Monaco S, Maione AS, et al. Calmodulin-dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase[J]. Endocrinology, 2010,151(6):2747-2759.
[10] Wu X, Wang J, Jiang H, et al. Wnt3a activates beta1-integrin and regulates migration and adhesion of vascular smooth muscle cells[J]. Mol Med Rep, 2014,9(4):1159-1164.
[11] Wu X, Liu W, Jiang H, et al. Kindlin-2 siRNA inhibits vascular smooth muscle cell proliferation, migration and intimal hyperplasia via Wnt signaling[J]. Int J Mol Med, 2016,37(2):436-444.
[12] Mbalaviele G, Sheikh S, Stains JP, et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation[J]. J Cell Biochem, 2005,94(2):403-418.
[13] Martinez-Moreno JM, Munoz-Castaneda JR, Herencia C, et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation[J]. Am J Physiol Renal Physiol, 2012,303(8):F1136-F1144.
[14] Montes DOA, Guerrero F, Martinez-Moreno JM, et al. Magnesium inhibits Wnt/beta-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells[J]. PloS One, 2014,9(2):e89525.
[15] Barandon L, Couffinhal T, Ezan J, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA[J]. Circulation, 2003,108(18):2282-2289.
[16] Aisagbonhi O, Rai M, Ryzhov S, et al. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition[J]. Dis Model Mech, 2011,4(4):469-483.
[17] He W, Zhang L, Ni A, et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction[J]. Proc Natl Acad Sci U S A, 2010,107(49):21110-21115.
[18] Blankesteijn WM, van Gijn ME, Essers-Janssen YP, et al. Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction[J]. Am J Pathol, 2000,157(3):877-883.
[19] Paik DT, Rai M, Ryzhov S, et al. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis[J]. Circ Res, 2015,117(9):804-816.
[20] Kobayashi K, Luo M, Zhang Y, et al. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction[J]. Nat Cell Biol, 2009,11(1):46-55.
[21] Min JK, Park H, Choi HJ, et al. The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells[J]. J Clin Invest, 2011,121(5):1882-1893.
[22] Bao MW, Cai Z, Zhang XJ, et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction[J]. Basic Res Cardiol, 2015,110(3):25.
[23] Oikonomopoulos A, Sereti KI, Conyers F, et al. Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3[J]. Circ Res, 2011,109(12):1363-1374.
[24] Malekar P, Hagenmueller M, Anyanwu A, et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling[J]. Hypertension, 2010,55(4):939-945.
[25] van de Schans VA, van den Borne SW, Strzelecka AE, et al. Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy[J]. Hypertension, 2007,49(3):473-480.
[26] Hagenmueller M, Riffel JH, Bernhold E, et al. Dapper-1 induces myocardial remodeling through activation of canonical Wnt signaling in cardiomyocytes[J]. Hypertension, 2013,61(6):1177-1183.
[27] Hagenmueller M, Riffel JH, Bernhold E, et al. Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway[J]. Febs Lett, 2014,588(14):2230-2237.
[28] Kerkela R, Kockeritz L, Macaulay K, et al. Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation[J]. J Clin Invest, 2008,118(11):3609-3618.
[29] Schumann H, Holtz J, Zerkowski HR, et al. Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression[J]. Cardiovasc Res, 2000,45(3):720-728.
[30] Askevold ET, Aukrust P, Nymo SH, et al. The cardiokine secreted Frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure[J]. J Intern Med, 2014,275(6):621-630.
[31] Motiwala SR, Szymonifka J, Belcher A, et al. Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling[J]. J Cardiovasc Transl Res, 2014,7(2):250-261.
[32] Felkin LE, Lara-Pezzi EA, Hall JL, et al. Reverse remodelling and recovery from heart failure are associated with complex patterns of gene expression[J]. J Cardiovasc Transl Res, 2011,4(3):321-331.
[33] Mastri M, Shah Z, Hsieh K, et al. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention[J]. Am J Physiol Cell Physiol, 2014,306(6):C531-C539.
[34] Hirotani S, Zhai P, Tomita H, et al. Inhibition of glycogen synthase kinase 3beta during heart failure is protective[J]. Circ Res, 2007,101(11):1164-1174.
[35] Kirk JA, Holewinski RJ, Kooij V, et al. Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3beta[J]. J Clin Invest, 2014,124(1):129-138.
[36] 王 倩, 楊奕清. 縫隙連接蛋白40與心房顫動(dòng)的關(guān)系[J]. 國(guó)際心血管病雜志, 2013,40(4):199-202.
[37] Nakashima T, Ohkusa T, Okamoto Y, et al. Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2014,306(9):H1324-H1333.
(收稿:2016-04-06 修回:2016-06-01)
(本文編輯:胡曉靜)
鎮(zhèn)江市社會(huì)發(fā)展指導(dǎo)性項(xiàng)目基金(FZ2015076)
212300 丹陽(yáng)市人民醫(yī)院心內(nèi)科
朱紅濤,Email:ryheart@163.com
10.3969/j.issn.1673-6583.2016.05.004