• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈦酸鹽紅色長(zhǎng)余輝發(fā)光釉的制備和發(fā)光性質(zhì)英文)

    2016-03-01 21:51:25李金銀余麗萍譚藝張吉林?と俅河ⅹち
    關(guān)鍵詞:余輝鈦酸熒光粉

    李金銀 余麗萍 譚藝 張吉林?と俅河ⅹち?世勛?ぶ芪睦愍だ畛兄?

    摘 要 以SiO2-Al2O3-B2O3-SrO體系為基礎(chǔ)釉,混入不同比例的Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+, 2% Bi3+發(fā)光粉,并將其涂布在陶瓷基體上進(jìn)行高溫煅燒制備紅色長(zhǎng)余輝發(fā)光釉.通過掃描電鏡、X射線衍射及熒光光譜表征了長(zhǎng)余輝釉的微觀結(jié)構(gòu)、晶相組成及光學(xué)性質(zhì).結(jié)果表明SiO2-Al2O3-B2O3-SrO體系玻璃是Ca0.8Zn0.2TiO3: 02% Pr3+, 0.2% Na+, 2% Bi3+發(fā)光粉的良好載體,能在熔融溫度之上將熒光粉較好地包裹.當(dāng)在950 ℃煅燒2 h,涂布釉漿3層,發(fā)光粉與基礎(chǔ)釉的質(zhì)量比為1∶3時(shí),能獲得釉面平整光潔的鈦酸鈣紅色長(zhǎng)余輝發(fā)光釉.該發(fā)光釉的色坐標(biāo)為(0.683,0.317),非常接近理想的紅光.

    關(guān)鍵詞 SiO2-Al2O3-B2O3-SrO體系;Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+, 2% Bi3+熒光粉;紅色長(zhǎng)余輝釉

    As a ceramic material, the dielectric constant of calcium titanate is 140~150, αε is 1 000~1500×106 /℃, and the dielectric loss is very low in a high frequency [1]. The ceramics based on calcium titanate is extensively used in electronic devices and making the high-frequency ceramic capacitor with a small scale and a high capacity. CaTiO3 has different crystal structure at different calcination temperature. Pr3+ doped CaTiO3-base materials with orthorhombic structure are known as promising red persistent phosphors due to their chemical stability, resistant-temperature, and especially excellent chromatic coordinates (x=0.680, y=0.311) close to “ideal red” defined by CIE (Commission Internationale de lEclairage 1931) [2].

    It should be noted that the emission efficiency of CaTiO3: Pr3+ is still low in practical applications. In this context, many efforts have been done to enhance luminescent intensity and persistent efficiency of CaTiO3:Pr3+ phosphors. The luminescent intensity of CaTiO3 with ABO3 type perovskite structure is remarkably improved through displacing A site or B site ions with other ions, such as Na+, Tl+, Ag+ substitution for Ca2+ [3], or Al3+ [4-5], Bi3+ [6-7], Ln3+(Ln=La, Lu, Gd) [8-9], Si4+ [10], Zr4+ [11], Nb5+ [12] substitution for Ti4+, which could perform charge self-compensation. As such suppressed Ca2+ and Ti4+ vacancies lead to remarkable increasing of the emission efficiency. Na+ ion was the best charge compensation ion among the alkaline metal ions and Ag+ ion, due to the similar ion radius with Ca2+ and Pr3+ ions [3, 13]. Furthermore, emission intensity of CaTiO3:Pr3+ phosphors can be significantly enhanced after Zn2+ substitution for Ca2+ [14]. Nominal composition of Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+ had higher emission intensity than that of CaTiO3: 0.2% Pr3+, 0.2% Na+ [15-16].

    Persistent phosphors have been used in persistent paintings [17-18], glaze, enamel and floor tile for the purpose of emergency sign, route markings and dark display. So far, the excellent green SrAl2O4 persistent glazes [19-23] and blue CaAl2O4 persistent glazes [24] have been widely used due to SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+, La3+ having more than 12 h fluorescence lifetime in the dark. However, few researches were published on red persistent glaze. Li[25] prepared ZnO-B2O3-SiO2 parent glass with a low melting temperature, and then mixed with Ca0.8Zn0.2TiO3: 0.2% Pr3+ phosphor. However the emission intensity of luminescent glazes was much lower than that of Ca0.8Zn0.2TiO3: 0.2% Pr3+ phosphors.

    In this paper, the red persistent glazes were prepared by mixing SiO2-Al2O3-B2O3-SrO parent glass powders and Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+, 2% Bi3+ phosphors, which were prepared by a high-temperature solid-state method, followed by calcination at a high temperature after coating ceramic cylinders. The fabrication technology of the red persistent glazes was optimized.

    1 Experimental

    1.1 Preparation of ceramic cylinders

    Aged petunses were dried, crushed and passed through 180-mesh. The dried powders were sprayed with 10 wt% of deionized water, and then screened with a 40-mesh sieve to produce pellets; subsequently the powders were molded into small cylinders ( 42 mm × 5 mm) under a single-axial pressure of 50 MPa. The cylinders were dried at 100 ℃ for 12 h, and then calcinated at 1 350 ℃ for 2 h.

    1.2 Preparation of glass frits

    The raw materials used for preparation of the SiO2-Al2O3-B2O3-SrO frits were ground quartz, talc, potassium feldspar, dolomite, borax in industry grade and strontium carbonate, barium carbonate, lithium carbonate in analytical pure. The component of glaze in mole ratio was 54%~60% SiO2, 6%~10% Al2O3, 8%~12% B2O3, 8%~14% SrO, 5%~6% Na2O, 2%~3% K2O, 1%~1.5% ZnO, 0.5% BaO, 0.5% CaO and 0.3% MgO. Raw materials, after thorough mixing in a planetary ball mill, melted in a porcelain crucible in an electric furnace at 1350 ℃ for 1 h. The fluid melts were quenched into deionized water to obtain glassy frits. The frits were ground and passed through 180-mesh to make sure that the sizes of frits were smaller than 80 μm.

    1.3 Preparation of phosphorescent glaze

    The glaze slips consisted of frits, Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+, 2% Bi3+ luminescent powders (prepared by a high-temperature solid-state method in our laboratory) and deionized water with a mass ratio of (60~75)∶(25~40)∶57. The batches were mixed for 30 min in a planetary ball mill to make sure that the sizes of particles in glaze slips were smaller than 63 μm. Then, the slips were applied on ceramic cylinders. The dried samples were heated from room temperature to a specified temperature (in the range of 850~1 000 ℃) for 2 h with a ramp rate of 200~300 ℃/h, and then the samples were left cool freely in the furnace.

    1.4 Characterization of persistent glazes

    The microstructure and photoluminescent properties were characterized by a Rigaku D/MAX-2550VB + 18 kW X-ray diffractometer (XRD) with Cu Ka radiation at 40 kV and 300 mA, a JMS-5600LV scanning electron microscope (SEM), and a Hitachi F-4500 fluorescence spectrophotometer operated at 400 V photomultiplier tube voltage (Tokyo, Japan), equipped with a 175 W Xenon lamp as an excitation source and a UV 390 nm filter, respectively.

    2 Results and Discussion

    2.1 Excitation and emission spectra of persistent glazes and Ca0.8Zn0.2TiO3: Pr 3+, Na+, Bi3+ phosphors

    Fig.1 is the emission and excitation spectra of the persistent glazes calcinated at 900 ℃ for 2 h and Ca0.8Zn0.2TiO: Pr3+, Na+, Bi3+ phosphors. The excitation spectrum is a broad band ranged from 275 nm to 425 nm. According to Gaussian fitting, there are three excitation peaks located at 310 nm, 334 nm and 365 nm. The former two excitation peaks are assigned to the 4f → 5d transition of Pr3+[13], the valence to conduction band transition of 2p(O2-)→3d(Ti4+)[2], respectively. And the third one is remarkably stronger than that of Ca0.8Zn0.2TiO3: 02% Pr3+, 0.2% Na+ [13-16, 26] due to the addition of Bi3+ ions. It is well know that the charge transfer transition from Pr3+/Ti4+ to Pr4+/Ti3+ (IVCT) [26] and the 6s2(Bi3+)/ 3d0(Ti4+) → 6s1(Bi4+)/ 3d1(Ti3+)/ MMCT(metal-to-metal charge transition) band [27] occur at about 370 nm. Bi3+→Pr3+ sensitization process involves the formation of Bi-related trapped excitations that transport the NUV excitation energy to Pr3+ centers by diffusion through the CaTiO3 lattice [28]. Herein, the band around 365 nm should be the mixture of IVCT of Pr/Ti and MMCT of Bi/Ti states. There is also weak excitation in the range of 450~495 nm, which is originated from 3H4 → 3Pj (j=0, 1, 2) transition of Pr3+ ion.

    The emission spectrum of persistent glazes is a narrow band with a half-width of 30 nm (which is wider than that of Ca0.8Zn0.2TiO3: Pr3+, Na+, Bi3+ phosphors due to the different coordinated environment in the persistent glazes) and a maximum at 617 nm, which is in accordance with 1D2 → 3H4 transition of Pr3+ ion. The substitution of Ca2+ ions with Pr3+ ions requires charge compensation, which is achieved by introducing Na+ ions to substitute Ca2+ in this work.

    The emission and excitation profiles of persistent glazes have a similar shape to that of Ca0.8Zn0.2TiO3: Pr3+, Na+, Bi3+ phosphors, except a little red shift and a lower intensity, indicating that the SiO2-Al2O3-B2O3-SrO system has little effects on the luminescent properties of Ca0.8Zn0.2TiO3: Pr3+ phosphors.

    2.2 Effects of calcination temperature on luminous performance

    The excitation spectra and decay curves of persistent glazes fired at different temperatures are shown in Fig.2. With the elevated calcination temperature, the luminous intensity passes through a maximun and then decreases, and the sample calcined at 900 ℃ has the highest intensity. Results show that the decay curves change little with firing temperatures.

    Fig.3 is XRD patterns of persistent glaze fired at different temperatures. It is noted that persistent glazes fired at 850 ℃~1 000 ℃ consist of perovskite (JCPDS No. 89-6949), Feldspar strontian (JCPDS No. 70-2121), Tausonite (JCPDS No. 66-4356), and Titanite phase (JCPDS No. 66-4356). The diffraction peak intensities of pervoskite phase decrease with elevated firing temperature, while that of feldspar strontian (Sr0.84Na0.03Al1.69Si2.29O8) and titanite (CaTiSiO5) increase. The feldspar strontian phase is dominated in the based glaze, while titanite phase should be the products as a result of the reaction between phosphors and parent glass. Titanite phase appears above 800 ℃ at the expense of SiO2 (which is a component of based glaze) and CaTiO3 [29]. Sr2+ ions originated from parent glass dope into the lattice of CaTiO3 to form tausonite (Ca0.35Sr0.65TiO3) phase, which is conducive to the enhancement of excitation and emission intensities [30]. However, increasing feldspar strontian and titanite resulted in the reducing of the intensities of excitation and emission. Therefore, the maximum excitation intensity of sample was obtained at firing at 900 ℃ for 2 h.

    Fig.4 is SEM micrographs of persistent glaze obtained at different calcination temperatures. It is obvious that phosphors distribute in the glass matrix at a lower firing temperature of 950 ℃ (Fig.4a). While firing at a higher temperature of 1000 ℃ (Fig.4b), the boundary between phosphors and glass matrix becomes indistinct, suggesting that parts of phosphors react with parent glass, resulting in the decrease of luminescent component and the luminous intensity. It was also confirmed by the XRD results. From the experimental, the lower of calcination temperature or the shorter of soaking time, the better is the luminous performance of red persistent glaze.

    Parent glass does not completely vitrify at lower calcination temperature, so the surface of glaze coating is rough. When the firing temperature reaches 1 100 ℃, the surface of glaze coating is smooth with glassy luster. However, the emission of glaze disappears at the same time due to the disappearance of CaTiO3 in higher temperature. Considering the luminous performance, glassy luster and smoothness of glaze, the optimal calcination temperature of red persistent glazes is 950 ℃ for 2h.

    2.3 Effect of glaze thickness on luminous performance

    The persistent glazes with different thickness were obtained by coating different times on the surface of porcelain substrates. Fig.5 is the SEM micrographs of ceramics coated with one layer (a) and three layers (b) persistent glazes. It is obvious that glaze thickness is about 70 μm when coating once; while coating three times, the glaze thickness increased up to about 220 μm with more homogeneous distribution of phosphors in the microstructure. Fig.6 shows the emission spectra and the decay curves of persistent glazes with different coating times. There is no significant effect on the luminescence properties with different coating times, suggesting that coating three times is enough for smooth surface of glaze.

    2.4 Effect of ratio of phosphors and base glaze on luminous performance

    As we know, the persistent glazes are obtained by firing mixtures of phosphors and parent glazes with a certain mass fraction at the high temperatures. Ca0.8Zn0.2TiO3: Pr3+, Na+, Bi3+ phosphors are very important components in determining the luminous performance, while base glazes act as a carrier and protector of phosphors. Higher content of phosphors correspond to better luminous performance of persistent glaze, but the interface bond between glaze and porcelain substrate will turn worse with the increase content of phosphors, which also increases the cost of persistent glazes.

    Fig.7 is the emission spectra and decay curves of persistent glazes with different mass ratio of phosphor to base galze. When the mass ratio of phosphors to base glaze is 1∶2 (sample A) or 1∶3 (sample B), the luminous intensity of persistent glaze is remarkably superior to that of sample C with a less content of phosphors. However, the surfaces of persistent glazes in samples B and C are smoother than that of sample A. The SiO2-Al2O3-B2O3-SrO glass is transparent when it is reheated above fusion temperature, and phosphors are stable and distributed in the base glass in the temperature range of glaze formation. If the base glaze can not completely wrap phosphors, the glaze surface will turn rough due to the addition of more phosphors to glaze. Conversely, the surface will turn smoother. Considering the luminous performance, glassy luster of glaze and smoothness, the optimal mass ratio of phosphors to base glazes is 1∶3, similar to the results in Ref [25].

    The red emission of persistent glaze can further be confirmed by the CIE (Commission Internationale de lEclairage 1931) coordinations from their emission spectra. As shown in Fig.8, upon excitation at 344 nm, the CIE chromaticity coordination is x=0.683 and y=0.317. It is closer to the chromaticity coordinate of the standard red light [2].

    3 Conclusions

    Persistent glazes were prepared by firing mixtures of Ca0.8Zn0.2TiO3: 0.2% Pr3+, 0.2% Na+, 2% Bi3+ phosphors and SiO2-Al2O3-B2O3-SrO glass at a high temperature. The optimal technology is firing at 950 ℃ for 2 h, coating three times, and 1∶3 for the mass ratio of phosphors to base glaze. The CIE chromaticity coordination is x=0683 and y= 0.317. The obtained red long-lasting titanate luminescent glazes are smooth and glabrous, exhibiting perfect red emission, which could be applied in emergency sign, route markings and dark display.

    References:

    [1] KUCHEIKO S, CHOI J W, KIM H J, et al. Microwave dielectric of CaTiO3-Ca(Al1/2Ta1/2)O3 Ceramics [J]. J Am Ceram Soc, 1996,79(10):2739-2743.

    [2] CHADHA S S, SMITH D W, VECHT A, et al. New and improved phosphors for low-voltage applications [J]. SID Digest, 1994,25(1):51.

    [3] DIALLO P T, BOUTINAUD P, MAHIOU R, et al. Red luminescence in Pr3+-doped calcium titanates [J]. Phys Stat Sol (a), 1997,160(1):255-263.

    [4] DIALLO P, JEANLOUIS K, BOUTINAUD P, et al. Improvement of the optical performances of Pr3+ in CaTiO3 [J]. J Alloys Compd, 2001,323-324:218-222.

    [5] TANG J, YU X, YANG L, et al. Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+ [J]. Mater Lett, 2006,60(3):326-329.

    [6] JIA W, PEREZ-ANDUJAR A, RIVERA I. Energy transfer between Bi3+ and Pr3+ in doped CaTiO3 [J]. J Electrochem Soc, 2003,150:H161-164.

    [7] TANG W J, CHEN D H. Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route [J]. Mater Res Bull, 2009,44:836-839.

    [8] ZHANG X, ZHANG J, ZHANG X, et al. Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3 [J]. J Lumin, 2007,122-123:958-960.

    [9] ZHANG X, ZHANG J, ZHANG X, et al. Enhancement of the red emission in CaTiO3: Pr3+ by addition of rare earth oxides [J]. Chem Phys Lett, 2007,434:237-240.

    [10] ZHANG X, CAO C, Zhang C, et al. Improved photoluminescence and afterglow in CaTiO3: Pr3+ with addition of nanosized SiO2 [J]. Phys B, 2011,406:3891-3895.

    [11] ZHANG J C, XU W, YAO X. Enhancement of luminescence and afterglow in CaTiO3: Pr3+ by Zr substitution for Ti [J]. J Alloys Compd, 2010,498(2):152-156.

    [12] JIANG Z Q, WANG Y H, GONG Y. Doping effects of Nb5+ on red long afterglow phosphor CaTiO3: Pr3+ [J]. Chin Phys B, 2010,19(2):027801.

    [13] 廉世勛,林建華,蘇勉增. Ca1-xZnxTiO3: Pr3+, R+(R=Li+, Na+, K+, Rb+, Cs+, Ag+)的合成和發(fā)光性質(zhì) [J]. 中國(guó)稀土學(xué)報(bào), 2001,19(6):602-605.

    [14] ROYCE M R, MATSUDA S, TAMAKI H. Red emitting long decay phosphors:US, 5650094A[P]. 1997-07-22.

    [15] HARANATH D, KHAN A F, CHANDER H. Bright red luminescence and energy transfer of Pr3+-doped (Ca, Zn)TiO3 phosphor for long decay applications [J]. J Phys D: Appl Phys, 2006,39(23):4956-4960.

    [16] 廉世勛,左成鋼,尹篤林,等.納米Ca0.8Zn0.2TiO3: Pr3+, Na+熒光粉的合成和紅色發(fā)光性質(zhì)[J].中國(guó)稀土學(xué)報(bào), 2006,24(2):158-162.

    [17] 王 德,黃 瑋,叢玉鳳,等.長(zhǎng)余輝蓄能發(fā)光涂料的研制[J].涂料工業(yè), 2013,43(3):29-31, 45.

    [18] 萬(wàn) 蜜,佘 銅,吳 丹,等.水性苯丙乳液長(zhǎng)余輝蓄能發(fā)光涂料的制備與性能[J]. 材料保護(hù), 2014,47(4):20-23.

    [19] 劉全生,張希艷,王曉春,等.多彩長(zhǎng)余輝發(fā)光陶瓷的研究[J].中國(guó)陶瓷, 2005,41(1):52-55.

    [20] ZHANG X Y, CAO Z F, LU L P, et al. Bright long afterglow phosphorescence glass made of SrAl2O4: Eu2+, Dy3+ and glass frits [J]. Acta Metall Sin (Eng Lett), 2005,18(6):736-740.

    [21] LACOURSE B C. Inorganic phosphorescence article and method for making same: US, 20100285284A1[P]. 2010-11-11.

    [22] 李 靖.發(fā)光陶瓷產(chǎn)品的制造方法:中國(guó),1485302A[P]. 2004-03-31.

    [23] 梁 鋒,林同潤(rùn).高溫發(fā)光釉料及其加工工藝、以及其在生產(chǎn)發(fā)光瓷磚上的應(yīng)用:中國(guó),1609027A[P]. 2005-04-27.

    [24] KAZAZZ H E, KARACAOGLU E, KARASU B, et al. Production of violet-blue emitting phosphors via solid state reaction and their uses in outdoor glass [J]. J Am Sci, 2011,7(12):998-1004.

    [25] 李躍飛.紅色長(zhǎng)余輝發(fā)光陶瓷的合成與性質(zhì)[D].青島:中國(guó)石油大學(xué), 2007:41-48.

    [26] BOUTINAUD P, PINEL E, DUBOIS M, et al. UV-to-red relaxation pathways in CaTiO3: Pr3+[J]. J Lumin, 2005,111(1-2):69-80.

    [27] BOUTINAUD P, CAVALLI E. Predicting metal-to-metal charge transfer in closed-shell transition metal oxides doped with Bi3+ or Pb2+[J]. Chem Phys Lett, 2011,503(4-6):239-243.

    [28] BOUTINAUD P, CAVALLI E, MAHIOU R. Photon conversion in Bi3+/Pr3+-codoped CaTiO3 [J]. J Phys: Condens Matter, 2012,24:295502.

    [29] MUTHURAMAN M, PATIL K C. Synthesis, properties, sintering and microstructure of sphene, CaTiSiO5: a comparative study of coprecipitation, sol-gel and combustion processes [J]. Mater Res Bull, 1998,33(4):655-661.

    [30] WANG X, XU C, YAMADA H. Enhancement of photoluminescence in CaTiO3:Pr3+ by Ba and Sr substitution for Ca [J]. Jpn J Appl Phys, 2005,44(28):912-914.

    (編輯 楊春明)

    猜你喜歡
    余輝鈦酸熒光粉
    寬帶激發(fā)BaBi2(MoO4)4:Eu3+熒光粉的制備與發(fā)光性能
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    胺/層狀鈦酸鹽復(fù)合材料對(duì)CO2的吸附性能研究
    Zn空位缺陷長(zhǎng)余輝發(fā)光材料Zn1-δAl2O4-δ的研究
    光照條件對(duì)長(zhǎng)余輝材料顯現(xiàn)手印效果影響的研究
    蓄能清潔人造石產(chǎn)品的研制
    硼酸、Li+摻雜對(duì)YAG:Ce3+熒光粉的影響
    XPS在YAG∶Ce3+熒光粉中Ce3+半定量分析方面的應(yīng)用
    鈦酸鋰電池脹氣問題的研究進(jìn)展
    退火溫度對(duì)NaGd(WO4)2:Eu3+熒光粉發(fā)光特性的影響
    国产女主播在线喷水免费视频网站 | av国产免费在线观看| 七月丁香在线播放| av国产久精品久网站免费入址| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 肉色欧美久久久久久久蜜桃 | 日本免费a在线| 亚洲国产色片| 秋霞伦理黄片| 日韩一本色道免费dvd| 亚洲av福利一区| 日本一二三区视频观看| 国产亚洲av片在线观看秒播厂 | 久久久久久国产a免费观看| 国产在视频线精品| 精品久久久久久成人av| 免费大片黄手机在线观看| 街头女战士在线观看网站| 色综合站精品国产| 日韩 亚洲 欧美在线| 国产色婷婷99| 中文字幕av成人在线电影| 亚洲熟妇中文字幕五十中出| 老司机影院成人| 亚洲人成网站高清观看| 国产乱人视频| 男女下面进入的视频免费午夜| 日韩精品青青久久久久久| 欧美丝袜亚洲另类| 亚洲精品日本国产第一区| 久久精品国产亚洲网站| 午夜精品国产一区二区电影 | 一本久久精品| 午夜爱爱视频在线播放| 五月天丁香电影| 久久久久网色| 少妇人妻精品综合一区二区| 欧美日韩亚洲高清精品| 伊人久久国产一区二区| 精品一区二区三卡| 亚洲在久久综合| 熟女电影av网| 欧美精品一区二区大全| 亚洲欧美精品专区久久| 免费av毛片视频| 中国国产av一级| 免费黄色在线免费观看| 搞女人的毛片| 日本wwww免费看| 国产免费视频播放在线视频 | 午夜激情久久久久久久| 亚洲va在线va天堂va国产| 中文字幕免费在线视频6| 少妇熟女aⅴ在线视频| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| 亚洲精品一二三| freevideosex欧美| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 欧美另类一区| 欧美丝袜亚洲另类| 日韩,欧美,国产一区二区三区| 自拍偷自拍亚洲精品老妇| 国产精品精品国产色婷婷| 久久精品夜色国产| 搞女人的毛片| 成人国产麻豆网| 亚洲高清免费不卡视频| 中文字幕久久专区| av播播在线观看一区| 成人漫画全彩无遮挡| 国产视频内射| 一个人看的www免费观看视频| 美女大奶头视频| 777米奇影视久久| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 一区二区三区四区激情视频| 啦啦啦中文免费视频观看日本| 欧美xxxx黑人xx丫x性爽| 欧美丝袜亚洲另类| 欧美97在线视频| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 免费看a级黄色片| 日日啪夜夜撸| 一级二级三级毛片免费看| 美女高潮的动态| 亚洲在久久综合| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| 真实男女啪啪啪动态图| 日韩一本色道免费dvd| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 亚洲性久久影院| 欧美bdsm另类| 国产亚洲av嫩草精品影院| 成人一区二区视频在线观看| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 午夜福利视频精品| 青春草国产在线视频| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 嫩草影院新地址| 久久精品国产亚洲av天美| 日韩av在线大香蕉| 国产v大片淫在线免费观看| h日本视频在线播放| 国产成人免费观看mmmm| 久久久久九九精品影院| 国产成人午夜福利电影在线观看| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 国产亚洲5aaaaa淫片| 91在线精品国自产拍蜜月| 日本三级黄在线观看| 成年女人看的毛片在线观看| 欧美性猛交╳xxx乱大交人| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国产黄a三级三级三级人| 韩国av在线不卡| 国产精品99久久久久久久久| 最近最新中文字幕免费大全7| 精品欧美国产一区二区三| 80岁老熟妇乱子伦牲交| 日韩欧美精品v在线| 丝袜美腿在线中文| 可以在线观看毛片的网站| 汤姆久久久久久久影院中文字幕 | 亚洲久久久久久中文字幕| av.在线天堂| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 免费av不卡在线播放| 五月玫瑰六月丁香| 91精品国产九色| 国产精品1区2区在线观看.| av又黄又爽大尺度在线免费看| 国产精品美女特级片免费视频播放器| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有是精品在线观看| 国产成人精品福利久久| 精品午夜福利在线看| 秋霞在线观看毛片| 色网站视频免费| 高清av免费在线| 国产视频内射| 欧美xxⅹ黑人| 听说在线观看完整版免费高清| 精品久久久久久成人av| 亚洲精品日韩在线中文字幕| 免费观看无遮挡的男女| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 日韩国内少妇激情av| 免费av毛片视频| 国产美女午夜福利| 欧美区成人在线视频| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 永久免费av网站大全| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 我的老师免费观看完整版| 青青草视频在线视频观看| 日日啪夜夜爽| 国产黄频视频在线观看| 午夜精品在线福利| 欧美激情国产日韩精品一区| 欧美精品国产亚洲| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 一个人观看的视频www高清免费观看| 国产亚洲av片在线观看秒播厂 | 亚洲精品日本国产第一区| 亚洲,欧美,日韩| 美女黄网站色视频| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 婷婷色综合www| 亚洲国产日韩欧美精品在线观看| 在线免费观看的www视频| 久久久久性生活片| 免费观看在线日韩| 最近中文字幕高清免费大全6| 国产高清三级在线| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 2018国产大陆天天弄谢| 国产久久久一区二区三区| 日韩人妻高清精品专区| 亚洲综合精品二区| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| a级毛色黄片| 欧美区成人在线视频| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| 亚洲av国产av综合av卡| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 亚洲综合色惰| 免费看av在线观看网站| 亚洲精品视频女| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 国产免费视频播放在线视频 | 亚洲国产精品成人综合色| 联通29元200g的流量卡| 久久久久精品久久久久真实原创| 国产视频内射| 22中文网久久字幕| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 亚洲精品乱码久久久久久按摩| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 高清日韩中文字幕在线| 国产精品伦人一区二区| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 免费电影在线观看免费观看| 久久久国产一区二区| 日本一二三区视频观看| 高清毛片免费看| 99re6热这里在线精品视频| www.色视频.com| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 能在线免费看毛片的网站| 91狼人影院| 国产精品国产三级国产av玫瑰| 91精品国产九色| 国产永久视频网站| 在线 av 中文字幕| 精品熟女少妇av免费看| 亚洲高清免费不卡视频| 精品酒店卫生间| 成人特级av手机在线观看| 精品久久久久久久久久久久久| 日韩欧美精品v在线| 午夜爱爱视频在线播放| 麻豆久久精品国产亚洲av| 久久韩国三级中文字幕| 成人欧美大片| 久久人人爽人人爽人人片va| 日韩欧美国产在线观看| 亚洲国产精品sss在线观看| 午夜爱爱视频在线播放| 国产成人精品久久久久久| 久久久久久久久大av| 婷婷色av中文字幕| 国产精品福利在线免费观看| 国产黄色视频一区二区在线观看| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 秋霞伦理黄片| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品成人久久久久久| 亚洲成人久久爱视频| 熟女电影av网| 一级毛片我不卡| www.av在线官网国产| 中国国产av一级| 美女被艹到高潮喷水动态| 最近最新中文字幕免费大全7| 午夜精品国产一区二区电影 | 精品国产三级普通话版| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 国产爱豆传媒在线观看| 午夜爱爱视频在线播放| 欧美精品一区二区大全| 久久久久精品性色| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 亚洲成色77777| 久久99热这里只频精品6学生| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 精品久久久久久久久久久久久| 国产一区二区在线观看日韩| 中文字幕亚洲精品专区| 日韩伦理黄色片| 成人鲁丝片一二三区免费| 男女边摸边吃奶| 午夜精品在线福利| 大话2 男鬼变身卡| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 久久午夜福利片| 少妇熟女aⅴ在线视频| 美女xxoo啪啪120秒动态图| 国产在线男女| 国产精品三级大全| 欧美潮喷喷水| 日本猛色少妇xxxxx猛交久久| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 婷婷色av中文字幕| 免费观看a级毛片全部| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久 | 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 精品不卡国产一区二区三区| 久久久久九九精品影院| 日本-黄色视频高清免费观看| 欧美成人一区二区免费高清观看| av福利片在线观看| 性色avwww在线观看| 亚洲经典国产精华液单| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃 | 国产色爽女视频免费观看| 国产成人91sexporn| 色尼玛亚洲综合影院| 日韩不卡一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 毛片一级片免费看久久久久| 国产大屁股一区二区在线视频| 国内精品一区二区在线观看| 蜜桃久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 午夜老司机福利剧场| www.av在线官网国产| 亚洲av成人av| 免费黄网站久久成人精品| 91久久精品电影网| 国产高清有码在线观看视频| 午夜免费观看性视频| 国产成人91sexporn| 色视频www国产| 天堂中文最新版在线下载 | 久久久午夜欧美精品| 亚洲精品影视一区二区三区av| 午夜久久久久精精品| 只有这里有精品99| 一级毛片我不卡| 特级一级黄色大片| 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 身体一侧抽搐| 两个人视频免费观看高清| 可以在线观看毛片的网站| 精品国产三级普通话版| 免费在线观看成人毛片| 日本免费在线观看一区| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| 亚洲自拍偷在线| 2021少妇久久久久久久久久久| 欧美激情国产日韩精品一区| 夫妻午夜视频| 尤物成人国产欧美一区二区三区| 亚洲精品乱久久久久久| 欧美潮喷喷水| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 日韩成人av中文字幕在线观看| 国产成人freesex在线| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 看十八女毛片水多多多| 亚洲欧美清纯卡通| ponron亚洲| 亚洲精品第二区| 婷婷色麻豆天堂久久| 国产亚洲一区二区精品| 在线观看一区二区三区| 观看免费一级毛片| 亚洲国产欧美人成| 欧美人与善性xxx| 成人午夜高清在线视频| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 国产极品天堂在线| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| av线在线观看网站| 亚洲av福利一区| 99久久精品一区二区三区| 激情五月婷婷亚洲| 亚洲欧美日韩东京热| 六月丁香七月| av在线蜜桃| 久久精品夜色国产| 97人妻精品一区二区三区麻豆| 熟妇人妻不卡中文字幕| 国产精品国产三级国产av玫瑰| 大又大粗又爽又黄少妇毛片口| 成人特级av手机在线观看| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 亚洲欧美精品自产自拍| 99热全是精品| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 一级a做视频免费观看| 看黄色毛片网站| 少妇裸体淫交视频免费看高清| 国产精品一区二区三区四区免费观看| 一本久久精品| 日韩av在线免费看完整版不卡| 麻豆av噜噜一区二区三区| 91av网一区二区| 99久久人妻综合| 免费不卡的大黄色大毛片视频在线观看 | av播播在线观看一区| 久久久久久久大尺度免费视频| 亚洲欧美成人综合另类久久久| 观看免费一级毛片| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 寂寞人妻少妇视频99o| 少妇人妻精品综合一区二区| 黄片wwwwww| 极品少妇高潮喷水抽搐| 国产一区二区亚洲精品在线观看| 不卡视频在线观看欧美| av国产久精品久网站免费入址| 国内精品美女久久久久久| 亚洲人成网站在线播| 久久精品久久久久久噜噜老黄| 最近最新中文字幕大全电影3| 国产精品三级大全| 亚洲欧美日韩东京热| av国产久精品久网站免费入址| 全区人妻精品视频| 午夜爱爱视频在线播放| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 色哟哟·www| 国产伦理片在线播放av一区| 好男人视频免费观看在线| 天堂中文最新版在线下载 | 欧美高清性xxxxhd video| 亚洲av免费在线观看| 小蜜桃在线观看免费完整版高清| 天美传媒精品一区二区| 大陆偷拍与自拍| 久99久视频精品免费| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久影院| 免费av观看视频| 亚洲国产精品成人综合色| 三级经典国产精品| 成人av在线播放网站| 亚洲自拍偷在线| 又爽又黄a免费视频| 国产成人福利小说| 免费大片黄手机在线观看| 午夜福利视频1000在线观看| 日产精品乱码卡一卡2卡三| 欧美高清性xxxxhd video| 国产成人精品婷婷| 日韩国内少妇激情av| 亚洲精品国产av成人精品| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 国产男人的电影天堂91| 人妻一区二区av| 能在线免费看毛片的网站| 久久精品人妻少妇| 亚洲不卡免费看| 午夜激情久久久久久久| 日本熟妇午夜| 一区二区三区免费毛片| 男人舔奶头视频| 九九爱精品视频在线观看| 一边亲一边摸免费视频| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 日产精品乱码卡一卡2卡三| 别揉我奶头 嗯啊视频| 一级a做视频免费观看| 久久久久国产网址| 精品一区二区三区视频在线| 国产 一区精品| 国产大屁股一区二区在线视频| 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣| 能在线免费观看的黄片| 国产不卡一卡二| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 国产亚洲一区二区精品| 日韩欧美三级三区| 色5月婷婷丁香| 国产在视频线精品| 中文欧美无线码| 中文在线观看免费www的网站| 国产亚洲最大av| 一个人看的www免费观看视频| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看| 好男人视频免费观看在线| 亚洲精品自拍成人| 亚洲图色成人| 舔av片在线| 国产有黄有色有爽视频| 成人鲁丝片一二三区免费| 爱豆传媒免费全集在线观看| 久久久久免费精品人妻一区二区| 一区二区三区乱码不卡18| 只有这里有精品99| 国产精品麻豆人妻色哟哟久久 | 亚洲电影在线观看av| 欧美3d第一页| 国产精品一区二区三区四区久久| 亚洲欧美日韩东京热| av女优亚洲男人天堂| 五月伊人婷婷丁香| 午夜免费观看性视频| av卡一久久| 神马国产精品三级电影在线观看| 中文在线观看免费www的网站| 美女xxoo啪啪120秒动态图| av.在线天堂| 91精品国产九色| 久久久国产一区二区| 色综合色国产| 亚洲精品第二区| 国产精品一及| 一个人看视频在线观看www免费| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| 波多野结衣巨乳人妻| 欧美日韩国产mv在线观看视频 | 在线观看av片永久免费下载| 欧美高清性xxxxhd video| 日韩强制内射视频| 国产有黄有色有爽视频| 久久草成人影院| 国产精品三级大全| 三级男女做爰猛烈吃奶摸视频| 人妻系列 视频| 亚州av有码| 久久久久久久久中文| 超碰av人人做人人爽久久| h日本视频在线播放| 在线 av 中文字幕| 国产亚洲5aaaaa淫片| 国产精品美女特级片免费视频播放器| 中文字幕人妻熟人妻熟丝袜美| 国产一区亚洲一区在线观看| 免费av观看视频| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 午夜老司机福利剧场| 亚洲av日韩在线播放| 久久99热6这里只有精品| 午夜福利网站1000一区二区三区| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 亚洲av电影不卡..在线观看| 日韩三级伦理在线观看| 国产久久久一区二区三区| 男的添女的下面高潮视频| 蜜桃亚洲精品一区二区三区| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 久久精品久久精品一区二区三区| 国产一级毛片七仙女欲春2| 啦啦啦啦在线视频资源| 久久久久精品久久久久真实原创| 联通29元200g的流量卡| 91在线精品国自产拍蜜月| 肉色欧美久久久久久久蜜桃 | 99久国产av精品| 在线免费观看的www视频| 亚洲欧美成人精品一区二区| 久久精品久久精品一区二区三区| 国产精品99久久久久久久久| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 水蜜桃什么品种好| 欧美日韩精品成人综合77777| 99久久人妻综合| 激情 狠狠 欧美| 麻豆久久精品国产亚洲av| av黄色大香蕉|