趙伯陽,劉 禹,宋慧明,李 強
(1.中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;2.中國科學院大學,北京 100049;3.西安交通大學 人居環(huán)境與建筑工程學院,西安 710049)
基于油松樹輪寬度重建河北青龍過去123年平均相對濕度
趙伯陽1,2,劉 禹1,3,宋慧明1,李 強1
(1.中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;2.中國科學院大學,北京 100049;3.西安交通大學 人居環(huán)境與建筑工程學院,西安 710049)
相對濕度的研究對理解古氣候變化有著重要的科學意義,但是目前國內利用樹輪資料重建的歷史時期相對濕度變化十分有限。本文利用油松樹輪寬度重建了河北青龍地區(qū)1890 —2012年5 —7月的平均相對濕度變化,重建序列的方差解釋量為39.1%(減少自由度后為38.0%)。重建序列顯示出5個濕潤期(1895 —1899年,1906 —1914年,1924 —1926年,1950 —1955年,1984 —2000年)和5個干旱期(1900 —1905年,1917 —1921年,1927 —1949年,1956 —1973年,1975 —1981年)。重建序列和觀測數(shù)據(jù)均與鄰近研究區(qū)的PDSI對應良好,表明該序列具有較強的空間代表性,可以反映河北北部地區(qū)的平均相對濕度變化情況。本研究表明研究區(qū)相對濕度變化不僅受局地氣候控制,還可能受到ENSO影響。
青龍;油松;樹輪寬度;相對濕度;重建
樹木年輪資料以其分辨率高,定年精確,樣品分布廣泛等優(yōu)點,已成為國際地圈生物圈計劃(International Geosphere-Biosphere Program,IGBP)中最重要的古氣候研究指標之一。利用樹輪寬度指標,研究者們對歷史時期的區(qū)域及全球尺度溫度、降水等氣候指標進行重建研究,已取得了一些重要成果(Esper et al,2002;Cook et al,2004;Liu et al,2006;Briffa et al,2008;Mann et al,2008;Liu et al,2009;Yi et al,2012;Liu et al,2013;Yang et al,2014),這些研究成果對古氣候研究以及對未來氣候變化趨勢的預測有重要意義。
相對濕度是指空氣中水汽壓與飽和水汽壓的百分比,作為氣候的重要指標之一,相對濕度的變化會影響植物葉片的蒸騰作用和光合作用(Guehl and Aussenac,1987),從而影響植物的生長發(fā)育過程;同時,空氣中的濕度變化可以記錄當?shù)氐暮闈?、干旱事件(呂軍等?002)。所以,對過去相對濕度變化的研究,是歷史時期氣候變化研究中不可或缺的一部分。目前我國樹輪氣候學研究中對溫度重建(包光等,2015;蔡秋芳和劉禹,2015;劉禹等,2015)和降水重建(Liu et al,2006;Yang et al,2014)報道較多,而對相對濕度進行重建的研究尚不充分(Liu et al,2003;Shu et al,2005;Tsuji et al,2008;Liu et al,2015),尤其在我國華北北部地區(qū)尚無基于樹輪寬度的相對濕度重建。
本文利用河北省青龍滿族自治縣油松樹輪寬度資料,重建了1890—2012年的平均相對濕度,并探討了當?shù)叵鄬穸茸兓卣鳎瑸樵搮^(qū)域歷史時期氣候變化研究提供了新的資料。
1.1 采樣點概況與樣品采集
本研究所使用樹輪樣品采集于河北省北部青龍滿族自治縣盤嶺溝村附近(40.49°N,119.53°E,海拔380 m,圖1)。采樣點為郁閉度較低的疏林,優(yōu)勢樹種為油松(Pinus tabulaeformisCarr.),采樣點草本植物生長茂盛,樹木生長良好,無病蟲害,無人工干預。按照國際樹木年輪庫(ITRDB)標準,中國科學院地球環(huán)境研究所樹木年輪實驗室于2013年8月在該研究區(qū)域使用5.15 mm生長錐進行采樣,每棵樹采集兩根樣芯,共采集16棵樹,總計32根樣芯,編號為QL。
1.2 年表的建立
在實驗室中,按照現(xiàn)代樹木年輪基本研究標準(Schweingruber,1996;Stokes and Smiley,1996)對全部樣品進行風干,固定和打磨,直至顯微鏡下能夠清晰看到細胞為止。使用測量精度為0.01 mm的LINTAB寬度測量儀對樣本進行逐輪寬度測量及交叉定年,使用COFECHA程序(Holmes,1983)對定年結果進行質量控制,剔除相關性較差以及較短的樣品,最終進入主年表的共有24根樣芯。
使用ARSTAN程序(Cook and Holmes,1986)建立樹輪年表。為了在最大程度上保留樣品完整信息并去除樹木本身具有的生長趨勢,采用保守的負指數(shù)或線性函數(shù)對寬度序列進行去趨勢,最終得到標準年表、差值年表和自回歸年表。與STD年表和ARS年表相比,RES年表在對高頻信號的保存上更出色,由于本研究所使用樣本本身長度有限,低頻信息并不能良好保存,故本文研究采用RES年表(圖2)。EPS與樣本量大小有關,研究者們普遍認為當EPS的值大于0.85時年表可靠(Wigley et al,1984),故EPS被用來確定年表的可靠起始年代。本研究采用年表起始年代為公元1890年,序列長度為123年。
圖1 采樣點及其他所用資料地理位置示意圖Fig.1 Sampling site and the locations of other database for comparison
圖2 青龍RES年表、樣品數(shù)量、滑動EPS及滑動RbarFig.2 Plots for QL RES chronology, sample depth, running EPS and Running Rbar
1.3 氣候信息
距離采樣點最近的氣象站為青龍氣象站(40°24′N,118°57′E,海拔227.5 m,圖1),該氣象站連續(xù)的氣象觀測數(shù)據(jù)始于1957年。在有氣象數(shù)據(jù)資料的年份內(1957—2012年),平均溫度為7.6—10.5℃,年降水量為387.6—1128 mm,年平均相對濕度為55.5%—65.2%。該氣象站數(shù)據(jù)表明(圖3),研究區(qū)域降水主要集中于夏季6—8月,雨熱同期。
帕爾默干旱指數(shù)(Palmer drought severity index,PDSI)對于區(qū)域和全球的干濕變化有著顯著的指示意義。本文將研究區(qū)樹輪資料與PDSI進行比較,逐月相關PDSI資料取自距離采樣點最近的格點(41.25°N,118.75°E),氣象數(shù)據(jù)和重建資料與CRU scPDSI的空間分析利用KMNI Climate Explorer(http://climexp.knmi.nl)完成。
圖3 青龍氣象站多年降水、溫度、相對濕度月平均資料(1957—2012年)Fig.3 Monthly mean precipitation, monthly mean temperature and monthly mean relative humidity records from Qinglong meteorological station
2.1 寬度信號對氣候因子的響應
相關分析表明,研究區(qū)域油松樹輪寬度RES年表與溫度和PDSI有一定相關性,但相關系數(shù)不高(最高相關系數(shù)r分別只有 - 0.32和0.40),顯然溫度與PDSI并不是研究區(qū)油松生長的氣候限制因子,無法利用寬度數(shù)據(jù)對這二者進行重建。RES年表與降水和相對濕度相關關系較高,尤其是在夏季,年表與降水和相對濕度有著較高的正相關關系。經(jīng)過月份組合之后,發(fā)現(xiàn)RES年表與5—7月平均相對濕度的相關性最高,相關系數(shù)r達到0.625(R2adj= 0.380,p<0.0001,n= 56)(圖4,圖5),達到重建標準。
分析表明,在青龍地區(qū)油松生長期內,5—7月的平均相對濕度越高,水汽充足越有利于樹木的同化作用,利于樹木生長,對應得到寬輪,如果相對濕度低,樹木生長被抑制,該年輪寬較窄。
2.2 轉換方程的建立及5 —7月平均相對濕度的重建
通過對圖5中寬度數(shù)據(jù)與平均相對濕度數(shù)據(jù)的線性回歸,建立轉換方程:
其中:MRH5—7代表每一年5—7月平均相對濕度,Wt代表RES年表中第t年的寬度指數(shù)。在有氣象觀測數(shù)據(jù)的1957—2012年,RES年表對5—7月平均相對濕度的方差解釋量達到了39.1%(調整自由度后的解釋方差為38.0%)。在重建期內,重建結果與觀測數(shù)據(jù)對應良好(圖6)。
本研究采用分段檢驗的方法驗證重建方程的可靠性和穩(wěn)定性,表1給出了分段檢驗的結果。從給出的統(tǒng)計結果看,每一時段的相關均十分顯著,且校驗期的誤差縮減量(RE)和有效系數(shù)(CE)值均為正數(shù)(Cook et al,1999),1957—1988年與1981—2012年重建期的ST檢驗均達到0.01置信水平,1957—1980年校驗期的ST檢驗達到0.05置信水平,證明重建方程穩(wěn)定,重建序列反應了研究區(qū)域過去123年來5—7月平均相對濕度的變化。
圖4 青龍樹輪RES年表與青龍氣象站各月平均降水量、平均溫度、平均相對濕度和PDSI的相關分析結果Fig4 Correlation between ring width indices and meteorological data (including mean precipitation, mean temperature, mean relative humidity, PDSI, respectively) The dashed horizontal line was the 99% con fi dence limit.
圖5 青龍寬度指數(shù)與當?shù)?—7月平均相對濕度散點圖Fig.5 Scatter plot of the QL tree-ring width indices and the May — July mean relative humidity
同時,為了驗證重建方程對高頻信號的還原度,將重建序列與觀測序列的一階差進行檢驗(圖7a),相關系數(shù)達到0.546;將重建序列與觀測序列去趨勢后進行檢驗,相關系數(shù)達到0.613(圖7b)。進一步證明重建方程與氣象觀測數(shù)據(jù)在高頻上的一致性。
圖6 青龍1957 — 2012年當年5 — 7月平均相對濕度重建值與觀測值對比Fig.6 Comparison between reconstructed (bold line) and observed (thin line) May—July mean relative humidity (1957 — 2012)
表1 分段檢驗的數(shù)據(jù)統(tǒng)計Tab.1 Statistics for a split calibration-veri fi cation procedure
圖7 (a)青龍5—7月平均相對濕度重建值與觀測值一階差的對比(b)去趨勢后平均相對濕度重建值與觀測值的對比Fig.7 Comparison between (a) fi rst-order differential, (b) detrended reconstructed (bold line) and observed (thin line) May—July mean relative humidity (1957—2012)
根據(jù)方程(1),本文重建了華北北部地區(qū)1890年以來5—7月平均相對濕度(圖8)。重建時段的平均相對濕度范圍為59.03%—69.38%,平均值為64.32%,總體標準差σ為±2.13%。如果某一年的相對平均濕度距平超過σ,即將該年定義為相對濕潤/干旱年份。經(jīng)過統(tǒng)計,相對濕潤年共計20年,占全部重建序列比例為16.3%;相對干旱年共計22年,占全部重建序列比例為17.9%。通過對年際變化進行11年滑動平均,得到研究區(qū)年代際尺度的平均相對濕度變化。重建期間具有5個濕潤期,分別為1895—1899年,1906—1914年,1924—1926年,1950—1955年,1984—2000年;具有5個干旱期,分別為1900—1905年,1917—1921年,1927—1949年,1956—1973年,1975—1981年。
2.3 空間分析與周期分析
由于現(xiàn)在對相對濕度的研究仍不充分,空間尺度上高分辨率相對濕度格點數(shù)據(jù)仍不完備,故本文在對重建數(shù)據(jù)進行空間分析時將相對濕度的觀測值與重建值分別與PDSI進行相關性分析(圖9)。作為一個常用的干旱指標,帕爾默干旱指數(shù)的變化與研究區(qū)域的相對濕度變化有很好的相關性。通過圖9可知,觀測記錄與重建序列的空間相關模式十分相似,表明對華北北部地區(qū)5—7月平均相對濕度的重建具有一定的空間代表性。
圖8 青龍1890—2012年5—7月平均相對濕度重建曲線圖中細黑線為重建曲線,粗黑線為11年滑動平均,水平實線為平均值,水平虛線為平均值的一個標準偏差上下限,圓點為干旱事件。Fig.8 Reconstruction of May—July mean relative humidity (thin line) during 1890—2012 Bold line represents 11-year moving averages. The horizontal line is the reconstructed mean. Dot represents drought events.
圖9 1957 — 2012年CRU scPDSI與青龍氣象站5 — 7月平均相對濕度空間相關(a)和與重建曲線空間相關(b),p<0.1Fig.9 Spatial correlation between the CRU scPDSI and observed May—July mean relative humidity during 1957—2012,p<0.1 (a) and spatial correlation between the CRU scPDSI and reconstructed May — July mean relative humidity during 1957—2012,p<0.1 (b)
同時,本文采用多窗口譜分析方法(MTM)檢測華北北部地區(qū)過去123年5 —7月平均相對濕度重建序列的周期(圖10),結果表明,在95%的置信度上,重建序列存在5.20 a,4.20 a,4.03 a, 3.86 a,3.58 a,2.21 a準周期震蕩。值得注意的是,本文的結果由樹輪RES年表重建得到,相較于STD年表和ARS年表,RES年表對高頻信息保存良好,但對低頻氣候信號保存不足。
圖10 青龍1890 — 2012年5 — 7月平均相對濕度重建序列MTM周期分析圖Fig.10 Power spectral of reconstructed May—July mean relative humidity curve during 1890 — 2012 in Qinglong region
本文通過對華北平原北部地區(qū)油松樹輪寬度資料的分析,發(fā)現(xiàn)該研究區(qū)域油松樣本RES年表與溫度和相對濕度呈現(xiàn)良好的正相關關系,特別是與5 — 7月平均相對濕度的相關系數(shù)達到0.625,滿足重建標準。由于空氣中的相對濕度會影響樹葉葉片上氣孔交換氣體的能力,進而影響植物光合作用和呼吸作用(Guehl and Aussenac,1987),影響樹木生長,該過程會被樹輪寬度信號記錄下來。這表明利用樹輪RES年表對當?shù)貧v史時期平均相對濕度進行重建,具有可靠的生理學依據(jù)。
圖11為唐山市旱澇指數(shù)(a),(中央氣象局氣象科學研究院,1981;張德二等,2003)與研究區(qū)青龍地區(qū)平均相對濕度重建曲線(b)的逐年對比,在重建期間內兩條曲線有著顯著的反相關關系,Spearman秩相關系數(shù)r=-0.394(n= 111,p< 0.001)。一些極端干旱/濕潤年份同時在這兩份氣候資料中留下記錄。如干旱年1900、1919、1936、1944、1968、1972、1981、1992、1999和濕潤年1890、1893、1894、1898、1938、1949、 1953、1973、1985、1991、1995等。表明重建曲線與唐山地區(qū)的旱澇歷史在高頻上具有一致性。
不僅僅是年際尺度,在年代際尺度上,青龍地區(qū)相對濕度重建曲線與唐山市旱澇指數(shù)變化趨勢的相關性也較好(圖12),這同樣可以從圖9給出的重建序列與PDSI的空間相關關系得到佐證,即華北地區(qū)北部唐山地區(qū)與青龍地區(qū)濕度變化具有一致性。這種變化的一致性表明本研究得到的重建序列在一定程度上反映了研究區(qū)周圍的干濕變化情況。值得注意的是,在達到1990年的相對平均濕度高值之后,該區(qū)域的平均相對濕度在持續(xù)下降,由于旱澇指數(shù)只發(fā)布至2000年,但可以明顯看出1991—2000年的10年間,有4年(1992、1997、1999、2000)的旱澇指數(shù)為5,表示該地區(qū)極其干旱。造成這一現(xiàn)象的機制尚不明確,有待進一步研究。
胡廣利(1997)編寫的《青龍滿族自治縣志》中對青龍地區(qū)1930年以來發(fā)生過的災情有詳細記載。“1960—1961年:連續(xù)兩年春旱,高溫。1961年6月10日最高氣溫達38.6℃,延誤農時,造成糧食減產(chǎn)500多萬公斤?!薄?972年:繼1971年秋旱之后,至1972年的7月中旬,12個月中全縣平均降水量只有261.4毫米,全縣5條大河有4條斷流,青龍河枯水流量降至1.007立方米/秒。5400眼水井干涸,479個生產(chǎn)隊人畜飲水需從外運進,到5月中旬有2.5萬畝地尚未下種,有6.5萬畝旱種禾苗全部旱死?!薄?982年:春旱接伏旱,有2649眼井干涸,受旱農田33.3萬畝,7.65萬畝絕收,約計減產(chǎn)6000萬公斤,7.69萬人口和1.9萬頭牲畜飲水嚴重困難?!边@三次大旱均與本研究重建結果中的相對濕度極小值吻合(圖8),表明重建結果可以在一定程度上代表當?shù)氐臍夂蚋蓾褡兓?/p>
圖11 青龍地區(qū)平均相對濕度重建值(b)與唐山市旱澇指數(shù)(a)對比Fig.11 Comparison betweenthe May—July mean relative humidity reconstruction in Qinglong region (b) and the Drought/ fl ood index in Tangshan city (a)
圖12 青龍地區(qū)重建平均相對濕度11年滑動平均值(a)與唐山市旱澇指數(shù)11年滑動平均值(b)對比Fig.12 11-year moving averages of mean relative humidity reconstruction in Qinglong region (a) and the Drought/ fl ood index in Tangshan city (b)
MTM譜分析(圖10)同樣表明重建序列不含有低頻信息,重建序列主要周期包含2.21 a周期,這個周期應被解釋為中國大陸樹輪信號常見的準兩年震蕩(QBO);3.58 a、3.86 a、4.03 a、4.20 a、5.20 a周期很有可能與ENSO活動有關,暗示該區(qū)域的氣候可能受到ENSO變化調制。
相關分析表明,華北平原北部青龍地區(qū)的油松生長受到5 — 7月平均相對濕度的顯著控制,在此基礎上,本文采用線性回歸建立轉換方程,重建了研究區(qū)1890 — 2012年5 — 7月的平均相對濕度變化序列。重建序列對氣候因子的方差解釋量為39.1%。
在過去的123年中,整個重建序列具有5個平均相對濕度期高值期,分別為1895 — 1899年,1906 — 1914年,1924 — 1926年,1950 — 1955年,1984 — 2000年;具有5個平均相對濕度期低值期,分別為1900 — 1905年,1917 — 1921年,1927 — 1949年,1956 — 1973年,1975 — 1981年。通過對PDSI的空間相關分析,以及對唐山市旱澇指數(shù)序列的對比,本研究得到的平均相對濕度重建序列具有較強的空間代表性,可以在一定程度上代表華北地區(qū)北部的干濕變化。利用MTM譜分析對過去123年平均相對濕度的重建結果進行檢驗,發(fā)現(xiàn)重建序列具有5.20 a、4.20 a、4.03 a、3.86 a、3.58 a、2.21 a周期,表明該地的平均相對濕度變化不僅受到當?shù)貐^(qū)域氣候的控制,還可能受到ENSO事件的影響。
包 光, 劉 娜, 劉 禹. 2015. 秦嶺中、西部地區(qū)溫度變化的樹木年輪記錄[J].地球環(huán)境學報, 6(3): 154–160. [Bao G, Liu N, Liu Y. 2015. Temperature variability referred from tree rings in central and western Qinling Mountains, China [J].Journal of Earth Environment, 6(3): 154–160.]
蔡秋芳, 劉 禹. 2015. 山西中條山白皮松和華山松徑向生長對氣候變化的響應及氣候意義[J].地球環(huán)境學報, 6(4): 208–218. [Cai Q F, Liu Y. 2015. Climatic responses ofPinus bungeanaZucc. andPinus armandiiFranch. in Mt. Zhongtiao, Shanxi Province, and May — July temperature variations since 1920 [J].Journal of Earth Environment, 6(4): 208–218.]
胡廣利. 1997. 青龍滿族自治縣志[M]. 北京: 中國城市出版社: 183–186. [Hu G L. 1997. Qinglong county annals [M]. Beijing: China City Press: 183–186.]
劉 禹, 張艷華, 蔡秋芳, 等. 2015. 基于樹輪寬度重建的河南石人山地區(qū)1850年以來季節(jié)最低溫度及20世紀增溫[J].地球環(huán)境學報, 6(6): 393–406. [Liu Y, Zhang Y H, Cai Q F, et al. 2015. The tree-ring width based seasonal minimum temperature reconstruction at Shiren Mountains, Henan, China since 1850 AD and its record of 20th century warming [J].Journal of Earth Environment, 6(6): 393–406.]
呂 軍, 屠其璞, 錢君龍, 等. 2002. 利用樹木年輪穩(wěn)定同位素重建天目山地區(qū)相對濕度序列[J].氣象科學, 22(1): 47–51. [Lü J, Tu Q P, Qian J L, et al. 2002. Relative humidity series reconstructed by using stable isotopes in tree ring of Tianmu mountain [J].Scientia Meteorologica Sinica, 22(1): 47–51.]
張德二,李小泉,梁有葉. 2003. 《中國近五百年旱澇分布圖集》的再續(xù)補(1993~2000年)[J].應用氣象學報, 14(3): 379–388. [Zhang D E, Li X Q, Liang Y Y. 2003. Yearly charts of dryness/wetness in China for the last 500-year period Ⅲ (1993~2000) [J].Journal of Applied Meteorological Science, 14(3): 379–388.]
中央氣象局氣象科學研究院. 1981. 中國近五百年來旱澇分布圖集[M].北京: 地圖出版社: 216–260. [Chinese Academy of Meteorological Sciences, China Meteorological Administration. 1981. Yearly charts of dryness/wetness in China for the last 500-year period [M]. Beijing: China Cartographic Publishing House: 216–260.]
Briffa K R, Shishov V V, Melvin T M, et al. 2008. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia [J].Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1501): 2271–2284.
Cook E R, Esper J, D’Arrigo R D. 2004. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years [J].Quaternary Science Reviews, 23: 2063–2074.
Cook E R, Holmes R L. 1986. User’s manual for ARSTAN [M]// Holmes R L, Admas R K, Fritts H C. Tree ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Chronology Series 6. Tucson: University of Arizona Press: 50–65.
Cook E R, Meko D M, Stahle D W, et al. 1999. Drought reconstructions for the continental United States [J].Journal of Climate, 12: 1145–1162.
Esper J, Cook E R, Schweingruber F H. 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability [J].Science, 295: 2250–2253.
Guehl J M, Aussenac G. 1987. Photosynthesis decrease and stomatal control of gas exchange inAbies albaMill. in response to vapor pressure difference [J].Plant Physiology, 83(2): 316–322.
Holmes R L. 1983. Computer-assisted quality control in treering dating and measurement [J].Tree-Ring Bulletin, 43(1): 69–78.
Liu X H, Qin D H, Zhao X M, et al. 2003. Climatic signi fi canceof stable carbon isotope in tree rings ofAbies spectabibisin southeastern Tibet [J].Chinese Science Bulletin, 48: 2000–2004.
Liu Y, An Z S, Linderholm H W, et al. 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings [J].Science in China Series D, 52: 348–359.
Liu Y, An Z S, Ma H Z, et al. 2006. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850AD and its relevance to the Northern Hemisphere temperature [J].Science in China Series D, 49: 408–420.
Liu Y, Sun B, Song H, et al. 2013. Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679 [J].Quaternary International, 283: 46–54.
Liu Y, Wang Y C, Li Q, et al. 2015. A tree-ring-based June—September mean relative humidity reconstruction since 1837 from the Yiwulü Mountain region, China [J].International Journal of Climatology, 35: 1301–1308
Mann M E, Zhang Z, Hughes M K, et al. 2008. Proxybased reconstructions of hemispheric and global surface temperature variations over the past two millennia [J].Proceedings of the National Academy of Sciences, 105(36): 13252–13257.
Schweingruber F H. 1996. Tree rings and environment: dendroecology [M]. Berne, Switzerland: Birmensdorf, Paul Haupt Publishers: 1–609.
Shu Y, Feng X, Gazis C, et al. 2005. Relative humidity recorded in tree rings: a study along a precipitation gradient in the Olympic Mountains, Washington, USA [J].Geochimica et Cosmochimica Acta, 69(4): 791–799.
Stokes M A, Smiley T L. 1996. An introduction to tree-ring dating [M]. Tucson, USA: The University of Arizona Press: 1–73.
Tsuji H, Nakatsuka T, Yamazaki K, et al. 2008. Summer relative humidity in northern Japan inferred fromδ18O values of the tree ring in (1776—2002 AD): In fl uence of the paleoclimate indices of atmospheric circulation [J].Journal of Geophysical Research: Atmospheres (1984—2012), 113, D18103,doi:10.1029/2007JD009080.
Wigley T M L, Briffa K R, Jones P D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology [J].Journal of climate and Applied Meteorology, 23(2): 201–213.
Yang B, Qin C, Wang J, et al. 2014. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau [J].Proceedings of the National Academy of Sciences, 111(8): 2903–2908.
Yi L, Yu H, Ge J, et al. 2012. Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records [J].Climatic Change, 110(1/2): 469–498.
Mean relative humidity reconstruction based on the tree-ring width from Chinese pines since 1890 from the Qinglong region, China
ZHAO Boyang1,2, LIU Yu1,3, SONG Huiming1, LI Qiang1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
Background, aim, and scopeThe study of humidity is essential for better understanding the past climatic variations, however, there were few long-term humidity reconstructions based on treering widths worldwide. Tree-rings have been considered as one of the best known archives in the past climate research field with their high resolution in time and reliability in cross-dating. In our study, a mean relative humidity (MRH5-7) reconstruction curve was carried out using the Chinese pine tree (Pinus tabulaeformisCarr.) from the Qinglong region in northern China.Materials and methodsEmploying the standard methods sponsored by the International Tree-Ring Data Bank (ITRDB), we collected 32 tree cores from 16 trees in Qinglong region (40.49°N, 119.53°E, 380 m a.s.l.) during October, 2013. The site has a discontinuous canopy with the sparse trees and the locally dominated tree species is Chinese pine (Pinus tabulaeformisCarr.). Following the standard dendrochronological procedures, all samples werecarefully preprocessed in Laboratory of Tree Ring Research, Institute of Earth Environment, Chinese Academy of Sciences. All 32 cores were cross-dated precisely with the COFECHA program and three tree ring chronologies (STD, RES and ARS chronologies) were carried out with the ARSTAN program. In our case, we reconstruct past relative humidity with RES chronology because RES chronology has a good quality in storing high frequency climate signal. To clarify the climatic conditions in our study area, the meteorological data were extracted from the Qinglong station (40°24′N, 118°57′E, 227.5 m a.s.l., records from 1957 to 2012). PDSI which was extracted from the nearest data grid (41.25°N, 118.75°E) was compared with our RES chronology. To test the spatial representativeness of our reconstruction, spatial correlations between observed relative humidity and reconstructed relative humidity with CRU scPDSI were plotted via KNMI Climate Explorer (http://climexp.knmi.nl).We also further analyzed our reconstruction with the multi-taper method (MTM) to detect the periodicity of relative humidity variation.ResultsMean relative humidity reconstruction (May—July) in Qinglong region since 1890 was carried out using tree ring RES chronology. The reconstruction explained 39.1% (38.0%, after adjustment for the loss of degrees of freedom) of the instrumental variance during the calibration period (1957—2012). A split calibration-verification method was employed to examine the stability of our reconstruction and the statistics certi fi ed that our linear regression model is reliable and could be used to reconstruct the past relative humidity variation. In addition, first-order differential and detrended reconstructed and observed May—July mean relative humidity show a significant correlation, which demonstrates that the reconstructed and observed curves showed a conformance in high frequency. On the decadal scale, there are fi ve high-value MRH5—7intervals (1895—1899, 1906—1914, 1924—1926, 1950—1955, 1984—2000) and five low-value MRH5—7intervals (1900—1905, 1917—1921, 1927—1949, 1956—1973, 1975—1981). CRU scPDSI was employed as a bridge to connect our reconstruction and observation. The spatial correlation reveals that our reconstructed mean relative humidity variation show a synchronously relationship with the mean relative humidity observation in adjacent area. The MTM of spectral analysis was performed on our reconstruction, and significant high-frequent peaks were found at 5.20-year (95% C.L.), 4.20-year (95% C.L.), 4.03-year (95% C.L.), 3.86-year (95% C.L.), 3.58-year (95% C.L.) and 2.21-year (95% C.L.) interannual cycles.DiscussionRelative humidity has a considerable in fl uence on photosynthesis and transpiration by controlling the stomata conductance on plant leaves, and then change the tree growth rate. The signi fi cant correlation between relative humidity and tree ring width is reasonable and our reconstruction has a robust physiological base. We compare our reconstruction with drought/ fl ood index in Tangshan city. Historical records and mean relative humidity reconstruction signi fi cantly correlate with Spearman rank correlation coef fi cient ofr= - 0.394 (n=111,p<0.001). The drought ( fl ood) events often occurred in the low (high) mean relative humidity value year. The drought years: 1900, 1919, 1936, 1944, 1968, 1972, 1981, 1992, 1999 and wet years: 1890, 1893, 1894, 1898, 1938, 1949, 1953, 1973, 1985, 1991, 1995 are recorded by both drought/ fl ood index and our reconstruction, which demonstrates that both curves showed a conformance in high frequency. Two curves still have tendency correlation after 11-year moving averages method was employed. Combined with spatial correlation with CRU scPDSI, our reconstruction reflects the drought/flood changes to a certain extent around the study area. MTM analysis indicates that the mean relative humidity in study area might also be influenced by ENSO episodes, which demonstrates that our reconstruction shows the large-scale representativeness of sea-land coupling.ConclusionsMean relative humidity during May to July is the dominated limiting factors in Qinglong region. A mean relative humidity (MRH5—7) reconstruction curve was carried out using tree ring width index and linear regression model. Thereconstruction explained 39.1% (38.0%, after adjustment for the loss of degrees of freedom) of the instrumental variance during the calibration period (1957 — 2012). During past 123 years, there are fi ve high-value MRH5—7intervals (1895 — 1899, 1906 — 1914, 1924 — 1926, 1950 — 1955, 1984 — 2000) and five low-value MRH5—7intervals (1900 — 1905, 1917 — 1921, 1927 — 1949, 1956 — 1973, 1975 — 1981). MTM analysis indicates that the reconstruction has six major cycles, 5.20-year (95% C.L.), 4.20-year (95% C.L.), 4.03-year (95% C.L.), 3.86-year (95% C.L.), 3.58-year (95% C.L.) and 2.21-year (95% C.L.).Recommendations and perspectivesIt is relatively rare to reconstruct past relative humidity in northern China, especially with tree ring width chronology. Here, we carry out a May to July mean relative humidity reconstruction using tree ring RES chronology. Our reconstruction is reliable and has signi fi cant spatial representativeness based on the correlation analysis.
Qinglong region;Pinus tabulaeformisCarr.; tree-ring width; relative humidity; reconstruction
LIU Yu, E-mail: liuyu@loess.llqg.ac.cn
10.7515/JEE201605008
2016-05-30;錄用日期:2016-08-19
Received Date:2016-05-30;Accepted Date:2016-08-19
中國科學院重點部署項目(KZZD-EW-04-01);黃土與第四紀地質國家重點實驗室開放基金
Foundation Item:Chinese Academy of Sciences (KZZD-EW-04-01); Project of State Key Laboratory of Loess and Quaternary Geology (SKLLQG)
劉 禹,E-mail: liuyu@loess.llqg.ac.cn