• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of isotopic information for estimating parameters in Philip infiltration model

    2016-03-03 00:59:01ToWngHiliXuWeiminBo
    Water Science and Engineering 2016年4期

    To Wng*,Hi-li XuWei-min Bo

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Application of isotopic information for estimating parameters in Philip infiltration model

    Tao Wanga,*,Hai-li Xua,Wei-min Baob

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Minimizing parameter uncertainty is crucialin the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water fl ow in the system,provide additional information for parameter estimation,and improve parameter identifi ability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a)using isotopic information to determine the soilwater transmission and then hydrologic information to estimate the soilsorptivity, and(b)using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verifi ed through a rainfallinfiltration experimentin a laboratory under rainfallwith constantisotopic compositions and uniform initialsoilwater content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration modelin a mannerthatmatched measured values well.The results of parameter estimation of approach(a)were better than those of approach(b).Itwas also found thatthe analytical precision of hydrogen and oxygen stable isotopes had a signifi canteffect on parameter estimation using isotopic information.

    Isotopic information;Hydrologic information;Parameter estimation;Philip infiltration model;Rainfall infiltration experiment

    1.Introduction

    The successful application of a catchment model depends on the accuracy of hydrologic and hydraulic parameters used for the simulations and structures of the model.Model structures are based on the catchment characteristics and conceptualization of a realistic study system(Fenicia et al.,2008). Because some model parameters are difficult or impossible to measure in the natural world,model parameters are often estimated from secondary information sources(Fonseca et al.,2014).In fact,only some available data are used in model calculation because of the limitation of data(Wagener,2003). Abundance of data is the foundation of understanding model structures and parameter estimation.Data mining and other auxiliary data are two important methods,apart from the traditional measurement method,for collecting information in a given catchment.The data mining method primarily extracts useful information from collected data using mathematical techniques(e.g.,the clustering method),while auxiliary data means an increasing quantity of data independent of stream discharge and other hydrologic data.Hydrogen and oxygen isotopes are good auxiliary data tools and often used to trace water movement in the water cycle in order to provide orthogonal information on the catchment behavior(Fenicia et al.,2008).The combination of isotopic information and hydrologic information can provide plenty of availableinformation for model calculation and reduce uncertainty in parameterestimation.The ways isotopic information is used in a hydrologic modelfor parameter estimation should be further developed.Dunn et al.(2008)studied the mixing processes and mean residence time in a set of nested sub-catchments in northeast Scotland as determined from isotopic data,which could reduce parameter uncertainty in a rainfall-runoff model. Sprenger et al.(2015)used the stable isotope composition of the soil pore water depth profile as a single or additional optimization target,and estimated flow and transport parameters in the unsaturated zone.They found that using both the isotope profiles and the soil moisture time series resulted in good simulation results and strong parameter identifiability. When only data from isotope profi les in combination with textural information were available,the results were still satisfactory(Sprenger etal.,2015).Klaus et al.(2015)studied temporal dynamics of catchment transit times from stable isotope data.They extracted information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution,and demonstrated proof of the concepts of the approach with artificial data.This indicated that the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were higher than 0.9.

    The complexities of model structures and number of parameters have a significant effect on parameter estimation using isotopic information.The two-parameter Philip infiltration model with a simple model structure has a specific physical foundation and is widely used to simulate rainfall infi ltration.However,because of limitations in observed hydrologic data,parameter estimation in a Philip infiltration model may be diffi cult.The objective of this study was to combine isotopic information with hydrologic information to estimate the parameters of a Philip infiltration modelthrough a rainfall-infi ltration experiment in a laboratory,and compare them with the results of parameter estimation using only hydrologic information.

    2.Methods

    2.1.Philip infiltration equation

    The Philip infiltration equation(Philip,1957a,1957b)was derived from Richard's equation with water vertically infiltrating into the unsaturated and semi-infinite homogeneous soilunder constantinitialwater contentconditions(Prevedello et al.,2009).The infiltration rate with time,i(t)in cm·h-1,is defined as

    where t is the infi ltration time(h),S is the soil sorptivity (cm·h-0.5),and A is the soilwater transmission(cm·h-1).The parameters S and A are related to soil diffusivity and moisture retention characteristics(Mishra et al.,2003).In this paper,S is taken into account as the average soil sorptivity,and A equals the saturated hydraulic conductivity Ks,which does not lead to serious errors in model calculation(Swartzendruber and Youngs,1974).The soil sorptivity S appears to be correlated with the soil water transmission A(Wang et al.,2006).

    The cumulative infiltration with time,I(t)in cm,can be expressed as

    In reality,Eqs.(1)and(2)are applicable to a limited time span(Prevedello et al.,2009).However,the classical Philip infiltration equation is still widely used for a constant head boundary neglecting the effect of a limited time span.

    2.2.Model parameter estimation using hydrologic

    information

    Two parameters of the Philip infi ltration model need to be estimated:the soil sorptivity S and soil water transmission A. There are also two major methods for parameter estimation using hydrologic information,namely,the linear graphic method and the least squares method(Bristow and Savage, 1987).In the linear graphic method,data of cumulative infiltration with time are plotted on a fi gure with t0.5as the abscissa and I(t)t-0.5as the ordinate.Then,the parameters S and A can be respectively obtained from the intercept and slope of the fi gure.The least squares method is used to optimize S and A through fi tting observed data and Eq.(1)or(2).Notwithstanding that the linear graphic method can easily obtain the model parameters,it is highly arbitrary due to t0.5existing on both axes in order to introduce self-correlation and limitation of data at time t=0(Bonell and Williams,1986).The least squares method shows objective characteristics and is widely used to estimate parameters of a model.In this study,S and A were estimated from observed data of cumulative infi ltration calculated with Eq.(2)using the least square method,and the calculated results were regarded as parameters obtained from hydrologic information.Effects of limited time on model calculation were neglected or considered errors in the parameter estimation process using hydrologic information due to the deficiency of available data.

    2.3.Modelparameter estimation using isotopic information

    Model parameter estimation using isotopic information is implemented with the isotopic mixing modelbased on isotope mass balance.The isotopic mixing model combines isotopic information with hydrologic information,and can be expressed as

    where Cj-1and Cjare the isotopic compositions of mixing water in the mixing tank at time tj-1and tj,respectively,and j indicates the time sequence;Cp,j-1is the isotopic composition of input water(e.g.,rainfall)at time tj-1;ΔV is the volume of water infiltrating into soil from time tj-1to tj;and V0represents the initial soil water volume,which is equal to thevolume of the mixing tank.The application of the isotopic mixing modelis based on certain conditions in which isotopic variations of soil water are primarily caused by isotopic mixing of rainfall and soil water in the process of infi ltration. Itis noted thatthis study only examined the rainfallinfi ltration under rainfallwith constantisotopic compositions and uniform initial soilwater contentconditions.The isotopes of soilwater and rainfall reached a balance between 0.5 h and 1 h after the beginning of the mixing process(Wang et al.,2010).

    When water fl ows out of the lower boundary of soil layers, the infi ltration rate gradually becomes a constant,equal to the saturated hydraulic conductivity Ks(Mishra et al.,2003). Thus,A can be indirectly obtained through estimation of the saturated hydraulic conductivity from observed data in the lower boundary of the soil column.The total amount of cumulative infiltration is divided into N equal parts and the volume of each partisΔV.When the infi ltration rate reaches a stable value,eachΔV volume of water infi ltrating into soilwill take the same time intervalΔt.Then,the relationship between ΔV and A isΔV=AΔtB,where B is the area of the crosssection of soil layers.As forΔV volume of water infi ltrating into soil,the water movements are described by the Philip infiltration model while isotopic variations are calculated using the isotopic mixing model.In an isotopic mixing model, theΔV volume of infiltrating water with isotopic composition Cp,j-1mixes with V0volume of water in the mixing tank with the isotopic composition Cj-1.As mixing is completed,the isotopic composition of mixing waters becomes Cj.There is ΔV volume of mixing water immediately fl owing out of the mixing tank,resulting in the volume of the mixing tank maintaining the value of V0.An assumption is introduced that lag timeτof the mixing water fl owing out of the lower boundary equals the time of water movement in the soil column.The relationship between the isotopic composition CjandΔV of outfl ow is established using the isotopic mixing model.DifferentΔV values correspond to different results of Cjwith time through trial calculations.Therefore,A can be estimated with the isotopic results of outflow.The time interval of isotopic results calculated using the isotopic mixing modelshould be treated the same as the time interval of water sampling during the experiment.Subsequently,the root mean squared error(RMSE)between calculations and observations of isotopic compositions of outflow,which is the criterion for estimating parameter A,is computed.

    In fact,isotopic information can only be used to establish the parameter A.Another parameter,the soil sorptivity S,is obtained by substituting the established parameter A and observed hydrologic data into Eq.(2).The water movements and isotopic variations above the lower boundary of soil layers are nottaken into account due to lack of relevant information.

    3.Rainfall infiltration experiment

    A rainfall infi ltration experiment was performed from 8:00 am on May 20 to 8:00 am on May 24,2008.The experimental site was set up in a rainfall simulation laboratory.In order to obtain a uniform initial soil water content profi le,the air-dried soils,from the soil surface of a hillside, were sealed in a container for three days.The initial water content measured by the oven-drying method was 53 g/kg. The initialsoilwater was extracted by the vacuum distillation method,with the values ofδD(deuterium)andδ18O(oxygen-18)being-27‰ and-3.5‰,respectively.The maximum extraction errors ofδD andδ18O using the vacuum distillation method in this experiment were-12‰and-0.7‰,respectively(Wang et al.,2009).Soils were packed into a transparent acrylic column 100 cm long and 15 cm in diameter with a bulk density of 1.22 g·cm-3,a total thickness of 84 cm,and weight of 18.116 kg.

    A rainfall simulator was placed above the soil surface, which consisted of a sprinkler made of hypodermic needles similar to those described in Liu etal.(2008).A Marriott tube was used to supply water and a graduated ruler was pasted on itfor measuring infiltration water with time(Fig.1).The water used for simulating rainfall was sealed and stored in a large container 65 cm long and 50 cm in diameter to ensure constant isotopic compositions during the experiment.The values ofδD andδ18O of water used for simulating rainfallwere-50‰and -7.2‰,respectively.A total volume of 16.313 L of water infiltrated into the soil during the experiment.The time from water infi ltration to ponded water appearance was less than 20 min.The wetting front was measured with time,which could be indirectly used to calculate the cumulative infi ltration.The interfaces among the Marriott tube,rainfall simulator,and column were well sealed to reduce the effect of the evaporation fractionation.Water fl owed out of a column after 14.8 h of rainfall infiltration,and the rainfall process lasted 59.35 h.The air temperature ranged from 21.3°C to 25.9°C, with a mean value of 23.1°C,and the relative humidity ranged from 48%to 79%,with a mean value of 58%.

    Fig.1.Photo of rainfall infiltration experiment.

    Water samples were collected at the bottom outlet of the column using 30-mL plastic bottles at predeterminedintervals.The time of collection for each water sample was recorded in order to calculate the soil water transmission. Hydrogen and oxygen isotopic compositions of water samples were measured using a MAT-253 mass spectrometer in the isotopic laboratory of the Ministry of Land and Resources in Beijing,China.The measured results were expressed as δvalues relative to the international standard Vienna Standard Mean Ocean Water(VSMOW).Analytical precisions were±2‰ and±0.2‰ for hydrogen and oxygen isotope analyses,respectively.

    4.Results and discussion

    4.1.Isotopic mixing of rainfall and soil water

    The application of an isotopic mixing modelis based on the condition in which isotopic variations of soil water in infiltration are mainly caused by the isotopic mixing ofrainfalland soil water.In the cases of rainfall with constant isotopic compositions and a slight effect of evaporation fractionation, the isotopic values of mixed rainfall and soil water should lie between the isotopic values of rainfall and soil water as end members(Shanley et al.,1998).Fig.2 shows the isotopic relationships between rainfall,the initial soil water,and outfl ow of the column.In this fi gure,the number represents the order of isotopic variations of outflow with time.δ18O values of outflow ranged from-7.7‰ to-3.7‰ with an average value of-6.6‰,andδD values ranged from-55‰to-28‰with an average value of-47‰.Fig.2 shows that isotopic values of outflow varying with time were located on or beside the mixing line that connected the isotopic values of rainfall and the initial soil water.The results indicated that isotopic variations of outflow water were primarily caused by the mixing of rainfall and soil water.Some data points away from the mixing line,such as point23 at the end of the experiment, might be mainly attributed to isotopic analysis errors of water samples.

    4.2.Results of parameter estimation

    Fig.2.Relationship betweenδD andδ18O values of outflow.

    The parameters were determined using hydrologic information.Observed data of the cumulative infiltration I(t)were fitted using Eq.(2)and the least squares method.The parameter A was derived as 1.35 cm·h-1and the parameter S was 4.00 cm·h-0.5.The value ofΔt was set as 1 h.The value ofΔV was 239 mL,corresponding to the parameter A determined using hydrologic information,while 210 mL ofΔV with a stable infiltration rate of 1.19 cm·h-1were calculated from observed data.Because the time ponded water appeared above the soil surface was less than 20 min in the experiment,the effect of time on infi ltration for modelcalculation was ignored in this study.The parameter A determined using hydrologic information was close to the observed stable infi ltration rate.

    Then,the model parameters were estimated by applying isotopic information.Relationships between A and isotopic compositions of outflow were indirectly determined using the isotopic mixing model.Fig.3 shows the relationship between parameter A and the root mean squared error(RMSE)of simulations and observations of isotopic compositions of outflow.The values of A obtained by the minimum values of RSME of hydrogen and oxygen isotopes were different.The values of A estimated with hydrogen isotopic information were smaller than those observed,while oxygen isotopic information showed a contrary result,with estimated values of A larger than those observed.As hydrogen and oxygen isotopes were simultaneously transported in soil profi les experiencing the slight effect of evaporation fractionation,the reason fordifferent values of A estimated using hydrogen and oxygen isotopic information might just be isotopic analysis errors of water samples and extraction errors in the initial soil water using the vacuum distillation method.The arithmetic average value of A determined using hydrogen and oxygen isotopic information was regarded as the fi nal value of the parameter, i.e.,1.15 cm·h-1.The parameter S,with a value of 4.64 cm·h-0.5,was obtained by substituting the estimated A value and observed data into Eq.(2).

    Fig.3.Relationship between parameter A and RMSE for hydrogen and oxygen isotopes.

    Table 1 shows the results of parameters estimated using hydrologic and isotopic information.As shown in Table 1,the value of A using only hydrogen or oxygen isotopic information is larger or smaller than that of the observed value,while that using hydrogen and oxygen isotopic information(the arithmetic average value)approaches the observed value.Parameters estimated using oxygen isotopic information are almost the same as those estimated using hydrologic information. Therefore,isotopic information could be used to estimate parameters of the Philip infi ltration model well with insufficient available hydrologic data.Furthermore,the combination of isotopic and hydrological information could increase the quantity of available information for modelcalculation,reduce the uncertainty of parameters,and provide a usefulmethod for parameter estimation.

    4.3.Simulation results of isotopic mixing model and Philip infiltration model

    ΔV with a value of 203 mL,corresponding to the parameters A and S determined using isotopic information with values of 1.15 cm·h-1and 4.64 cm·h-0.5,respectively,was substituted into the isotopic mixing model to calculate the isotopic variations of outfl ow in the soil column with time. Fig.4 shows isotopic variations of outfl ow using the isotopic mixing modelwith the comparison of observed values.It can be seen that the isotopic mixing model could describe isotopic variations of outfl ow well and combine isotopic and hydrologic information to estimate model parameters. Eq.(3)shows that parameter estimation using isotopic information is affected not only by the isotopic analysis errors of rainfall,but also by isotopic extraction errors with use of the vacuum distillation method.The initial soil water was fi rst extracted from soil using the vacuum distillation method,and then measured using a MAT-253 mass spectrometer with rainfall and mixing water.Errors inevitably existed in the extraction and measurement process of water samples,resulting in an increase in uncertainty of parameter estimation.

    Table1 Parameters estimated using hydrologic and isotopic information.

    Fig.4.Observed and simulated isotopic values of outflow.

    The cumulative infi ltration varying with time before water fl owed outof the lower boundary of soilwas calculated from Eq.(2)using parameters estimated by isotopic and hydrologic information with comparison of observations(as shown in Fig.5).The infi ltration rate gradually became constant with water fl owing out of the soil column.The cumulative infiltration calculated using estimated parameters with isotopic and hydrologic information was 34.87 cm and 35.43 cm,respectively,while the measured value was 34.63 cm at the end of the experiment.This indicates that the value of total cumulative infi ltration using parametersestimated with isotopic and hydrologic information was close to the observed value.

    Fig.5.Relationship between cumulative infiltration and time.

    5.Conclusions

    Sufficient available model information is critical to estimating model parameters.Hydrogen and oxygen isotopes are effective auxiliary data tools for providing large amounts of model information due to their tracer characteristics.In this study,an isotopic mixing model,which combined isotopic and hydrologic information,was used to estimate parameters in a Philip infi ltration model.A ponded water rainfall-infiltration experiment was performed under rainfall with constant isotopic compositions and uniform initial soil water content conditions.The experimental results show that the parameter A estimated using isotopic information was close to the observed value,and errors in isotopic analysis of water samples affected the parameter estimation.Therefore,isotopic information can be used to estimate parameters of a model in the absence of hydrologic information.Application of both isotopic and hydrologic information provides a potential method for determining parameters for modelapplications and reduces the uncertainty in parameter estimation.This study only focused on two parameters of the Philip infiltration model using isotopic information through rainfall-infiltration experiments.Further research might be required for the research method to be used in more complex hydrological models.

    Bonell,M.,Williams,J.,1986.Two parameters of the Philip infiltration equation:Their properties and spatial and temporalheterogeneity in a red earth of tropical semi-arid Queensland.J.Hydrol.87(1-2),9-31.http:// dx.doi.org/10.1016/0022-1694(86)90112-5.

    Bristow,K.L.,Savage,M.J.,1987.Estimation of parameters for the Philip two-term infiltration equation applied to field soil experiments.Aust.J. Soil Res.25(4),369-375.http://dx.doi.org/10.1071/SR9870369.

    Dunn,S.M.,Bacon,J.R.,Soulsby,C.,Tetzlaff,D.,Stutter,M.I.,Waldron,S., Malcolm,I.A.,2008.Interpretation of homogeneity inδ18O signatures of stream water in a nested sub-catchment system in north-east Scotland. Hydrol.Process.22(24),4767-4782.http://dx.doi.org/10.1002/hyp.7088.

    Fenicia,F.,McDonnell,J.J.,Savenije,H.H.G.,2008.Learning from model improvement:On the contribution of complementary data to process understanding.Water Resour.Res.44(6),W06419.http://dx.doi.org/ 10.1029/2007WR006386.

    Fonseca,A.,Ames,D.P.,Ping,Y.,Botelho,C.,Rui,B.,Vilar,V.,2014. Watershed model parameter estimation and uncertainty in data-limited environments.Environ.Model.Softw.51,84-93.http://dx.doi.org/ 10.1016/j.envsoft.2013.09.023.

    Klaus,J.,Chun,K.P.,Mcguire,K.J.,Mcdonnell,J.J.,2015.Temporal dynamics of catchment transittimes from stable isotope data.Water Resour. Res.51(6),4208-4223.http://dx.doi.org/10.1002/2014WR016247.

    Liu,J.T.,Zhang,J.B.,Feng,J.,2008.Green-Amptmodelforlayered soils with nonuniform initialwater contentunder unsteady infiltration.Soil Sci.Soc. Am.J.72(4),1041-1047.http://dx.doi.org/10.2136/sssaj2007.0119.

    Mishra,S.K.,Tyagi,J.V.,Singh,V.P.,2003.Comparison of infiltration models. Hydrol.Process.17(13),2629-2652.http://dx.doi.org/10.1002/hyp.1257.

    Philip,J.R.,1957a.The theory of infiltration:1.The infiltration equation and its solution.SoilSci.83(5),345-358.http://dx.doi.org/10.1097/00010694-200606001-00009.

    Philip,J.R.,1957b.The theory of infiltration:4.Sorptivity and algebraic infiltration equations.Soil Sci.84(3),257-264.http://dx.doi.org/10.1097/ 00010694-195709000-00010.

    Prevedello,C.L.,Loyola,J.M.T.,Reichardt,K.,Nielsen,D.R.,2009.New analytic solution related to the Richards,Philip,and Green-Amptequations for infiltration.Vadose Zone J.8(1),127-135.http://dx.doi.org/10.2136/ vzj2008.0091.

    Shanley,J.B.,Pendall,E.,Kendall,C.,Stevens,L.R.,Michel,R.L., Philips,P.J.,Forester,R.M.,Naftz,D.L.,Liu,B.L.,Stem,L.,etal.,1998. Isotopes as indicators of environmental change.In:Kendall,C., McDonnell,J.J.,eds.,Isotope Tracers in Catchment Hydrology.Elsevier Science B.V.,Amsterdam,pp.761-816.http://dx.doi.org/10.1016/B978-0-444-81546-0.50029-X.

    Sprenger,M.,Volkmann,T.H.M.,Blume,T.,Weiler,M.,2015.Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes.Hydrol.Earth Syst.Sci.19(6),2617-2635.http:// dx.doi.org/10.5194/hess-19-2617-2015.

    Swartzendruber,D.,Youngs,E.G.,1974.A comparison of physically-based infiltration equations.Soil Sci.117(3),165-167.http://dx.doi.org/ 10.1097/00010694-197403000-00005.

    Wagener,T.,2003.Evaluation of catchment models.Hydrol.Process.17(16), 3375-3378.http://dx.doi.org/10.1002/hyp.5158.

    Wang,Q.J.,Zhang,J.H.,Fan,J.,2006.An analytical method for relationship between hydraulic diffusivity and soil sorptivity.Pedosphere 16(4), 444-450.http://dx.doi.org/10.1016/S1002-0160(06)60074-X.

    Wang,T.,Bao,W.M.,Chen,X.,Shi,Z.,Hu,H.Y.,Qu,S.M.,2009.Soilwater extraction using vacuum distillation technology.J.Hohai Univ.Nat.Sci. 37(6),660-664.http://dx.doi.org/10.3876/j.issn.1000-1980.2009.06.010 (in Chinese).

    Wang,T.,Bao,W.M.,Li,L.,2010.Isotopic variations of soiland inputwater mixing.Hydrogeol.Eng.Geol.37(2),104-107.http://dx.doi.org/10.3969/ j.issn.1000-3665.2010.02.023(in Chinese).

    Received 30 November 2015;accepted 15 September 2016

    Available online 6 January 2017

    This work was supported by the National Natural Science Foundation of China(Grant No.51279057).

    *Corresponding author.

    E-mail address:wangtaogo@163.com(Tao Wang).

    Peer review under responsibility of Hohai University.

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    日本免费a在线| 久久99热6这里只有精品| 国产精品女同一区二区软件| 日本午夜av视频| 天堂中文最新版在线下载 | 性色avwww在线观看| 亚洲av免费在线观看| 日本-黄色视频高清免费观看| 99热精品在线国产| 久久精品久久久久久久性| 国产精品久久视频播放| 亚洲av电影在线观看一区二区三区 | 国产大屁股一区二区在线视频| 中文字幕精品亚洲无线码一区| 欧美成人一区二区免费高清观看| 精品久久久久久久久av| 热99在线观看视频| 国产午夜福利久久久久久| a级一级毛片免费在线观看| 国产精品永久免费网站| 国产精品国产三级国产专区5o | 精品久久久久久成人av| 国内精品宾馆在线| 男女国产视频网站| 在线免费观看的www视频| 26uuu在线亚洲综合色| 亚洲激情五月婷婷啪啪| 免费看光身美女| 少妇的逼水好多| 精品国内亚洲2022精品成人| av在线老鸭窝| 久久精品国产亚洲av天美| 欧美xxxx性猛交bbbb| 丰满少妇做爰视频| 日本免费a在线| a级毛片免费高清观看在线播放| 久久久成人免费电影| 国产 一区精品| 国产av在哪里看| 日本免费一区二区三区高清不卡| 人妻夜夜爽99麻豆av| 成人亚洲欧美一区二区av| 高清视频免费观看一区二区 | 51国产日韩欧美| 午夜福利在线观看吧| 91精品伊人久久大香线蕉| 久久精品影院6| 久久精品国产自在天天线| 亚洲欧美精品自产自拍| 午夜免费男女啪啪视频观看| 久久久久久久国产电影| 精品无人区乱码1区二区| 午夜免费激情av| 精品久久国产蜜桃| 国产一区亚洲一区在线观看| 午夜福利在线在线| 午夜免费男女啪啪视频观看| 午夜福利成人在线免费观看| 午夜爱爱视频在线播放| 久久韩国三级中文字幕| 国产av不卡久久| 久久精品久久久久久噜噜老黄 | 国产黄a三级三级三级人| 91aial.com中文字幕在线观看| 大话2 男鬼变身卡| 九草在线视频观看| 22中文网久久字幕| 亚洲色图av天堂| 成人综合一区亚洲| 欧美成人精品欧美一级黄| 秋霞在线观看毛片| 日韩 亚洲 欧美在线| 卡戴珊不雅视频在线播放| 综合色av麻豆| 亚洲av成人av| 国产精品一区二区三区四区久久| av又黄又爽大尺度在线免费看 | 天美传媒精品一区二区| 舔av片在线| 亚洲国产精品专区欧美| 亚洲av成人av| 91久久精品国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 哪个播放器可以免费观看大片| 26uuu在线亚洲综合色| 国产精品一及| 丰满人妻一区二区三区视频av| 男人舔女人下体高潮全视频| av播播在线观看一区| 久久精品人妻少妇| 国产三级在线视频| 免费观看a级毛片全部| 久久99精品国语久久久| 欧美又色又爽又黄视频| 亚洲精品日韩在线中文字幕| 寂寞人妻少妇视频99o| 亚洲av日韩在线播放| 永久网站在线| 国产极品精品免费视频能看的| 插逼视频在线观看| 欧美日韩综合久久久久久| 插逼视频在线观看| 男人舔奶头视频| ponron亚洲| 男女啪啪激烈高潮av片| 天天躁夜夜躁狠狠久久av| 精品熟女少妇av免费看| 国产精品一区二区性色av| 亚洲成人av在线免费| 欧美日韩综合久久久久久| 高清午夜精品一区二区三区| 99视频精品全部免费 在线| av在线蜜桃| 午夜福利高清视频| 国产午夜精品久久久久久一区二区三区| 精品人妻偷拍中文字幕| 七月丁香在线播放| 国产精品国产高清国产av| 寂寞人妻少妇视频99o| 午夜福利在线在线| 成人三级黄色视频| 美女大奶头视频| 国产成人91sexporn| 亚洲欧美成人综合另类久久久 | 人妻系列 视频| 国产精品久久久久久久久免| 最近最新中文字幕大全电影3| 最近最新中文字幕大全电影3| 亚洲天堂国产精品一区在线| 啦啦啦韩国在线观看视频| 国产色婷婷99| 色5月婷婷丁香| 精品不卡国产一区二区三区| 国产女主播在线喷水免费视频网站 | 欧美极品一区二区三区四区| 国产色婷婷99| 欧美变态另类bdsm刘玥| 亚洲国产日韩欧美精品在线观看| 国产伦在线观看视频一区| 少妇高潮的动态图| 亚洲第一区二区三区不卡| 国产乱人视频| 日韩中字成人| 久久久久久久久久黄片| 爱豆传媒免费全集在线观看| 成年女人永久免费观看视频| 超碰av人人做人人爽久久| 岛国在线免费视频观看| 国产麻豆成人av免费视频| 毛片女人毛片| 1024手机看黄色片| 建设人人有责人人尽责人人享有的 | 亚洲色图av天堂| 欧美区成人在线视频| 国产白丝娇喘喷水9色精品| 网址你懂的国产日韩在线| 人体艺术视频欧美日本| 日韩欧美 国产精品| 中文字幕av成人在线电影| 18禁动态无遮挡网站| 国产91av在线免费观看| 亚洲三级黄色毛片| 尾随美女入室| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 成人亚洲欧美一区二区av| 边亲边吃奶的免费视频| 亚洲欧美精品专区久久| 热99在线观看视频| 爱豆传媒免费全集在线观看| 日韩强制内射视频| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 亚洲精品影视一区二区三区av| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 一级黄片播放器| 成人鲁丝片一二三区免费| 国产精品国产三级国产专区5o | 看十八女毛片水多多多| 欧美三级亚洲精品| 日韩人妻高清精品专区| 国产三级中文精品| 国产极品天堂在线| eeuss影院久久| 亚洲av.av天堂| 国产男人的电影天堂91| 国产亚洲午夜精品一区二区久久 | 国产又黄又爽又无遮挡在线| 亚洲三级黄色毛片| 欧美日韩国产亚洲二区| 熟妇人妻久久中文字幕3abv| 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 亚洲自拍偷在线| av又黄又爽大尺度在线免费看 | 麻豆成人午夜福利视频| 中文字幕制服av| 最近最新中文字幕大全电影3| 伦精品一区二区三区| 国产免费福利视频在线观看| 中文欧美无线码| 国产成年人精品一区二区| 岛国在线免费视频观看| 人妻少妇偷人精品九色| 午夜福利成人在线免费观看| 国产午夜精品一二区理论片| 亚洲av二区三区四区| 自拍偷自拍亚洲精品老妇| 99久久中文字幕三级久久日本| 一级毛片久久久久久久久女| 久久久久九九精品影院| 久久草成人影院| 中文字幕av在线有码专区| 国产高清不卡午夜福利| 国产av在哪里看| 中文精品一卡2卡3卡4更新| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 一级av片app| 国产午夜精品一二区理论片| 亚洲电影在线观看av| 日本午夜av视频| 成年女人永久免费观看视频| 丝袜美腿在线中文| 亚洲国产精品成人久久小说| 在线播放国产精品三级| 欧美日韩国产亚洲二区| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久亚洲| 亚洲最大成人av| 国产在视频线精品| 免费看日本二区| 久久久欧美国产精品| 三级男女做爰猛烈吃奶摸视频| 精品国产一区二区三区久久久樱花 | 一区二区三区乱码不卡18| 亚洲四区av| 老司机福利观看| 伦理电影大哥的女人| 亚洲精华国产精华液的使用体验| 精品少妇黑人巨大在线播放 | 日日干狠狠操夜夜爽| 能在线免费观看的黄片| 亚洲精品乱码久久久v下载方式| 日韩欧美在线乱码| 日韩,欧美,国产一区二区三区 | 能在线免费看毛片的网站| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 特级一级黄色大片| 永久网站在线| 3wmmmm亚洲av在线观看| 麻豆国产97在线/欧美| 日日干狠狠操夜夜爽| 熟女人妻精品中文字幕| 免费黄网站久久成人精品| 欧美高清成人免费视频www| 久久久久久久久中文| 一级黄色大片毛片| 国产精品国产三级专区第一集| 国产成人91sexporn| 免费搜索国产男女视频| a级毛色黄片| 免费人成在线观看视频色| 亚洲成色77777| 久久国产乱子免费精品| 精品久久国产蜜桃| 午夜福利视频1000在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久久中文| 精品国产一区二区三区久久久樱花 | 1024手机看黄色片| 特大巨黑吊av在线直播| 亚洲av中文字字幕乱码综合| 你懂的网址亚洲精品在线观看 | 亚洲精品国产av成人精品| 国产美女午夜福利| 久久久久久久久久久丰满| 18+在线观看网站| 亚洲精品aⅴ在线观看| 国产精品av视频在线免费观看| 欧美一区二区亚洲| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品 | 欧美极品一区二区三区四区| 99久久精品一区二区三区| 亚洲色图av天堂| 精品人妻偷拍中文字幕| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 大香蕉97超碰在线| 如何舔出高潮| 国产伦在线观看视频一区| 日韩人妻高清精品专区| 亚洲综合色惰| 国产黄片视频在线免费观看| 国产精品美女特级片免费视频播放器| 一级爰片在线观看| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 别揉我奶头 嗯啊视频| 女人久久www免费人成看片 | 岛国在线免费视频观看| 老司机福利观看| 日日摸夜夜添夜夜添av毛片| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 国产黄片视频在线免费观看| 久久久久性生活片| 直男gayav资源| 色5月婷婷丁香| 欧美精品一区二区大全| 免费av毛片视频| av在线天堂中文字幕| 免费黄色在线免费观看| 精品久久久噜噜| 精品熟女少妇av免费看| 七月丁香在线播放| 少妇猛男粗大的猛烈进出视频 | 日本-黄色视频高清免费观看| 精华霜和精华液先用哪个| 色综合站精品国产| 日本欧美国产在线视频| 又爽又黄a免费视频| 亚洲无线观看免费| 亚洲精品乱码久久久久久按摩| 免费不卡的大黄色大毛片视频在线观看 | 精品不卡国产一区二区三区| 3wmmmm亚洲av在线观看| 综合色丁香网| 三级国产精品片| 可以在线观看毛片的网站| 日本黄大片高清| 国产视频首页在线观看| 国产精品熟女久久久久浪| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| 欧美精品一区二区大全| 日韩大片免费观看网站 | 在线免费观看不下载黄p国产| 亚洲在线观看片| 永久网站在线| 色吧在线观看| 日韩高清综合在线| 乱码一卡2卡4卡精品| 欧美三级亚洲精品| 高清日韩中文字幕在线| 午夜福利在线观看吧| 蜜桃亚洲精品一区二区三区| 欧美激情国产日韩精品一区| 免费观看a级毛片全部| 欧美激情在线99| 又爽又黄无遮挡网站| 91精品一卡2卡3卡4卡| 日本五十路高清| 在线观看美女被高潮喷水网站| 欧美3d第一页| 九草在线视频观看| 亚洲美女视频黄频| 免费观看的影片在线观看| 秋霞伦理黄片| 只有这里有精品99| 最近中文字幕高清免费大全6| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 久久精品夜夜夜夜夜久久蜜豆| 免费av不卡在线播放| 亚洲av.av天堂| 2021少妇久久久久久久久久久| 联通29元200g的流量卡| 久久久亚洲精品成人影院| 欧美性猛交黑人性爽| 女人被狂操c到高潮| 亚洲经典国产精华液单| 日韩大片免费观看网站 | 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| 国产伦精品一区二区三区视频9| 国产亚洲av嫩草精品影院| 国产一区有黄有色的免费视频 | 日韩一区二区视频免费看| 日本免费一区二区三区高清不卡| 亚洲精品国产成人久久av| 婷婷色av中文字幕| h日本视频在线播放| 国产一区亚洲一区在线观看| 51国产日韩欧美| 欧美激情国产日韩精品一区| 男女下面进入的视频免费午夜| 性色avwww在线观看| 看片在线看免费视频| av免费观看日本| 亚洲五月天丁香| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 欧美97在线视频| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 成年版毛片免费区| 99久久中文字幕三级久久日本| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 欧美bdsm另类| 亚洲最大成人手机在线| 欧美一级a爱片免费观看看| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 18禁动态无遮挡网站| 欧美三级亚洲精品| 男女国产视频网站| 久热久热在线精品观看| 三级男女做爰猛烈吃奶摸视频| 国产精品人妻久久久影院| 午夜精品在线福利| 夜夜爽夜夜爽视频| 汤姆久久久久久久影院中文字幕 | 全区人妻精品视频| 国产成人免费观看mmmm| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 五月玫瑰六月丁香| a级毛色黄片| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 建设人人有责人人尽责人人享有的 | 精品国产三级普通话版| 美女内射精品一级片tv| 男女那种视频在线观看| 日韩av在线免费看完整版不卡| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 色网站视频免费| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久 | 最近中文字幕2019免费版| 美女黄网站色视频| 亚洲精品乱码久久久久久按摩| 国内精品美女久久久久久| av在线天堂中文字幕| 日韩欧美国产在线观看| 久久精品人妻少妇| 国产精品久久视频播放| 少妇的逼水好多| 色吧在线观看| 美女高潮的动态| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 最近的中文字幕免费完整| 人体艺术视频欧美日本| 免费看美女性在线毛片视频| 日韩视频在线欧美| 国产精品av视频在线免费观看| 久久人人爽人人片av| 免费观看在线日韩| 乱人视频在线观看| 麻豆一二三区av精品| 日韩欧美三级三区| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看| 一夜夜www| 成人欧美大片| 亚洲av男天堂| 99久国产av精品| 国产av在哪里看| 国产淫片久久久久久久久| 亚洲av二区三区四区| 国产精品女同一区二区软件| 午夜精品一区二区三区免费看| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 国产av码专区亚洲av| 卡戴珊不雅视频在线播放| 麻豆成人av视频| 综合色av麻豆| 夜夜爽夜夜爽视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 亚洲精品乱码久久久v下载方式| 黄片无遮挡物在线观看| 午夜爱爱视频在线播放| 久久精品91蜜桃| 美女内射精品一级片tv| 国产精品乱码一区二三区的特点| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 99热网站在线观看| 亚洲国产成人一精品久久久| 亚洲乱码一区二区免费版| 国产真实乱freesex| 成年女人看的毛片在线观看| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 日韩欧美精品免费久久| 国语自产精品视频在线第100页| 嫩草影院精品99| 少妇的逼水好多| 日韩欧美三级三区| 中文字幕制服av| 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 国产爱豆传媒在线观看| 午夜福利视频1000在线观看| 波野结衣二区三区在线| 国产免费视频播放在线视频 | 黄色一级大片看看| 视频中文字幕在线观看| 亚洲人成网站在线观看播放| 床上黄色一级片| 青春草视频在线免费观看| 国产成年人精品一区二区| 中文在线观看免费www的网站| av免费在线看不卡| 天堂影院成人在线观看| 国产精品,欧美在线| 精品久久久久久久久久久久久| 日韩精品有码人妻一区| 欧美另类亚洲清纯唯美| 色噜噜av男人的天堂激情| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 建设人人有责人人尽责人人享有的 | 观看免费一级毛片| 插逼视频在线观看| 国产精品,欧美在线| 午夜久久久久精精品| 国产高清视频在线观看网站| 日韩欧美在线乱码| 在线免费观看的www视频| 国产又黄又爽又无遮挡在线| 亚洲av福利一区| 久久久久久久久中文| 免费观看人在逋| 黄色配什么色好看| 亚洲av一区综合| 国产精品不卡视频一区二区| 日韩强制内射视频| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| av专区在线播放| 91久久精品国产一区二区三区| 特级一级黄色大片| 六月丁香七月| 大话2 男鬼变身卡| 国产精品一区www在线观看| 91久久精品电影网| 亚洲欧美一区二区三区国产| 国产精品综合久久久久久久免费| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 少妇熟女欧美另类| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 色吧在线观看| 麻豆一二三区av精品| 九九爱精品视频在线观看| 久久精品国产亚洲av天美| 久久久久精品久久久久真实原创| 99久久成人亚洲精品观看| 国产伦精品一区二区三区视频9| 国产在线一区二区三区精 | 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 蜜臀久久99精品久久宅男| 女人被狂操c到高潮| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 久久精品国产亚洲av天美| av又黄又爽大尺度在线免费看 | 久久人妻av系列| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 国产精品伦人一区二区| 亚洲av中文av极速乱| 久久精品国产亚洲网站| 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 国产精品综合久久久久久久免费| 午夜爱爱视频在线播放| 永久免费av网站大全| 国产成人aa在线观看| 午夜福利在线在线| 一区二区三区乱码不卡18| 国产精品乱码一区二三区的特点| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 色播亚洲综合网| 国产老妇女一区| 2021少妇久久久久久久久久久| 久久久久久九九精品二区国产| 午夜福利视频1000在线观看| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄 | av在线亚洲专区| 99久久无色码亚洲精品果冻| 国产av码专区亚洲av| 18禁在线无遮挡免费观看视频|