吳鐵梅 閆素梅 格日樂瑪
(內(nèi)蒙古農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院,呼和浩特010018)
?
脂肪細(xì)胞因子對動物脂類代謝的調(diào)控機(jī)理
吳鐵梅閆素梅*格日樂瑪
(內(nèi)蒙古農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院,呼和浩特010018)
脂肪細(xì)胞是一種能分泌多種細(xì)胞因子的內(nèi)分泌細(xì)胞,如脂聯(lián)素(APN)、瘦素、白細(xì)胞介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)及抵抗素等,這些細(xì)胞因子通過多種信號通路在機(jī)體脂類代謝中發(fā)揮著重要作用。本文主要綜述了脂肪細(xì)胞因子對動物脂類代謝的調(diào)控機(jī)理,為通過飼糧途徑調(diào)控動物的脂類代謝和改善肉品質(zhì)提供參考依據(jù)。
脂肪細(xì)胞因子;動物;脂類代謝;調(diào)控;機(jī)理
動物產(chǎn)品中脂肪的含量與畜產(chǎn)品的品質(zhì)密切相關(guān),因此越來越受到消費(fèi)者的關(guān)注。脂肪組織既是動物機(jī)體沉積脂肪的主要器官之一,又是一種復(fù)雜而高度活躍的代謝器官和內(nèi)分泌器官。脂肪組織能夠表達(dá)和分泌一些脂肪細(xì)胞因子,如脂聯(lián)素(adiponectin,APN)、瘦素、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、抵抗素和白介素-6(interleukin-6,IL-6)等,這些細(xì)胞因子通過自分泌、內(nèi)分泌和旁分泌的方式產(chǎn)生,并通過多種信號通路調(diào)節(jié)機(jī)體的脂類代謝[1]。因此,深入探討脂肪因子對動物脂類代謝的調(diào)控機(jī)理對調(diào)節(jié)動物產(chǎn)品的脂肪合成,進(jìn)而改善其品質(zhì)具有重要的理論與實(shí)際意義。然而,目前相關(guān)的研究報道很少,而且主要集中在人和鼠等領(lǐng)域,在豬、禽和反芻動物領(lǐng)域的報道罕見。本文主要從APN、瘦素、TNF-α、IL-6和抵抗素等脂肪細(xì)胞因子對動物脂類代謝的調(diào)控機(jī)理方面做一總結(jié),為進(jìn)一步改善動物的脂類代謝和肉品質(zhì)提供參考依據(jù)。
1.1APN
APN是由成熟的脂肪細(xì)胞合成和分泌的細(xì)胞因子,其分子質(zhì)量為30 ku,是脂肪組織中基因表達(dá)十分豐富的蛋白質(zhì)之一[1]。Qiao等[2]使用高脂肪飼糧誘導(dǎo)母體肥胖,結(jié)果表明,隨著胎兒血清APN水平的顯著提高,胎兒脂肪組織量提高,而在妊娠后期母體血清APN水平降低,這些結(jié)果說明胎兒血清APN水平與體重呈正相關(guān),較高的血清APN水平可提高動物脂肪組織的沉積量。Kim等[3]使用APN轉(zhuǎn)基因肥胖小鼠(缺失瘦素)研究得出,APN的過度表達(dá)提高了小鼠皮下脂肪組織的量,這是因?yàn)锳PN的過度表達(dá)提高了脂肪細(xì)胞內(nèi)的過氧化物酶體增殖物激活受體γ(peroxisome proliferator activated receptor γ,PPARγ)的活性,導(dǎo)致了從異位(肝臟和肌肉)沉積的脂質(zhì)向皮下脂肪的再分配,但是PPARγ活性提高的機(jī)制尚不清楚。有研究認(rèn)為,APN具有促進(jìn)脂肪細(xì)胞分化和減少脂類分解的作用[4-5],能夠抑制能量消耗并提高脂肪細(xì)胞內(nèi)脂肪積累[6]。Qiao等[6]研究指出,APN可通過抑制脂肪細(xì)胞內(nèi)的脂類分解直接調(diào)控脂類代謝;Anthonsen等[7]研究認(rèn)為,APN可抑制甘油三酯(triglyceride,TG)的水解過程,其原因主要與其對蛋白激酶A(protein kinase A,PKA)誘導(dǎo)的激素敏感酯酶(hormone sensitive lipase,HSL)的激活具有抑制作用有關(guān),PKA能夠在蘇氨酸(Ser)660位點(diǎn)對HSL磷酸化,進(jìn)而激活HSL。
然而,也有研究發(fā)現(xiàn),肥胖型成年人的血清APN水平較低,而健康成年人的血清APN水平顯著高于糖尿病患者和冠心病患者,但是血清APN水平與血清高密度脂蛋白濃度呈正相關(guān),這些結(jié)果說明血清APN水平與體重呈負(fù)相關(guān),血清APN水平低不利于人體健康[8-10],適宜的血清APN水平可抑制脂肪的合成。瘦人的脂肪組織中APN的mRNA表達(dá)量顯著高于肥胖人,這與較高的胰島素敏感性和較低的TNF-αmRNA表達(dá)量有關(guān)[11]。關(guān)于APN影響脂類代謝的機(jī)理,有研究發(fā)現(xiàn),AMP-活化蛋白激酶(AMP-activated protein kinase,AMPK)是APN信號通路中的關(guān)鍵信號分子,APN可通過AMPK途徑抑制肝臟和肌肉組織的脂肪合成和促進(jìn)脂肪酸氧化。AMPK是細(xì)胞能量狀態(tài)的關(guān)鍵感應(yīng)器,是肝臟和機(jī)體脂類穩(wěn)態(tài)的主要調(diào)控器。肝臟組織中AMPK信號通路的激活可引起其下游的乙酰輔酶A羧化酶(acetyl-coa carboxylase,ACC)直接磷酸化進(jìn)而失去活性,從而抑制了乙酰輔酶轉(zhuǎn)化為丙二酰輔酶,抑制了肉毒堿棕櫚酰轉(zhuǎn)移酶1的活性,因此,AMPK通路的激活引起長鏈乙酰脂肪酸向線粒體的轉(zhuǎn)運(yùn)受阻,進(jìn)而抑制了脂肪酸的氧化過程;丙二酰輔酶是脂肪酸重頭合成酶的關(guān)鍵酶,因此,AMPK通路的激活可抑制脂肪酸的合成[12]。Li等[13]研究報道,AMPK的磷酸化會降低固醇調(diào)節(jié)元件結(jié)合蛋白-1c (sterol regulatory element binding protein-1c,SREBP1-c)的活性,SREBP1-c是重要的脂肪形成轉(zhuǎn)錄因子,能直接調(diào)控脂肪酸合成相關(guān)基因ACC和脂肪酸合成酶,因此,AMPK磷酸化激活后可抑制肝臟TG的合成,促進(jìn)脂肪酸的氧化。此外,骨骼肌中PPARγ輔助活化因子α(PPARγ coactivator,PGC-1α)是調(diào)節(jié)脂肪酸氧化的主要轉(zhuǎn)錄因子之一[14-15]。研究表明AMPK可激活PGC-1α,從而促進(jìn)骨骼肌線粒體的生物合成和脂肪酸的氧化[16]。Miller等[17]報道,APN通過脂聯(lián)素Ⅰ型受體(adipoR1)激活肝激酶B1(LKB1),進(jìn)而激活A(yù)MPK信號通路,抑制肝臟中SREBP-1c基因的表達(dá)量,進(jìn)一步說明APN通過AMPK途徑抑制肝臟脂肪合成。陳灰[18]研究表明,APN可以通過激活奶牛肝細(xì)胞的AMPK下游轉(zhuǎn)錄因子PPARα和SREBP-1c及其靶基因,引起肝細(xì)胞的脂肪氧化作用受限,脂肪酸合成及轉(zhuǎn)運(yùn)減少,TG和極低密度脂蛋白的濃度下降,從而減少肝臟的脂質(zhì)積累。此外,Li等[19]利用APN處理成鼠C2C12肌細(xì)胞,結(jié)果發(fā)現(xiàn)APN處理提高了AMPK磷酸化和PGC-1α的脫乙酰化,從而促進(jìn)了骨骼肌的脂肪酸氧化。因此,APN可能通過與靶細(xì)胞膜上的APN受體結(jié)合激活A(yù)MPK信號通路,促進(jìn)動物肝臟和骨骼肌脂肪酸氧化,抑制肝臟脂肪合成,參與機(jī)體脂肪代謝的平衡調(diào)節(jié)。
可見,APN對動物的脂類代謝的影響,目前的研究主要集中在人和鼠方面,在豬、禽和反芻動物領(lǐng)域的研究罕見,而且究竟是促進(jìn)了脂肪沉積,還是增強(qiáng)了脂肪酸的氧化、抑制了脂肪合成,研究報道結(jié)果也不盡一致,因此,確切的調(diào)節(jié)作用及其機(jī)理有待于進(jìn)一步探討。
1.2瘦素
瘦素是由動物脂肪細(xì)胞所分泌的脂肪因子之一,是一種蛋白質(zhì)類激素,主要由白色脂肪組織產(chǎn)生,可參與動物的脂肪代謝調(diào)控,分子質(zhì)量為16 ku[1]。大量研究指出,瘦素通過作用于腦信號中樞,抑制進(jìn)食量、增加消耗能量以抑制脂肪的合成[20-21]。近年來的研究表明,瘦素還可直接抑制脂肪合成,促進(jìn)脂肪的分解。Li等[22]研究得出,瘦素能上調(diào)豬脂肪細(xì)胞內(nèi)脂肪甘油三酯脂酶(adipose triglyceride lipase,ATGL)的mRNA表達(dá)量,下調(diào)ATGL的蛋白質(zhì)表達(dá)量,且瘦素主要通過Janus激酶(JAK)-信號傳導(dǎo)及轉(zhuǎn)錄激活因子(STAT)信號通路和PPARγ調(diào)控ATGL的mRNA和蛋白質(zhì)表達(dá)。ATGL是PPARγ轉(zhuǎn)錄靶基因,在體內(nèi)或體外PPARγ均能夠上調(diào)ATGL的mRNA和蛋白質(zhì)表達(dá)[23],而瘦素能夠促進(jìn)PPARγ的表達(dá)量,說明瘦素可促進(jìn)TG的水解。JAK-STAT信號通路是重要的細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路,也轉(zhuǎn)導(dǎo)脂類代謝相關(guān)信號給動物機(jī)體維持體內(nèi)平衡,STAT主要包括STAT1、2、3、4、5A、5B和6等成員,是JAK-STAT信號通路中的主要轉(zhuǎn)錄因子,具有細(xì)胞和組織特異性[24]。Cernkovich等[25]將小鼠促進(jìn)脂肪儲存的脂肪特異性基因seipin敲除,引起脂肪組織的STAT3基因缺失,與未缺失STAT3基因小鼠相比,缺失STAT3基因小鼠的體重和脂肪組織量顯著提高,脂肪細(xì)胞肥大,但無脂肪細(xì)胞增殖、攝食過量或能量消耗減少現(xiàn)象,這些結(jié)果說明STAT3促進(jìn)了脂肪分解,抑制了脂肪細(xì)胞分化。研究指出,JAK2的抑制劑會抑制其下游轉(zhuǎn)錄因子STAT3,而且STAT3可調(diào)節(jié)ATGL的表達(dá)[22,26]。用STAT3的抑制劑Stattic處理牛脂肪細(xì)胞會減弱其脂肪的分解作用,并減少ATGL的蛋白質(zhì)豐度[27]。這些結(jié)果表明,瘦素通過JAK2-STAT3信號通路提高了ATGL的蛋白質(zhì)豐度,促進(jìn)了脂肪水解作用。
此外,瘦素也可以通過AMPK途徑促進(jìn)骨骼肌的脂肪酸氧化。胰島素與細(xì)胞表面的胰島素受體(insulin receptor,IR)結(jié)合,使磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)激活,從而加強(qiáng)原生質(zhì)膜中絲氨酸/蘇氨酸蛋白激酶(Akt)的磷酸化程度[28],然而Roman等[29]研究表明,中樞瘦素促進(jìn)大鼠骨骼肌脂肪酸氧化,減少脂肪合成,其機(jī)制是通過激活A(yù)MPK,促進(jìn)ACC的磷酸化實(shí)現(xiàn)的;此外,瘦素可增強(qiáng)胰島素誘導(dǎo)的信號通路IR/PI3K/Akt,改善大鼠胰島素抵抗。因此,下丘腦缺乏瘦素-PI3K信號途徑,會導(dǎo)致周緣組織胰島素抵抗,這與瘦素信號與胰島素信號的交互作用有關(guān)。Sloan等[30]報道,損壞下丘腦瘦素信號通路會提高心臟中的脂肪酸底物和PPARα配體的傳送從而增強(qiáng)心肌脂肪酸氧化。這些研究進(jìn)一步說明,瘦素可以通過JAK2-STAT3、AMPK、IR/PI3K/Akt信號通路調(diào)控脂類代謝。
1.3IL-6
IL-6是由脂肪細(xì)胞產(chǎn)生的另一種與脂肪代謝有關(guān)的脂肪細(xì)胞因子,分子質(zhì)量在21~30 ku之間,肥胖使機(jī)體循環(huán)的IL-6水平和脂肪組織IL-6分泌量提高[31]。IL-6可通過絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信號通路促進(jìn)骨骼肌和脂肪組織的脂類分解作用、糖分解和脂肪酸氧化。Ruderman等[32]研究表明IL-6主要存在于脂肪組織和下丘腦中心并調(diào)控機(jī)體組成,小鼠體內(nèi)缺失IL-6基因會導(dǎo)致肥胖和胰島素抵抗。AMPK是調(diào)控脂類代謝的主要信號,激活A(yù)MPK信號會抑制脂肪合成并促進(jìn)脂肪酸氧化。Glund等[33]在體內(nèi)或體外的研究表明,IL-6通過激活骨骼肌或脂肪組織的AMPK信號通路,減少脂肪酸的生物合成。細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinases,ERK)1/2、ERK5、Jun-氨基末端激酶(Jun amino-terminal kinases,JNK)1-3和p38MAPK是MAPK家族的主要成員,其中ERK1/2通過在Ser600位點(diǎn)磷酸化HSL,提高其催化活性,增強(qiáng)了脂肪細(xì)胞釋放游離脂肪酸[34]。Yang等[35]的研究表明,IL-6可誘導(dǎo)豬脂肪細(xì)胞脂類分解,主要與IL-6可激活ERK1/2,而ERK1/2能直接磷酸化HSL有關(guān)[36]。這些結(jié)果說明IL-6通過AMPK和MAPK信號通路促進(jìn)動物脂肪組織脂肪酸氧化和脂肪的分解。
然而,也有一些相反的研究報道。MacDonald等[37]研究得出,IL-6基因缺失的小鼠會間接促進(jìn)比目魚肌的脂肪分解,這與比目魚肌ATGL及其共激活劑比較基因識別-58(comparative gene identification-58,CGI-58)蛋白質(zhì)表達(dá)量的提高有關(guān),說明IL-6抑制動物脂肪組織的脂肪酸氧化和脂肪的分解,但目前相關(guān)的研究報道很少,需要進(jìn)一步探討。
1.4TNF-α
TNF-α主要是由脂肪細(xì)胞分泌產(chǎn)生的一種非糖基化蛋白,分子質(zhì)量為17 ku。脂肪組織是產(chǎn)生內(nèi)源性TNF-α的主要器官,具有組織特異性,其中內(nèi)臟脂肪表達(dá)的TNF-α較皮下脂肪多,而且巨噬細(xì)胞分泌量大于脂肪細(xì)胞[38]。研究表明,5、8、10 ng/mL的TNF-α處理大鼠前體脂肪細(xì)胞時,抑制脂滴在前體脂肪細(xì)胞中的增加和融合,添加量為10 ng/mL時抑制效果最佳,說明TNF-α對脂肪細(xì)胞的分化具有抑制作用[39]。在鼠和人的前體脂肪細(xì)胞系的研究中已經(jīng)證實(shí)Wnt/β-鏈蛋白(β-catenin)信號通路能夠調(diào)節(jié)脂肪形成[40-41]。Wnt/β-catenin信號通路的激活可抑制其靶基因CCAAT增強(qiáng)子結(jié)合蛋白(CCAAT/enhancer binding protein α,C/EBPα)和PPARγ的活性,使前體脂肪細(xì)胞處于未分化狀態(tài)[42-43],抑制了脂肪的形成。Qadir等[44]研究表明,TNF-α通過誘導(dǎo)同源異型盒基因Msx2表達(dá)激活Wnt/β-catenin信號通路,從而抑制脂肪細(xì)胞分化。研究也指出,TNF-α在前體脂肪細(xì)胞中通過下調(diào)C/EBPα和PPARγ的表達(dá),抑制前體脂肪細(xì)胞向成熟細(xì)胞的分化過程[45]。此外,Suzawa等[46]研究報道,TNF-α可通過轉(zhuǎn)化生長因子激酶1(TAK1)-TAK1結(jié)合蛋白1(TAB1)-NF-κB誘導(dǎo)激酶(NIK)軸激活核因子-κB(nuclear factor-κB,NF-κB)信號通路,引起PPARγ-依賴配體的反式激活過程受限,進(jìn)而抑制脂肪細(xì)胞的分化,但關(guān)于NF-κB信號通路調(diào)控脂類代謝的相關(guān)報道甚少,需要進(jìn)一步探討。
miR-181a是一個重要的基因表達(dá)調(diào)控因子,可負(fù)調(diào)控TNF-α。Li等[47]使用miR-181a調(diào)節(jié)仔豬前體脂肪細(xì)胞中的TNF-α的表達(dá),結(jié)果得出,miR-181表達(dá)減少會提高TNF-α的表達(dá),下調(diào)PPARγ的表達(dá),從而抑制脂肪細(xì)胞的分化。這些結(jié)果說明,TNF-α通過Wnt/β-catenin信號通路和NF-κB信號通路抑制脂肪細(xì)胞的分化,但相關(guān)的機(jī)理需要進(jìn)一步探究。
TNF-α具有促進(jìn)動物脂肪分解的作用。Donati等[48]研究指出,TNF-α可抑制3T3-L1脂肪細(xì)胞中脂蛋白脂肪酶(lipoprteinlipase,LPL) mRNA的表達(dá)。Li等[47]研究得出,miR-181a通過抑制TNF-α來提高LPL、HSL和ATGLmRNA的表達(dá),減少環(huán)核苷酸依賴的磷酸二酯酶3B(PDE3B)mRNA的表達(dá),因此TNF-α通過減少PDE3B表達(dá),促進(jìn)脂滴包被蛋白(perilipin)的磷酸化,從而使TG的水解作用加速[49]。此外,perilipin是脂滴表面的組成成分,會抑制ATGL[50],TNF-α可激活JNK和ERK1/2,從而減少perilipin的mRNA和蛋白質(zhì)的表達(dá)量,促進(jìn)脂肪的分解[51]。Lorente-Cebrián等[52]研究表明,飼糧中二十碳五烯酸(eicosapentaenoic acid,EPA)含量直接抑制大鼠脂肪細(xì)胞和3T3-L1脂肪細(xì)胞中TNF-α誘導(dǎo)的脂肪分解作用,EPA這種抗脂肪分解作用是與EPA抑制TNF-α誘導(dǎo)的ERK1/2磷酸化和NF-κB的激活有關(guān),而且EPA在脂肪細(xì)胞中可刺激AMPK的激活。這些研究提示TNF-α對脂肪分解的調(diào)節(jié)作用與MAPK、NF-κB及AMPK信號通路有關(guān),但目前的研究主要以人和大鼠的脂肪細(xì)胞為研究對象,而在反芻動物和非反芻動物領(lǐng)域的研究報道罕見,需要進(jìn)一步探討。
然而,也有研究表明,肥胖型動物和人的血液中TNF-α水平高,且血液的TNF-α水平與動物體重呈正相關(guān),而且TNF-α通過抑制IR及胰島素受體底物-1(IRS1)的酪氨酸磷酸化,抑制機(jī)體胰島素的作用,從而加劇胰島素抵抗[53],促進(jìn)脂肪的大量合成。研究得出,肥胖癥與巨噬細(xì)胞滲透進(jìn)入脂肪組織的量提高有關(guān),從而提高由脂肪組織分泌的TNF-α的量[54-55],這可能是肥胖型動物循環(huán)TNF-α水平高的原因;此外,有研究認(rèn)為TNF-α可促進(jìn)脂肪細(xì)胞中其他脂肪因子如IL-6和瘦素的表達(dá),抑制APN和PPARγ的產(chǎn)生,從而加劇胰島素抵抗[56],影響脂類代謝。TNF-α在體內(nèi)以跨膜型(tmTNF-α)與可溶型(sTNF-α)2種形式存在[57]。Zhou等[57]研究表明,tmTNF-α與sTNF-α對胰島素生物學(xué)效應(yīng)是相反的,tmTNF-α不僅提高PPARγ的表達(dá)量,而且提高APN轉(zhuǎn)錄活性和胰島素敏感性。因此,TNF-α對脂類代謝的調(diào)節(jié)作用與其分型有關(guān),需要進(jìn)一步探討。
1.5抵抗素
抵抗素是一種富含半胱氨酸的多肽,在炎癥3區(qū)(FIZZ3)被發(fā)現(xiàn),是由脂肪細(xì)胞分泌的激素,能夠促進(jìn)胰島素抵抗,促進(jìn)炎癥反應(yīng)和脂肪細(xì)胞分化[58]。研究表明3T3-L1前體脂肪細(xì)胞中抵抗素的超表達(dá)會促進(jìn)前體脂肪細(xì)胞的分化,通過上調(diào)脂肪細(xì)胞分化相關(guān)的基因如C/EBPα和LPL的下調(diào),來抑制脂肪細(xì)胞分化前體脂肪細(xì)胞因子(Pref-1)[59]。此外,抵抗素具有促進(jìn)脂肪分解的作用。白翠玲等[60]研究表明,抵抗素抑制豬組織細(xì)胞的葡萄糖攝入,并通過增強(qiáng)LPL活性提高TG的分解,在調(diào)節(jié)脂類代謝平衡中發(fā)揮重要作用。Kim等[61]在3T3-L1細(xì)胞中發(fā)現(xiàn),抵抗素通過葡萄糖依賴性促胰島素多肽(GIP)刺激LPL活性,并參與蛋白激酶B(PKB)的激活和減少LKB1和AMPK的磷酸化,從而促進(jìn)脂肪分解。Reverchon等[62]研究報道,抵抗素在牛成熟脂肪細(xì)胞中表達(dá),促進(jìn)體外移植脂肪組織的脂肪動員和移植脂肪組織中甘油的釋放,并提高ATGL和HSLmRNA的表達(dá)水平,進(jìn)一步說明抵抗素促進(jìn)脂肪組織中脂肪的分解。Rodriguez-Pacheco等[63]體外試驗(yàn)得出,抵抗素調(diào)節(jié)脂類代謝,會降低腺垂體細(xì)胞中調(diào)節(jié)脂類代謝的酶如LPL、ACC、FAS、硬脂酰輔酶A去飽和酶和關(guān)鍵轉(zhuǎn)錄因子SREBP-1c的mRNA表達(dá)水平,說明抵抗素抑制脂肪細(xì)胞分化和脂肪酸合成。此外,抵抗素通過激活NF-κB信號通路[64-65]誘導(dǎo)脂肪細(xì)胞因子,如IL-6、白介素-12 (IL-12)和TNF-α的分泌[62,66]。由此可見,脂肪細(xì)胞因子不僅對動物的脂類代謝具有調(diào)節(jié)功能,而且各因子之間也存在復(fù)雜的相互作用。
綜上所述,脂肪細(xì)胞因子APN、瘦素、IL-6、TNF-α及抵抗素主要通過多種信號通路對脂類代謝進(jìn)行調(diào)節(jié),進(jìn)而影響脂類代謝,并且相互之間又存在著復(fù)雜的相互作用;但目前的研究主要集中在人和鼠等哺乳動物,結(jié)果也不盡一致,在豬、禽和反芻動物領(lǐng)域的研究更為罕見。脂肪細(xì)胞還分泌其他脂肪細(xì)胞因子,如網(wǎng)膜素、內(nèi)臟脂肪素、Chemerin、脂質(zhì)運(yùn)載蛋白2、纖溶酶原激活物抑制物-1(PAI1)、視黃醇蛋白質(zhì)結(jié)合4、分泌型卷曲相關(guān)蛋白4和Vaspin等。因此,深入研究這些脂肪細(xì)胞因子對動物脂類代謝的調(diào)控機(jī)理,對通過飼糧等因素調(diào)控動物的脂類代謝具有重要的參考價值。
[1]曾俊,楊剛毅.脂肪細(xì)胞因子與胰島素抵抗的關(guān)系及其機(jī)制研究新進(jìn)展[J].成都醫(yī)學(xué)院學(xué)報,2011,6(1):78-82.
[2]QIAO L P,YOO H S,MADON A,et al.Adiponectin enhances mouse fetal fat deposition[J].Diabetes,2012,61(12):3199-3207.
[3]KIM J Y,VAN DE WALL E,LAPLANTE M,et al.Obesity-associated improvements in metabolic profile through expansion of adipose tissue[J].Journal of Clinical Investigation,2007,117(9):2621-2637.
[4]KOTANI Y,YOKOTA I,KITAMURA S,et al.Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight[J].Clinical Endocrinology,2004,61(4):418-423.
[5]KUBOTA N,YANO W,KUBOTA T,et al.Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J].Cell Metabolism,2007,6(1):55-68.
[6]QIAO L P,KINNEY B,SCHAACK J,et al.Adiponectin inhibits lipolysis in mouse adipocytes[J].Diabetes,2011,60(5):1519-1527.
[7]ANTHONSEN M W,R?NNSTRAND L,WERNSTEDT C,et al.Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation propertiesinvitro[J].Journal of Biological Chemistry,1998,273(1):215-221.
[8]MOHAMMADZADEH G,ZARGHAMI N.Hypoadiponectinemia in obese subjects with type Ⅱ diabetes:a close association with central obesity indices[J].Journal of Research Medical Sciences,2011,16(6):713-723.
[9]SKRABAL C A,CZAJA J,HONZ K,et al.Adiponectin-its potential to predict and prevent coronary artery disease[J].The Thoracic and Cardiovascular Surgeon,2011,59(4):201-206.
[10]KYRIAZI E,TSIOTRA P C,BOUTATI E,et al.Effects of adiponectin in TNF-α,IL-6,IL-10 cytokine production from coronary artery disease macrophages[J].Hormone and Metabolic Research,2011,43(8):537-544.
[11]KERN P A,DI GREGORIO G T,LU T,et al.Adiponectin expression from human adipose tissue:relation to obesity,insulin resistance,and tumor necrosis factor-α expression[J].Diabetes,2003,52(7):1779-1785.
[12]GUO H H,LIU G L,ZHONG R M,et al.Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells[J].Lipids in Health and Disease,2012,11:10.
[13]LI Y,XU S Q,MIHAYLOVA M M,et al.AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J].Cell Metabolism,2011,13(4):376-388.
[15]ROHAS L M,ST-PIERRE J,ULDRY M,et al.A fundamental system of cellular energy homeostasis regulated by PGC-1α[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(19):7933-7938.
[17]MILLER R A,CHU Q W,LE LAY J,et al.Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling[J].Journal of Clinical Investigation,2011,121(6):2518-2528.
[18]陳灰.脂聯(lián)素激活A(yù)MPK信號通路調(diào)控奶牛肝細(xì)胞脂代謝的相關(guān)機(jī)制[D].碩士學(xué)位論文.長春:吉林大學(xué),2013.
[19]LI L,PAN R P,LI R,et al.Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity:intact adipocytokine signaling is required[J].Diabetes,2011,60(1):157-167.
[20]TRAYHURN P.Hypoxia and adipose tissue function and dysfunction in obesity[J].Physiological Reviews,2013,93(1):1-21.
[21]GE J F,QI C C,ZHOU J N.Imbalance of leptin pathway and hypothalamus synaptic plasticity markers are associated with stress-induced depression in rats[J].Behavioural Brain Research,2013,249:38-43.
[22]LI Y C,ZHENG X L,LIU B T,et al.Regulation of ATGL expression mediated by leptininvitroin porcine adipocyte lipolysis[J].Molecular and Cellular Biochemistry,2010,333(1/2):121-128.
[23]KERSHAW E E,SCHUPP M,GUAN H P,et al.PPARγ regulates adipose triglyceride lipase in adipocytesinvitroandinvivo[J].American Journal of Physiology Endocrinology and Metabolism,2007,293(6):E1736-E1745.
[24]RICHARD A J,STEPHENS J M.The role of JAK-STAT signaling in adipose tissue function[J].Biochimica et Biophysica Acta:Molecular Basis of Disease,2014,1842(3):431-439.
[25]CERNKOVICH E R,DENG J B,BOND M C,et al.Adipose-specific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity[J].Endocrinology,2008,149(4):1581-1590.
[26]FRüHBECK G.Intracellular signalling pathways activated by leptin[J].Biochemical Journal,2006,393(1):7-20.
[27]KOLTES D A,SPURLOCK D M.Appendix A.Translocation of adipose triglyceride lipase to the lipid droplet increased with leptin treatment in bovine adipocytes[M]//KOLTES D.Novel mechanisms involved with lipid metabolism in adipose tissue of dairy cows.Iowa:Iowa State University,2013:150-175.
[28]MANNING B D,CANTLEY L C.AKT/PKB signaling:navigating downstream[J].Cell,2007,129(7):1261-1274.
[29]ROMAN E A F R,REIS D,ROMANATTO T,et al.Central leptin action improves skeletal muscle AKT,AMPK,and PGC1α activation by hypothalamic PI3K-dependent mechanism[J].Molecular and Cellular Endocrinology,2010,314(1):62-69.
[30]SLOAN C,TUINEI J,NEMETZ K,et al.Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restrictedob/obmice[J].Diebetes,2011,60(5):1424-1434.
[31]BASTARD J P,LAGATHU C,CARON M,et al.Point-counterpoint:interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis[J].Journal of Applied Physiology,2007,102(2):821-822.
[32]RUDERMAN N B,KELLER C,RICHARD A M,et al.Interleukin-6 regulation of AMP-activated protein kinase:potential role in the systemic response to exercise and prevention of the metabolic syndrome[J].Diabetes,2006,55(Suppl.2):S48-S54.
[33]GLUND S,DESHMUKH A,LONG Y C,et al.Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle[J].Diabetes,2007,56(6):1630-1637.
[34]KELLY M,GAUTHIER M S,SAHA A K,et al.Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle:association with changes in cAMP,energy state,and endogenous fuel mobilization[J].Diabetes,2009,58(9):1953-1960.
[35]YANG Y Q,JU D P,ZHANG M T,et al.Interleukin-6 stimulates lipolysis in porcine adipocytes[J].Endocrine,2008,33(3):261-269.
[36]GEHART H,KUMPF S,ITTNER A,et al.Mapk signalling in cellular metabolism:stress or wellness?[J].EMBO Reports,2010,11(11):834-840.
[37]MACDONALD T L,WAN Z X,FRENDO-CUMBO S,et al.IL-6 and epinephrine have divergent fiber type effects on intramuscular lipolysis[J].Journal of Applied Physiology,2013,115(10):1457-1463
[38]MAURY E,NOЁL L,DETRY R,et al.Invitrohyperresponsiveness to tumor necrosis factor-αcontributes to adipokine dysregulation in omental adipocytes of obese subjects[J].The Journal of Clinical Endocrinology & Metabolism,2009,94(4):1393-1400.
[39]李艷杰.腫瘤壞死因子-α對大鼠前體脂肪細(xì)胞增殖與分化的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2003.
[40]KENNELL J A,MACDOUGALD O A.Wnt signaling inhibits adipogenesis through β-catenin-dependent and-independent mechanisms[J].Journal of Biological Chemistry,2005,280(25):24004-24010.
[41]KANAZAWA A,TSUKADA S,KAMIYAMA M,et al.Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes[J].Biochemical and Biophysical Research Communications,2005,330(2):505-510.
[42]ROSS S E,HEMATI N,LONGO K A,et al.Inhibition of adipogenesis by Wnt signaling[J].Science,2000,289(5481):950-953.
[43]LIU J J,WANG H,ZUO Y,et al.Functional interaction between peroxisome proliferator-activated receptor γ and β-catenin[J].Molecular and Cellular Biology,2006,26(15):5827-5837.
[44]QADIR A S,LEE H L,BAEK K H,et al.Msx2 is required for TNF-α-induced canonical Wnt signaling in 3T3-L1 preadipocytes[J].Biochemical and Biophysical Research Communications,2011,408(3):399-404.
[45]TAKADA I,KOUZMENKO A P,KATO S.Molecular switching of osteoblastogenesis versus adipogenesis:implications for targeted therapies[J].Expert Opinion on Therapeutic Targets,2009,13(5):593-603.
[46]SUZAWA M,TAKADA I,YANAGISAWA J,et al.Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade[J].Nature Cell Biology,2003,5(3):224-230.
[47]LI H Y,CHEN X,GUAN L Z,et al.MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model[J].PLoS One,2013,8(10):e71568.
[48]RUAN H,POWNALL H J,LODISH H F.Troglitazone antagonizes tumor necrosis factor-α-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-κB[J].Journal of Biological Chemistry,2003,278(30):28181-28192.
[49]ZHANG H H,HALBLEIB M,AHMAD F,et al.Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP[J].Diabetes,2002,51(10):2929-2935.
[50]MARTIN S,PARTON R G.Lipid droplets:a unified view of a dynamic organelle[J].Nature Reviews Molecular Cell Biology,2006,7(5):373-378.
[51]RYDéN M,ARVIDSSON E,BLOMQVIST L,et al.Targets for TNF-α-induced lipolysis in human adipocytes[J].Biochemical and Biophysical Research Communications,2004,318(1):168-175.
[52]LORENTE-CEBRIN S,BUSTOS M,MARTI A,et al.Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes[J].The Journal of Nutritional Biochemistry,2012,23(3):218-227.
[53]NISHIMURA F,IWAMOTO Y,MINESHIBA J,et al.Periodontal disease and diabetes mellitus:the role of tumor necrosis factor-α in a 2-way relationship[J].Journal of Periodontology,2003,74(1):97-102.
[54]LUMENG C N,BODZIN J L,SALTIEL A R.Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J].Journal of Clinical Investigation,2007,117(1):175-184.
[55]WEISBERG S P,MCCANN D,DESAI M,et al.Obesity is associated with macrophage accumulation in adipose tissue[J].Journal of Clinical Investigation,2003,112(12):1796-1808.
[56]ROTTER V,NAGAEV I,SMITH U,et al.Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocyteas and is,like IL-8 and tumor necrosis factor-α,overexpressed in human fat cells from insulin-resistant subjects[J].Journal of Biological Chemistry,2003,278(46):45777-45784.
[57]ZHOU W J,YANG P,LIU L,et al.Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin[J].Molecular and Cellular Endocrinology,2015,406:78-86.
[58]ZHANG W Z,CHAI B X,LI J Y,et al.Effect of des-acyl ghrelin on adiposity and glucose metabolism[J].Endocrinology,2008,149(9):4710-4716.
[59]GONG H,NI Y,GUO X,et al.Resistin promotes 3T3-L1 preadipocyte differentiation[J].European Journal of Endocrinology,2004,150(6):885-892.
[60]白翠玲,羅丹,劉艷芬,等.抵抗素成熟肽的制備及其對豬葡萄糖和脂肪代謝的影響[J].動物醫(yī)學(xué)進(jìn)展,2013,34(11):46-50.
[61]KIM S J,NIAN C L,MCLNTOSH C H S.Resistin knockout mice exhibit impaired adipocyte glucose-dependent insulinotropic polypeptide receptor (GIPR) expression[J].Diabetes,2013,62(2):471-477.
[62]REVERCHON M,RAMé C,COGNIé J,et al.Resistin in dairy cows:plasma concentrations during early lactation,expression and potential role in adipose tissue[J].PLoS One,2014,9(3):e93198.
[63]RODRIGUEZ-PACHECO F,NOVELLE M G,VAZQUEZ M J,et al.Resistin regulates pituitary lipid metabolism and inflammationinvivoandinvitro[J].Mediators of Inflammation,2013,2013:479739.
[64]GERKOWICZ A,PIETRZAK A,SZEPIETOWSKI J C,et al.Biochemical markers of psoriasis as a metabolic disease[J].Folia Histochemica et Cytobiologica,2012,50(2):155-170.
[65]DE BOER T N,VAN SPIL W E,HUISMAN A M,et al.Serum adipokines in osteoarthritis;comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage[J].Osteoarthritis and Cartilage,2012,20(8):846-853.
[66]CHOE J Y,BAE J,JUNG H Y,et al.Serum resistin level is associated with radiographic changes in hand osteoarthritis:cross-sectional study[J].Joint Bone Spine,2012,79(2):160-165.
(責(zé)任編輯菅景穎)
Regulating Mechanisms of Adipocytokines in Animal Lipid Metabolism
WU TiemeiYAN Sumei*Gerelmaa
(College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)
Adipocyte was an endocrine cell, which secrete many adipocytokines such as adiponectin (APN), leptin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), resistin and so on. These adipocytokines play important roles in regulating body lipid metabolism through various signaling pathways. This review summarized the regulating mechanisms of animal lipid metabolism by some adipocytokines, which would provide some basis for dietary pathway regulating animal lipid metabolism and improving meat quality.[ChineseJournalofAnimalNutrition, 2016, 28(10):3034-3041]
adipocytokines; animal; lipid metabolism; regulation; mechanism
, professor, E-mail: yansmimau@163.com
10.3969/j.issn.1006-267x.2016.10.003
2016-04-01
國家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)(201003061)
吳鐵梅(1988—),女,內(nèi)蒙古通遼人,博士研究生,從事動物營養(yǎng)與飼料領(lǐng)域研究。E-mail: wuyuyan0820@126.com
閆素梅,教授,博士生導(dǎo)師,E-mail: yansmimau@163.com
S811.4
A
1006-267X(2016)10-3034-08