• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation for flow field inside pintle thruster for solid attitude orbit control system

    2016-03-08 07:13:34XUEBinCHENGChengWANGYibaiCHANGHengLIUYu
    火箭推進 2016年6期
    關(guān)鍵詞:北京航空航天大學(xué)推力器氣動力

    XUEBin,CHENGCheng,WANGYibai,CHANGHeng,LIUYu

    (1.School of Astronautics,Beihang University,Beijing 100191,China; 2.Shanghai Institute of Space Propulsion,Shanghai 201112,China)

    Numerical simulation for flow field inside pintle thruster for solid attitude orbit control system

    XUEBin1,CHENGCheng2,WANGYibai1,CHANGHeng1,LIUYu1

    (1.School of Astronautics,Beihang University,Beijing 100191,China; 2.Shanghai Institute of Space Propulsion,Shanghai 201112,China)

    In order to investigate the characteristics and roles of flow field inside pintle thruster,a two-dimensional axisymmetric model is used to carry out unsteady and steady state flow field simulation during the pintle moving process.The flow field structures,aerodynamic force and flow field sensitivity to geometrical parameter of the pintle at different opening are analyzed.The analysis result shows that the phenomena of complex shockwave and tip separation occur in the flow field structure because of the pintle's disturbance,the aerodynamic coefficient increases with the increase of cone angle section area of pintle tip,but seems to have no obvious relationship with pressure intensity of the chamber.The results also show that the throttling surface shape can strongly influence the flow pattern such as flow parameter distribution,shockwave strength and location,and aerodynamic force.

    solid attitude orbit control system;pintle thruster;unsteady flow field;dynamic mesh

    0 Introduction

    Solid rocket motors(SRM)have been widely used in many platforms including sounding rockets, tactical missiles and launch vehicle boosters because of their inherent advantages:simplicity,easy storage, light weight and low cost.Thrust throttling technology has been developed to deal with the problem, giving SRM the ability to adjust thrust[1-2].By adjusting the position of a pintle assigned axially with the nozzle,throat area is changed and thrust is variable[3]. To make full use of the advantages,thrust throttling technology is applied in solid divert and attitude control system (SDACS)by integrating multiple pintle thrusters with a solid gas generator[4-5].Different with the single pintle motor,chamber pressure and variable mass flow rate in SDACS are maintained at a given constant value through differential co-work mode of every two thrusters[6].

    To find breakthrough technologies and realize good performance of SDACS with high chamber pressure,numerous research on pintle thrusters have been done during the past years.Integral thruster of ceramic matrix composite material were designed and manufactured,and then tested by hover tests and cold flow experiments[7-9].To establish the characteristics of the propulsive efficiency and the aerodynamic load on the pintle,Lafond investigated the inside flowfield in steady state of divert nozzle numerically[10].In addition,the control loop and algorithm of SDACS were studied by Aussignac and Jouner[11-12].

    Nevertheless,there are few unsteady numerical research about inside flowfield of pintle thruster, which are important to a certain degree because the pintle motion is a dynamic process.In the present study,inside flowfield in a pintle thruster of SDACS is studied through CFD method with dynamic mesh. The pintle motion velocity is given from previous study.Typical flow pattern of pintle thruster is analyzed,including complex shock waves and subsonic circumfluence zone at the pintle tip.A dimensionless coefficient is defined to investigate the law of the aerodynamic force.Then influences of thruster opening on flowfield and aerodynamic force are analyzed. What's more,based on steady state of 1.0 opening, several cases with variable key parameters are calculated to study the geometrical sensitivity of inside flowfield.

    1 Numerical modeling

    1.1 Computational grid and boundary conditions

    The schematic diagram of the SDACS thruster is presented in Fig.1.The thruster is a kind of on-off valve with a Needle-shaped pintle concentric with the throat.That is,the thruster can only be in the“open”position or in the“close”position.The pintle motion is controlled by a solenoid,which receives the pulse width modulation(PWM)signal to switch on-off state of the thruster.The averaged thrust produced by the nozzle is proportional with the duty ratio in working cycles.

    Fig.1 Schematic diagram of pintle thruster

    The computational model is simplified to 2D-axisymmetric case,for both the pintle and nozzle are axisymmetric and the effect of asymmetric inlet on flow pattern can be ignored.The hot gas consists of reaction products of AP/HTPB/10%Al under the chamber pressure of 8 MPa,which has a total temperature of 3 200 K.In application of SDACS, two thrusters work in a differential working mode to maintain the chamber pressure[5],so the inlet pressure can be treated as a constant value.The ambient pressure is set to be 8 kPa in this paper.All meshesare structured to ensure good grid quality.

    1.2 Dynamic mesh method

    Fundamental equations based on the Reynolds-Averaged Navier-Stokes equations are adopted in the mathematical calculation.In Reynolds averaging,the solution variables in the instantaneous (exact) Navier-Stokes equations are decomposed into the mean (ensemble-averaged or time-averaged)and fluctuating components.Substituting expressions of this form for the flow variables into the instantaneous continuity and momentum equations and taking a time(or ensemble)average(and dropping the overbar on the mean velocity,) yields the ensemble-averaged momentum equations.They can be written in Cartesian tensor form as:

    Due to possible vortex and flow separation in such geometry,the realizable k-ε turbulence model is used;the wall function method is adopted in the near wall region to improve the calculation accuracy.

    In this paper,dynamic mesh method is used to simulate the motion of the pintle tip surface.The moving velocity is given through the user defined function(UDF)to control the movement of the grid.

    2 Results and discussion

    2.1 Typical flow patterns of pintle thruster

    The flow inside thruster presents a complex pattern due to the disturbance of the pintle.Fig.2(a) shows the Mach contour and the stream line at 20% opening.The opening is defined as the ration of equivalent throat area and geometry throat area of the thruster.Flowing through the throttle region between the pintle tip and nozzle converging zone, the gas becomes supersonic.Its velocity increases rapidly while pressure and temperature decrease obviously.As a common phenomenon caused by the sudden-expansion geometry,a vortex on the tip of the pintle appears to be tip separation.When the main flow joins with the vortex,there is a lip shock wave generated at the pintle tip,and a compression wave generated on the vortex edge.The two waves combine to be one stronger shock wave after gathering.The combined oblique shock hits with nozzle wall at the expand zone,and is reflected to the axis downstream.Because of the interaction between the shock wave and boundary layer of nozzle wall,the boundary layer becomes thicker at the hit point.What's more,a trailing shock wave is observed near the nozzle axis.Those shock waves make flow become non-isentropic,not only causing losses of total pressure and total temperature but also reducing the nozzle efficiency.Since the opening is very small,the effective nozzle expansion ratio is very large,leading to a 7.4 Mach number at the nozzle outlet.

    The hot gas passes through the shock wave so the vortex is a subsonic circumfluence zone indeed, in which the Mach number is below 0.2 and the static pressure and temperature is apparently high. The high pressure on the pintle tip produces an axial aerodynamic force on the pintle.The force is an important influence factor of thruster response speed and cannot be ignored during pintle design[14].

    The aerodynamic force is difficult to be measured,for the friction force is coupled in the measured forceand hard to separate.As the simulated results show good agreementwith experiment results,the force can be estimated by integral of static pressure on the pintle tip surface.A dimensionless coefficient is defined as the following to study the rule of the aerodynamic force:

    2.2 Effects of thruster opening

    Fig.2 shows the Mach distribution at differentthruster opening.With the opening increasing,the hit point of the combined shock wave moves towards upstream and its angle becomes bigger.Thus the reflection wave deflects towards the axis.When the thruster has a big opening (see Fig.2 (b)),the reflection waves from upper and lower wall meet at the axis in expand zone,generating another two shock waves towards downstream.The vortex is condensed to have a smaller size with its strength increasing,while the strength of trailing shock wave and the compression wave decrease.What's more, the Mach number of nozzle exit decreases as the effective throat area increases.

    Fig.2 Mach number contour at various thruster opening

    The static pressure distribution on pintle tip wall is presented in Fig.3.Pressure of various openings shows similar trends.Flowing through the lip shock wave,the pressure has a sudden jump. With the thruster opening increasing,the wave strength increases to produce a higher pressure circumfluence zone.To investigate the effect of inlet pressure on aerodynamic coefficient,flowfields under different conditio(pc=2~8 MPa)are simulated. The aerodynamic coefficient is a function of thruster opening,butnearly independent of chamber pressure.That is because the distribution law of pressure in different cases is nearly the same for the thruster with fixed surface,which means the ratio of the static pressure and the total pressure are constant at the same position even though chamber pressure is different.

    Fig.3 Static pressure distribution on pintle tip wall of different thruster openings

    2.3 Geometrical sensitivity

    Tab.1 Key parameters of calculated cases

    Fig.4 Schematic diagram of throttling surface

    Fig.4 is the schematic diagram of throttling surface,which is the circular surface formed by AB rotation around the axis.The throttling surface areais a function of pintle displacement x[15].The value of key parameters (Tab.1)is selected based on the principle that the maximum x is kept at a constant value.

    2.3.1 Effect of pintle tip radius

    Since the static pressure has a rapid decrease when passing through the shock wave,the wave can be presented by calculating the pressure gradient. When the pintle tip radius is zero,the pintle has a cone head indeed.An oblique shock wave is generated at the slope,but no compression wave is observed.That is because the circumfluence zone is nonexistent and the vortex strength is weak.With the radius increasing,the location of the shock wave generating and the hit point move upstream,and a subsonic zone appears with its size becoming bigger, leading to a stronger compression wave.

    2.3.2 Effect of throttling surface shape

    The shape of throttling surface is controlled by the half cone angle of pintle tip and the throat fillet radius.Static pressure on pintle tip of different shapes is shown in Fig.5.To make a visualized comparison,the axial coordinate is divided by tip length L to be nondimensionalized.Shape with larger angle and smaller fillet radius tends to have a general higher pressure,leading to a higher aerodynamic coefficient (see Tab.2).However,the lip shock waves of different shapes are generated at a nearly same relative position,and wave strengthen has no significant change.

    Fig.5 Pressure distribution on pintle tip with various shapes

    Tab.2 Aerodynamic coefficient of different throttling surface shapes(opening=1.0)

    3 Conclusions

    1)A vortex is observed at the pintle tip which is a subsonic circumfluence zone,leading to high pressure and significant axial force on the pintle.

    2)The aerodynamic coefficient varies with thruster opening,but independent of pressure.

    3)Pintle tip radius affects the shock wave pattern,and has a positive correlation with subsonic zone size.

    4)As the pintle cone angle increases,aerodynamic coefficient increases,while the shock waves are not influenced apparently.

    [1]SAYLES D C.The development of test motors for advanced controllable propellants:AIAA 1973-1206[R].USA: AIAA,1973.

    [2]OSTRANDER M J,BERGMANS J L,THOMAS M E,et al.Pintle motor challenges for tactical missiles:AIAA 2000-3310[R].USA:AIAA,2000.

    [3]BURROUGHS S.Status of army pintle technology for controllable thrust propulsion:AIAA 2001-3598[R]. USA:AIAA,2001.

    [4]MORRIS J W,CALSON R W,PETERSON K L,et al. Multiple pintle nozzle propulsion control system:US 5456425[P].1995-10-10.

    [5]ROCK S G,HABCHI S D,MARQUETTE T J.Numerical simulation of controllable propulsion for advanced escape systems:AIAA 1997-2254[R].USA:AIAA,1997.

    [6]NAPIOR J,GARMY V.Controllable solid propulsion for launch vehicle and spacecraft application[C]//Proceedings of 57th International Astronautical Congress.Valencia, Spain:[s.n.],2006:11-18.

    [7]COON J,YASUHARA W.Solid propulsion approaches for terminal steering:AIAA 1993-2641[R].USA:AIAA, 1993.

    [8]CAVENY L H,GEILER R L,ELLIS R A,et al.Solid rocket enabling technologies and milestones in the United States[J].Journal of propulsion and power,2003;19(6): 1038-1065.

    [9]CAUBET P.Attitude control systems for interceptors[C]// Proceedings of 1st AAAF International Conference on MissileDefense.Arcachon,France:AAAF,2003:111-121.

    [10]LAFONDA.Numericalsimulationoftheflowfieldinsidea hot gas valve:AIAA 1999-1087[R].USA:AIAA,1999.

    [11]AUSSIGNAC P,UHRIG G..Theatre BMD:A DACS design for the ASTER Block 2 Kill Vehicle[C]// Proceedings of 4th AAAF International Conference on Missile Defence.Heraklion,Greece,2007:22-29.

    [12]JONER S,QUINQUIS I.Control of an exoatmospheric Kill Vehicle with a solid propulsion attitude control system:AIAA 2006-6572[R].USA:AIAA,2006.

    [13]TAO Z J,WANG Y B,LIU Y,et al.Simulation on dynamic response characteristics of electromagnetic gas valve[J].Computer simulation,2013,30(5):68-71.

    [14]CARY L C,ALBERT S D.Rocket thruster comprising load-balanced pintle valve:US8215097[P/OL].2010-12-13[2012-07-22].http://xueshu.baidu.com.

    [15]CHANG H,WANG Y B,LIU Y,et al.Experimental investigation of solid attitude control system using proportional pintle thrusters[J].Applied mechanics and material,2015,723(3):131-135.

    (編輯:馬 杰)

    固體姿軌控針栓推力器內(nèi)流場數(shù)值仿真

    薛 斌1,程 誠2,王一白1,常 桁1,劉 宇1
    (1.北京航空航天大學(xué)宇航學(xué)院,北京100191;2.上海空間推進研究所;上海201112)

    為研究針栓推力器內(nèi)流場的特征和規(guī)律,采用二維軸對稱模型,開展了針栓運動過程的非穩(wěn)態(tài)及穩(wěn)態(tài)流場仿真,分析了不同開度下的流場結(jié)構(gòu)、針栓所受氣動力及流場對針栓幾何參數(shù)的敏感性。結(jié)果表明:由于針栓的干擾作用,流場結(jié)構(gòu)呈現(xiàn)出復(fù)雜激波系、頂端流動分離等現(xiàn)象;氣動力系數(shù)與針栓頭部錐角大小呈正相關(guān)關(guān)系,與集氣室壓強無關(guān);節(jié)流面形狀對氣流參數(shù)分布、激波強度及位置、氣動力等表征的流動模態(tài)影響很大。

    固體姿軌控系統(tǒng);針栓推力器;非穩(wěn)態(tài)流場;動網(wǎng)格

    V435.1-34

    A

    1672-9374(2016)06-0020-05

    V435.1-34 Document code:AArticle ID:1672-9374(2016)06-0020-05

    Received date:2016-02-25;Revised date:2016-05-13

    Biography:XUE Bin(1991—),male,graduate student for a Master's degree,speciality:research on solid rocket engines

    猜你喜歡
    北京航空航天大學(xué)推力器氣動力
    單組元推力器倒置安裝多余物控制技術(shù)驗證
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    飛行載荷外部氣動力的二次規(guī)劃等效映射方法
    側(cè)風(fēng)對拍動翅氣動力的影響
    用于小行星探測的離子推力器技術(shù)研究
    離子推力器和霍爾推力器的異同
    太空探索(2015年6期)2015-07-12 12:48:42
    高速鐵路接觸線覆冰后氣動力特性的風(fēng)洞試驗研究
    春色校园在线视频观看| 成年av动漫网址| 丰满乱子伦码专区| 一本—道久久a久久精品蜜桃钙片| 精品国产露脸久久av麻豆| 一级爰片在线观看| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 高清欧美精品videossex| 天美传媒精品一区二区| 日韩一本色道免费dvd| 两性夫妻黄色片| 成人午夜精彩视频在线观看| 在线观看一区二区三区激情| 久久狼人影院| 国产精品久久久久久精品古装| 欧美日韩国产mv在线观看视频| av女优亚洲男人天堂| 久久国产亚洲av麻豆专区| 精品亚洲乱码少妇综合久久| 美女中出高潮动态图| 少妇人妻 视频| 咕卡用的链子| 亚洲精品一二三| 在线看a的网站| 成年av动漫网址| 丰满乱子伦码专区| 国产av精品麻豆| 午夜福利在线观看免费完整高清在| 人人妻人人爽人人添夜夜欢视频| 亚洲av欧美aⅴ国产| 久久久久人妻精品一区果冻| 亚洲精品日本国产第一区| www.熟女人妻精品国产| 在线天堂中文资源库| 一本久久精品| 一级片免费观看大全| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 女性生殖器流出的白浆| 三上悠亚av全集在线观看| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 亚洲国产精品999| 天堂中文最新版在线下载| www.av在线官网国产| 香蕉国产在线看| 亚洲av男天堂| 亚洲内射少妇av| 一级片'在线观看视频| 天堂8中文在线网| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 老熟女久久久| 久久青草综合色| 亚洲美女视频黄频| 国产成人aa在线观看| 午夜激情久久久久久久| tube8黄色片| av一本久久久久| 波野结衣二区三区在线| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 青春草国产在线视频| 成年美女黄网站色视频大全免费| 在线免费观看不下载黄p国产| 在线精品无人区一区二区三| 有码 亚洲区| 久久99精品国语久久久| 国产一区二区三区综合在线观看| 一区二区三区乱码不卡18| 免费观看av网站的网址| 中文字幕人妻熟女乱码| 三上悠亚av全集在线观看| 午夜久久久在线观看| 黄频高清免费视频| 最近最新中文字幕免费大全7| 不卡av一区二区三区| 精品一区二区三卡| 我的亚洲天堂| 青青草视频在线视频观看| 寂寞人妻少妇视频99o| 国产精品 欧美亚洲| 亚洲av在线观看美女高潮| 寂寞人妻少妇视频99o| 高清视频免费观看一区二区| 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 欧美+日韩+精品| 久久久久久久久久人人人人人人| 大码成人一级视频| 午夜91福利影院| 桃花免费在线播放| 久久久国产精品麻豆| 亚洲精品国产av蜜桃| 亚洲男人天堂网一区| 一级毛片电影观看| 国产精品香港三级国产av潘金莲 | 久久久国产精品麻豆| 日韩中字成人| 久久精品国产亚洲av天美| 丝袜人妻中文字幕| 少妇熟女欧美另类| 啦啦啦在线观看免费高清www| 免费久久久久久久精品成人欧美视频| 国产精品蜜桃在线观看| 日韩伦理黄色片| 最近中文字幕高清免费大全6| 欧美激情高清一区二区三区 | 少妇被粗大的猛进出69影院| 亚洲 欧美一区二区三区| 欧美日韩一级在线毛片| 99re6热这里在线精品视频| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 一级毛片电影观看| 一级片免费观看大全| 最近2019中文字幕mv第一页| 丝袜美腿诱惑在线| 久久久久久久久久人人人人人人| 蜜桃国产av成人99| 999精品在线视频| 女人精品久久久久毛片| 最新的欧美精品一区二区| 国产精品免费视频内射| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 一级片'在线观看视频| 欧美av亚洲av综合av国产av | 你懂的网址亚洲精品在线观看| 久久午夜福利片| 亚洲国产精品国产精品| 黄色毛片三级朝国网站| 免费大片黄手机在线观看| 两个人看的免费小视频| 美女午夜性视频免费| 777米奇影视久久| 九色亚洲精品在线播放| 日韩精品有码人妻一区| 黄色配什么色好看| 伊人久久国产一区二区| 精品99又大又爽又粗少妇毛片| 夫妻性生交免费视频一级片| 国产一区二区三区综合在线观看| 国产一级毛片在线| 高清欧美精品videossex| 日韩av免费高清视频| 99热国产这里只有精品6| 一级a爱视频在线免费观看| 91午夜精品亚洲一区二区三区| 亚洲av综合色区一区| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 国产片内射在线| 亚洲成色77777| 九色亚洲精品在线播放| 1024香蕉在线观看| 五月开心婷婷网| av卡一久久| 少妇人妻 视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av天美| 日韩熟女老妇一区二区性免费视频| 亚洲欧美中文字幕日韩二区| 丝袜喷水一区| 新久久久久国产一级毛片| 亚洲人成电影观看| 中文乱码字字幕精品一区二区三区| 男人操女人黄网站| 伦理电影大哥的女人| 亚洲精品自拍成人| 国产精品二区激情视频| 丝袜人妻中文字幕| 97在线人人人人妻| 秋霞伦理黄片| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 亚洲av电影在线观看一区二区三区| 久久免费观看电影| 日韩一区二区三区影片| 亚洲经典国产精华液单| 日日撸夜夜添| 另类精品久久| 日韩一卡2卡3卡4卡2021年| 天天躁夜夜躁狠狠久久av| 国产国语露脸激情在线看| 久久久久久久大尺度免费视频| 国产精品免费大片| 午夜福利乱码中文字幕| 中文字幕制服av| 国产免费福利视频在线观看| 亚洲国产精品国产精品| 美女视频免费永久观看网站| 亚洲国产色片| 在线观看免费视频网站a站| 久久人人爽人人片av| 国产欧美亚洲国产| 深夜精品福利| 午夜影院在线不卡| 免费黄色在线免费观看| 99精国产麻豆久久婷婷| 久久这里只有精品19| 一二三四中文在线观看免费高清| 国产精品人妻久久久影院| 青春草视频在线免费观看| 人妻少妇偷人精品九色| 欧美另类一区| 免费女性裸体啪啪无遮挡网站| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 波野结衣二区三区在线| 捣出白浆h1v1| 一级黄片播放器| 国产精品女同一区二区软件| 亚洲国产欧美日韩在线播放| av在线app专区| 中文字幕人妻丝袜制服| 亚洲精品一二三| 精品第一国产精品| 中文字幕制服av| 日韩大片免费观看网站| 久久精品aⅴ一区二区三区四区 | 日韩精品免费视频一区二区三区| 免费av中文字幕在线| 久久久久久久久久久免费av| 亚洲国产精品一区二区三区在线| 男女高潮啪啪啪动态图| 成人免费观看视频高清| 午夜影院在线不卡| 男女边吃奶边做爰视频| 午夜av观看不卡| 90打野战视频偷拍视频| 国产一区二区 视频在线| 少妇的丰满在线观看| 久久久久久人人人人人| 在线观看美女被高潮喷水网站| 母亲3免费完整高清在线观看 | 久久精品亚洲av国产电影网| 只有这里有精品99| 欧美老熟妇乱子伦牲交| 男女免费视频国产| 婷婷色综合www| 久久精品aⅴ一区二区三区四区 | 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 不卡视频在线观看欧美| 宅男免费午夜| 亚洲欧美日韩另类电影网站| 热99国产精品久久久久久7| 王馨瑶露胸无遮挡在线观看| 亚洲美女视频黄频| 亚洲经典国产精华液单| av在线老鸭窝| 久久久久久久亚洲中文字幕| 日韩中文字幕视频在线看片| 少妇的丰满在线观看| 国产有黄有色有爽视频| 亚洲,欧美精品.| av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| av线在线观看网站| 亚洲美女搞黄在线观看| 人妻系列 视频| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区二区三区在线| 老女人水多毛片| 午夜免费鲁丝| 亚洲av国产av综合av卡| 人妻系列 视频| a 毛片基地| 高清黄色对白视频在线免费看| 久久精品国产综合久久久| 视频在线观看一区二区三区| 亚洲一区中文字幕在线| av国产久精品久网站免费入址| 搡老乐熟女国产| 亚洲欧美成人综合另类久久久| 美国免费a级毛片| 免费观看性生交大片5| 日韩视频在线欧美| 日韩欧美精品免费久久| www日本在线高清视频| 亚洲精品日韩在线中文字幕| 欧美97在线视频| 亚洲欧美中文字幕日韩二区| 亚洲一码二码三码区别大吗| 欧美精品人与动牲交sv欧美| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 黄网站色视频无遮挡免费观看| 美女福利国产在线| 国产色婷婷99| 欧美日韩综合久久久久久| 精品久久久精品久久久| 啦啦啦在线观看免费高清www| 日韩欧美一区视频在线观看| 岛国毛片在线播放| 91成人精品电影| 国产1区2区3区精品| 日本黄色日本黄色录像| 国产成人aa在线观看| 夜夜骑夜夜射夜夜干| 日韩免费高清中文字幕av| 女性被躁到高潮视频| 深夜精品福利| 满18在线观看网站| 日韩 亚洲 欧美在线| 亚洲成av片中文字幕在线观看 | 夫妻午夜视频| 久热久热在线精品观看| 色婷婷久久久亚洲欧美| 色哟哟·www| 伦理电影免费视频| 精品一区二区免费观看| 18在线观看网站| 美女中出高潮动态图| 成年女人在线观看亚洲视频| 一区二区日韩欧美中文字幕| 伦理电影大哥的女人| 中国三级夫妇交换| 亚洲av日韩在线播放| 99久国产av精品国产电影| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站 | 国产麻豆69| 婷婷色麻豆天堂久久| 日韩av在线免费看完整版不卡| 韩国高清视频一区二区三区| 最近2019中文字幕mv第一页| 亚洲伊人久久精品综合| 久久久久久免费高清国产稀缺| 国产一区二区 视频在线| 丝袜人妻中文字幕| av免费观看日本| 欧美xxⅹ黑人| 国产在线视频一区二区| 999精品在线视频| 免费观看性生交大片5| 亚洲欧美一区二区三区久久| www.熟女人妻精品国产| 18+在线观看网站| 欧美成人午夜精品| 国产片内射在线| 亚洲av中文av极速乱| 午夜激情久久久久久久| 免费高清在线观看日韩| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 国产97色在线日韩免费| 热99久久久久精品小说推荐| 天美传媒精品一区二区| 国产又爽黄色视频| 久久久久久久精品精品| 免费观看性生交大片5| 国产精品熟女久久久久浪| 中文字幕人妻熟女乱码| 亚洲欧美成人综合另类久久久| 欧美日本中文国产一区发布| 超碰成人久久| 99久久人妻综合| 国产av国产精品国产| 久久久久国产一级毛片高清牌| 亚洲人成77777在线视频| 国产精品欧美亚洲77777| 精品一区二区三卡| 亚洲精品一区蜜桃| 欧美成人午夜精品| 国精品久久久久久国模美| 伦理电影免费视频| 美女国产高潮福利片在线看| 色播在线永久视频| 国产精品亚洲av一区麻豆 | 久久精品亚洲av国产电影网| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 一个人免费看片子| 春色校园在线视频观看| 最近中文字幕高清免费大全6| 人人妻人人澡人人看| 老汉色av国产亚洲站长工具| 久久国产精品大桥未久av| 超碰97精品在线观看| 精品人妻在线不人妻| 丝袜在线中文字幕| 午夜福利乱码中文字幕| 亚洲av电影在线观看一区二区三区| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 亚洲欧美日韩另类电影网站| 2018国产大陆天天弄谢| 黄色配什么色好看| 热re99久久国产66热| 寂寞人妻少妇视频99o| 在线天堂中文资源库| 亚洲美女搞黄在线观看| 大香蕉久久成人网| 99香蕉大伊视频| 亚洲欧洲国产日韩| 久久久久视频综合| 看非洲黑人一级黄片| 亚洲人成网站在线观看播放| 自线自在国产av| 黄色 视频免费看| 日韩av在线免费看完整版不卡| 亚洲男人天堂网一区| 蜜桃国产av成人99| 99久久精品国产国产毛片| 日韩一卡2卡3卡4卡2021年| 久久久久久伊人网av| 超碰97精品在线观看| 母亲3免费完整高清在线观看 | 欧美激情 高清一区二区三区| 午夜福利一区二区在线看| 亚洲五月色婷婷综合| 国产一区有黄有色的免费视频| 人妻 亚洲 视频| 久久精品久久久久久久性| 亚洲精品中文字幕在线视频| 精品99又大又爽又粗少妇毛片| 国产精品99久久99久久久不卡 | 亚洲欧洲国产日韩| 久久久欧美国产精品| 欧美精品高潮呻吟av久久| 欧美 日韩 精品 国产| 一区二区三区乱码不卡18| 国产1区2区3区精品| 国产成人a∨麻豆精品| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 亚洲精品日本国产第一区| 一本大道久久a久久精品| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 90打野战视频偷拍视频| 亚洲第一av免费看| www.自偷自拍.com| 亚洲视频免费观看视频| 国产成人精品在线电影| 亚洲精品在线美女| 我要看黄色一级片免费的| 麻豆乱淫一区二区| 18禁观看日本| 91精品三级在线观看| 两性夫妻黄色片| h视频一区二区三区| 在线观看免费日韩欧美大片| 日韩大片免费观看网站| 欧美激情极品国产一区二区三区| 一级毛片黄色毛片免费观看视频| 国产激情久久老熟女| 免费观看性生交大片5| 亚洲av成人精品一二三区| 看非洲黑人一级黄片| 亚洲精品日本国产第一区| 黑人巨大精品欧美一区二区蜜桃| 欧美精品亚洲一区二区| 女性被躁到高潮视频| 精品国产国语对白av| 亚洲精品国产av蜜桃| 亚洲第一av免费看| 国产又色又爽无遮挡免| 黄网站色视频无遮挡免费观看| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美| 亚洲三区欧美一区| 熟女av电影| 亚洲人成网站在线观看播放| 国产精品久久久久久av不卡| 亚洲精品日本国产第一区| 最新的欧美精品一区二区| 有码 亚洲区| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区国产| 妹子高潮喷水视频| 蜜桃国产av成人99| 老女人水多毛片| 国产午夜精品一二区理论片| 免费观看性生交大片5| 80岁老熟妇乱子伦牲交| 中文字幕色久视频| 久久久久久人妻| 波多野结衣一区麻豆| 啦啦啦啦在线视频资源| 日韩人妻精品一区2区三区| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| av在线老鸭窝| 亚洲国产av新网站| 国产精品蜜桃在线观看| 一级,二级,三级黄色视频| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 啦啦啦在线免费观看视频4| 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 波多野结衣av一区二区av| 色婷婷av一区二区三区视频| 国产成人欧美| 日本-黄色视频高清免费观看| 国产精品成人在线| 国产欧美日韩综合在线一区二区| 少妇人妻久久综合中文| 天天躁日日躁夜夜躁夜夜| 色婷婷久久久亚洲欧美| 丝袜美足系列| 啦啦啦在线免费观看视频4| 秋霞在线观看毛片| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 男人爽女人下面视频在线观看| 国产在线免费精品| 美女午夜性视频免费| 性高湖久久久久久久久免费观看| 免费黄网站久久成人精品| 亚洲欧美一区二区三区久久| 成年女人在线观看亚洲视频| 搡女人真爽免费视频火全软件| 亚洲精品自拍成人| 男的添女的下面高潮视频| 各种免费的搞黄视频| av又黄又爽大尺度在线免费看| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久 | 男女午夜视频在线观看| 在线亚洲精品国产二区图片欧美| 国产老妇伦熟女老妇高清| 日韩大片免费观看网站| 男男h啪啪无遮挡| 国产亚洲欧美精品永久| 精品一区在线观看国产| 国产综合精华液| 精品99又大又爽又粗少妇毛片| 最近中文字幕2019免费版| 成人手机av| 一级毛片我不卡| 午夜av观看不卡| 亚洲av福利一区| 欧美精品一区二区免费开放| 国产探花极品一区二区| 国产熟女欧美一区二区| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲视频免费观看视频| 夫妻性生交免费视频一级片| 蜜桃在线观看..| 日本午夜av视频| 中国三级夫妇交换| 欧美人与性动交α欧美软件| 男人舔女人的私密视频| 97精品久久久久久久久久精品| 国产精品蜜桃在线观看| 高清黄色对白视频在线免费看| 国产精品国产三级专区第一集| 色94色欧美一区二区| 午夜免费鲁丝| 欧美日韩亚洲高清精品| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲一级一片aⅴ在线观看| 人妻系列 视频| 高清不卡的av网站| 日韩制服丝袜自拍偷拍| 国产熟女欧美一区二区| 在线亚洲精品国产二区图片欧美| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 亚洲国产精品一区二区三区在线| 日本欧美国产在线视频| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 国产黄色免费在线视频| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 午夜影院在线不卡| 男女高潮啪啪啪动态图| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 亚洲人成电影观看| 18禁观看日本| 色吧在线观看| 亚洲精品久久成人aⅴ小说| 97在线视频观看| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 久久久久网色| 汤姆久久久久久久影院中文字幕| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| videos熟女内射| 久久久久视频综合| 亚洲精品一二三| 亚洲,一卡二卡三卡| 久久鲁丝午夜福利片| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 777久久人妻少妇嫩草av网站| 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 搡女人真爽免费视频火全软件| 美女午夜性视频免费| 伦理电影免费视频| 亚洲国产日韩一区二区| 婷婷色综合www| 男女边摸边吃奶| 18禁动态无遮挡网站| 久久久久国产一级毛片高清牌| 日韩欧美一区视频在线观看| 国产一区二区 视频在线|