• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array

    2016-02-28 07:57:56NewtonOTECKOMinShengPENGHeChuanYANGYaPingZHANGGuoDongWANG
    Zoological Research 2016年6期

    Newton O. OTECKO, Min-Sheng PENG, He-Chuan YANG, Ya-Ping ZHANG,3, Guo-Dong WANG,*

    1State Key Laboratory of Genetic Resources and Evolution, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

    2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China

    3State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China

    Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array

    Newton O. OTECKO1,2, Min-Sheng PENG1,2, He-Chuan YANG1, Ya-Ping ZHANG1,2,3, Guo-Dong WANG1,2,*

    1State Key Laboratory of Genetic Resources and Evolution, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

    2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China

    3State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China

    Quality deficiencies in single nucleotide polymorphism (SNP) analyses have important implications. We used missingness rates to investigate the quality of a recently published dataset containing 424 mitochondrial, 211 Y chromosomal, and 160 432 autosomal SNPs generated by a semicustom Illumina SNP array from 5 392 dogs and 14 grey wolves. Overall, the individual missingness rate for mitochondrial SNPs was ~43.8%, with 980 (18.1%) individuals completely missing mitochondrial SNP genotyping (missingness rate=1). In males, the genotype missingness rate was ~28.8% for Y chromosomal SNPs, with 374 males recording rates above 0.96. These 374 males also exhibited completely failed mitochondrial SNPs genotyping, indicative of a batch effect. Individual missingness rates for autosomal markers were greater than zero, but less than 0.5. Neither mitochondrial nor Y chromosomal SNPs achieved complete genotyping (locus missingness rate=0), whereas 5.9% of autosomal SNPs had a locus missingness rate=1. The high missingness rates and possible batch effect show that caution and rigorous measures are vital when genotyping and analyzing SNP array data for domestic animals. Further improvements of these arrays will be helpful to future studies.

    SNP array; Dog; Mitochondrial; Y chromosomal; Autosomal

    RESULTS

    Full iMR and lMR results are shown in Supplementary Tables S2 and S3, respectively. As summarized in Figure 1, complete genotyping (MR=0) for mitochondrial and Y chromosomal SNPs was observed for 3 039 (56.2%) and 1 896 (71.2%) individuals, respectively, with 980 (18.1%) and 107 (4.0%) individuals completely missing genotyping (MR=1) for the two marker types, respectively. Pure breed dogs tended to have a higher iMR (1) than that of other dogs. Additionally, overall mean iMR values were generally higher in pure breed dogs and much higher in grey wolves, specifically for mitochondrial and Y chromosomal marker types (Table 1). This trend was mirrored in the mean iMR across breeds, excluding MR=0 values (Supplementary Table S4). All individuals recorded autosomal genotyping iMR >0 to <0.5. Combined analysis of all MR values >0 and <1 (Figure 2) showed a higher mean iMR for the Y chromosomal (>40%) than the other two markers.

    Figure 1 lndividual missingness rates (iMR) for mitochondrial and Y chromosomal marker types

    Table 1 Comparison of individual missingness rates (iMR) across different breed categories

    Overall genotype missingness rates (MR>0) for mitochondrial and Y chromosomal SNPs were realized in 2 367 (43.8%) and 766 (28.8%) individuals, respectively, with the missing genotyping proportions in each breed summarized in Supplementary Table S4. Of the 980 individuals with mitochondrial MR=1, 374 were males, which all had Y chromosomal MR>0.96 (Figure 1 and Supplementary Table S5). The mean autosomal MR was also significantly higher for these 374 males (0.135) compared with the other 2 288 males (0.002) (Table 2). Further scrutiny indicated that all 980 individuals with mitochondrial MR=1 came from 1 325 samples that had a different experimental format, given the assaying plate numbering system (Sample IDs prefix, Supplementary Table S2). There was a marked difference in mean iMR across all three marker types between the two classes of samples, with those undergoing assaying plate serialization bearing lower missed genotyping rates (Supplementary Table S6). These observations suggest a likely batch effect (Leek, 2014; Leek et al., 2010) in the case of the 374 males.

    Assessment of lMR showed that none of the mitochondrial or Y chromosomal SNPs achieved complete genotyping (MR=0). While 5.9% of the autosomal SNPs were completely genotyped, 0.5% of the autosomal SNPs together with 0.7% of the mitochondrial SNPs had a ≥20% MR among the study individuals (Table 3). Overall, lMR was higher for mitochondrial and Y chromosomal SNPs compared with that for autosomal SNPs (Figure 3).

    Figure 2 Box plot showing the individual missingness rates (iMR) for mt: mitochondrial (n=1 387), Y: Y chromosomal (n=659), and Aut: autosomal (n=2 744) marker types according to gender for the 0<MR<1 category

    DlSCUSSlON

    The missingness rate can be used to clarify overall quality of genotyping. Problems at any stage of the genotyping process can adversely impact data analyses, including the definition of haplotypes and calculation of genetic diversities. Missingness rates can inform decisions on how to account for possible errors to support the genotyping process, and possibly inform technological advancements in SNP arrays (Laframboise, 2009). The observed overlapping pattern of high MR statistics for mitochondrial and Y chromosomal SNPs among the 374 males represents a possible batch effect scenario (Leek et al., 2010).

    Batch effects commonly occur in high-throughput technologies, where a subgroup of observations show qualitatively different behaviors across conditions, which might not be related to biological variability (Leek et al., 2010). Batch effects, like other genotyping problems, arise from ubiquitous sources that are often not fully recorded or reported, ranging from sample/DNA competence, date/time of experiment, technician input, reagents, chip numbers, as well as platforms or instruments used (Leek, 2014; Leek et al., 2010; Pompanon et al., 2005). Full experimental records and individual sample information, as highly advocated elsewhere (Kitchen et al., 2010; Leek et al., 2010), play vital roles in facilitating re-evaluations or metaanalyses of multiple datasets. This was a limitation encountered in our analysis, which lowered the power for definitive validation of the suspected batch effect and factors underlying high MR values.

    In the present study, MRs tended to be higher for pure breed dogs than for other dogs, suggesting potential breed-based differential SNP array missingness, contrary to more robust technologies such as next-generation sequencing. Missing genotype calls are widespread in high-throughput genotyping, but their effect on subsequent analyses has been largely ignored (Fu et al., 2009; Yu, 2012). In SNP arrays, missing call rates arise from technical issues like SNP array manufacturing, DNA processing, batch size and composition, or genotype calling criteria, as well as biological issues such as previously uncharacterized variants or DNA quality and quantity (Didion et al., 2012; Fu et al., 2009; Hong et al, 2008.; Nishida et al., 2008). In addition to careful DNA quality control and quantity standardization, other mitigation measures to reduce high MRs should include employing large and uniform batch sizes in genotype calling, using homogenous samples in the same batches (Hong et al., 2008), reviewing the suitability of quality control filtering cutoffs when calling genotypes (Fu et al., 2009), and continuous characterization and inclusion of rarer genomic variants in array designs (Didion et al., 2012).

    Table 2 Comparison of individual missingness rates (iMR) for 374 males with likely batch effect versus remaining males

    Table 3 Summary of locus missingness rates (lMR) for mitochondrial, Y chromosomal, and autosomal SNPs

    Figure 3 Box plot showing the locus missingness rates (lMR) for mitochondrial, Y chromosomal, and autosomal SNPs MR>0

    Due to the diverse, complex, and cryptic nature of genotyping issues in high-throughput technologies, such as batch effects, a thorough understanding and awareness of potential causal avenues, consequences, and mitigation strategies are serious concerns among researchers (Kitchen et al., 2010; Kupfer et al., 2012; Leek, 2014; Leek et al., 2010; Palanichamy & Zhang, 2010). SNP array technology, computational methodology, and biological inferences are closely interlinked (Laframboise, 2009). Our findings, therefore, point to the necessity of rigor and caution in the generation and use of SNP array genotyping data for domesticated animals, especially those improved for specialized traits. Continuous robustification and extensive precommercialization qualification of SNP arrays are areas for future consideration.

    ACKNOWLEDGEMENTS

    N.O.O. thanks the support of the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS) President’s Fellowship Program for Doctoral Candidates. G.-D.W. and M.-S.P. are grateful for support from the Youth Innovation Promotion Association, CAS.

    AVAlLABlLlTY OF DATA AND MATERlALS

    All data and software used in this paper are freely available. The SNP dataset for the 5406 dog samples has been published previously (Shannon et al., 2015b), and is freely available at: http: //www.datadryad.org/resource/doi: 10.5061/dryad.v9t5h. Both the PLINK and BoxPlotR software are freely available at: http: //pngu.mgh.harvard.edu/~purcell/plink and http: //boxplot. tyerslab.co/, respectively. In addition, we have provided the complete missingness rate data in the online version of this article in Supplementary Table S2 (results of individual missingness rates) and Supplementary Table S3 (results of locus missingness rates) plus other supplementary results supporting this paper.

    REFERENCES

    Didion JP, Yang H, Sheppard K, Fu CP, McMillan L, De Villena FPM, Churchill GA. 2012. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics,13: 34.

    Fu WQ, Wang Y, Wang Y, Li R, Lin R, Jin L. 2009. Missing call bias in highthroughput genotyping. BMC Genomics,10: 106.

    Goddard ME, Hayes BJ. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics,10(6): 381-391.

    Hong HX, Su ZQ, Ge WG, Shi LM, Perkins R, Fang H, Xu JS, Chen JJ, Han T, Kaput J, Fuscoe JC, Tong WD. 2008. Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples. BMC Bioinformatics,9: S17.

    Kitchen RR, Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Van Hemert JI, Dixon JM, Bartlett JMS. 2010. Correcting for intraexperiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. BMC Genomics,11: 134.

    Kupfer P, Guthke R, Pohlers D, Huber R, Koczan D, Kinne RW. 2012. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. BMC Medical Genomics,5: 23.

    LaFramboise T. 2009. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Research,37(13): 4181-4193.

    Leek JT. 2014. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Research,42(21): e161.

    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics,11(10): 733-739.

    Nishida N, Koike A, Tajima A, Ogasawara Y, Ishibashi Y, Uehara Y, Inoue I, Tokunaga K. 2008. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals. BMC Genomics,9: 431.

    Palanichamy MG, Zhang YP. 2010. Potential pitfalls in MitoChip detected tumor-specific somatic mutations: a call for caution when interpreting patient data. BMC Cancer,10: 597.

    Peng MS, He JD, Fan L, Liu J, Adeola AC, Wu SF, Murphy RW, Yao YG, Zhang YP. 2014. Retrieving Y chromosomal haplogroup trees using GWAS data. European Journal of Human Genetics,22(8): 1046-1050.

    Pompanon F, Bonin A, Bellemain E, Taberlet P. 2005. Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics,6(11): 847-859.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics,81(3): 559-575.

    Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said M, Anita BA, Bondjengo NI, Calero J, Galov A, Hedimbi M, Imam B, Khalap R, Lally D, Masta A, Oliveira KC, Pérez L, Randall J, Tam NM, Trujillo-Cornejo FJ, Valeriano C, Sutter NB, Todhunter RJ, Bustamante CD, Boyko AR. 2015a. Data from: Genetic structure in villagedogs reveals a Central Asian domestication origin. Dryad Digital Repository. http: //dx.doi.org/10.5061/dryad.v9t5h.

    Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said M, Anita BA, Bondjengo NI, Calero J, Galov A, Hedimbi M, Imam B, Khalap R, Lally D, Masta A, Oliveira KC, Pérez L, Randall J, Tam NM, Trujillo-Cornejo FJ, Valeriano C, Sutter NB, Todhunter RJ, Bustamante CD, Boyko AR. 2015b. Genetic structure in village dogs reveals a Central Asian domestication origin. Proceedings of the National Academy of Sciences of the United States of America,112(44): 13639-13644.

    Spitzer M, Wildenhain J, Rappsilber J, Tyers M. 2014. BoxPlotR: a web tool for generation of box plots. Nature Methods,11(2): 121-122.

    Yu ZX. 2012. Family-based association tests using genotype data with uncertainty. Biostatistics,13(2): 228-240.

    lNTRODUCTlON

    MATERlALS AND METHODS

    etrieved dog SNP datasets from Dryad (

    10.5061/ dryad.v9t5h) (Shannon et al., 2015a). Detailed methodology is described elsewhere (Shannon et al., 2015b). Briefly, DNA was extracted predominantly from whole blood samples by salt precipitation from 4675 pure breed, 168 mixed breed, and 549 village dogs, plus 14 grey wolves (Supplementary Table S1). The samples were genotyped against 424 mitochondrial, 211 Y chromosomal, and 160 432 autosomal SNP markers using asemicustom Illumina SNP array (Shannon et al., 2015b). We used PLINK v.1.07 to determine the missingness rates (MRs) of the datasets (Purcell et al., 2007). We analysed all individual MRs (iMR) for both mitochondrial and autosomal marker types, except for the Y chromosomal marker in females. We also calculated the locus MR (lMR) to assess the MRs for all SNPs. We used IBM SPSS statistics version 20.0 (SPSS, Inc., Chicago, IL, USA) for data analysis, and box plots were drawn by BoxPlotR software (Spitzer et al., 2014).

    Received: 18 October 2016; Accepted: 04 November 2016

    Foundation items: This work was supported by grants from the NSFC (91531303) and the 973 programs (2013CB835200; 2013CB835202)*

    , E-mail: wanggd@mail.kiz.ac.cn

    DOI:10.13918/j.issn.2095-8137.2016.6.356

    Single-nucleotide polymorphism (SNP) arrays have received wide recognition for detecting DNA polymorphisms in domestic animals (Goddard & Hayes, 2009). The availability of SNP arrays to incorporate not only dense autosomal markers, but also hundreds of mitochondrial and Y chromosomal SNPs, greatly assists breeding and population history inferences (Shannon et al., 2015b). Genotyping SNPs offers superior efficiency and convenience compared with traditional Sanger sequencing or genotyping techniques, such as denaturing highperformance liquid chromatography (DHPLC) and SNPshot. Like other high-throughput techniques, however, SNP assays are not infallible. Difficulties can arise from diverse, complex, and often cryptic sources, and different factors can converge to produce an artifact (Pompanon et al., 2005). With new technological advancements in the genotyping landscape, some potential artifacts remain unknown, untested, or unaccounted for (Leek, 2014; Leek et al., 2010). Previous studies on human populations have established potential technological and experimental pitfalls in genotyping, which could compromise data quality (Palanichamy & Zhang, 2010; Peng et al., 2014). To investigate these issues in domestic animals, we performed an independent re-evaluation of recently published SNP array data representing a global dog population (Shannon et al., 2015b).1

    大码成人一级视频| 人妻系列 视频| 91久久精品电影网| 免费人成在线观看视频色| 下体分泌物呈黄色| 18禁裸乳无遮挡动漫免费视频| 高清午夜精品一区二区三区| av在线老鸭窝| 亚洲欧美中文字幕日韩二区| 久久ye,这里只有精品| 亚洲激情五月婷婷啪啪| 亚洲性久久影院| 亚洲国产欧美日韩在线播放| 毛片一级片免费看久久久久| 我的女老师完整版在线观看| 久久久久久久久久人人人人人人| 中文字幕久久专区| 五月天丁香电影| 青春草亚洲视频在线观看| 69精品国产乱码久久久| 日本-黄色视频高清免费观看| 国产欧美亚洲国产| 国产精品99久久久久久久久| 在线观看一区二区三区激情| 建设人人有责人人尽责人人享有的| 免费日韩欧美在线观看| 大片免费播放器 马上看| 久久ye,这里只有精品| 久久久久视频综合| 交换朋友夫妻互换小说| 黄色配什么色好看| 赤兔流量卡办理| 又黄又爽又刺激的免费视频.| 一级黄片播放器| 18禁在线无遮挡免费观看视频| 一级毛片电影观看| 国产男人的电影天堂91| 少妇人妻 视频| 日本午夜av视频| 午夜福利在线观看免费完整高清在| 人妻 亚洲 视频| 久久精品国产亚洲av天美| 男人爽女人下面视频在线观看| 色视频在线一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性bbbbbb| 久久韩国三级中文字幕| 黄片播放在线免费| av又黄又爽大尺度在线免费看| 哪个播放器可以免费观看大片| 天堂中文最新版在线下载| 亚洲人成77777在线视频| 赤兔流量卡办理| 久久这里有精品视频免费| 男女无遮挡免费网站观看| 亚洲少妇的诱惑av| 久久久久久久国产电影| 纯流量卡能插随身wifi吗| 免费黄网站久久成人精品| 成人二区视频| 精品人妻熟女av久视频| 免费日韩欧美在线观看| 老司机影院成人| 美女内射精品一级片tv| 色视频在线一区二区三区| 制服人妻中文乱码| 日韩大片免费观看网站| 搡女人真爽免费视频火全软件| av福利片在线| 亚洲色图 男人天堂 中文字幕 | 日本欧美视频一区| 乱人伦中国视频| 飞空精品影院首页| 午夜激情福利司机影院| 亚洲五月色婷婷综合| 91精品伊人久久大香线蕉| 国产av国产精品国产| 久久综合国产亚洲精品| 免费久久久久久久精品成人欧美视频 | 国产精品偷伦视频观看了| 亚洲av日韩在线播放| 三级国产精品欧美在线观看| 亚洲成色77777| 国产欧美亚洲国产| 一级毛片黄色毛片免费观看视频| 精品酒店卫生间| 女性生殖器流出的白浆| 国产成人freesex在线| 亚洲性久久影院| 人人妻人人爽人人添夜夜欢视频| 精品久久久噜噜| 久久精品熟女亚洲av麻豆精品| 久久久久久久亚洲中文字幕| av线在线观看网站| 中文字幕亚洲精品专区| 免费看av在线观看网站| 成年人午夜在线观看视频| 在现免费观看毛片| 在现免费观看毛片| 亚洲国产精品成人久久小说| 精品一区二区三区视频在线| 水蜜桃什么品种好| 免费黄色在线免费观看| 最近手机中文字幕大全| 亚洲精品日本国产第一区| 简卡轻食公司| 人妻少妇偷人精品九色| 亚洲欧美日韩另类电影网站| 精品人妻熟女av久视频| 日本爱情动作片www.在线观看| 久久人人爽av亚洲精品天堂| 国产亚洲欧美精品永久| 成人影院久久| 在线观看国产h片| 日本爱情动作片www.在线观看| 综合色丁香网| 18禁在线播放成人免费| 久久久国产一区二区| 欧美精品国产亚洲| 久久人人爽人人爽人人片va| 精品久久蜜臀av无| 日韩av免费高清视频| 女人精品久久久久毛片| 亚洲欧美成人综合另类久久久| freevideosex欧美| 亚洲天堂av无毛| 国产国语露脸激情在线看| 欧美日韩视频精品一区| 久久久午夜欧美精品| 日韩av不卡免费在线播放| 国产av码专区亚洲av| 满18在线观看网站| 午夜福利在线观看免费完整高清在| 少妇高潮的动态图| 亚洲,一卡二卡三卡| 亚洲欧洲日产国产| 天天影视国产精品| 久久亚洲国产成人精品v| 18禁在线播放成人免费| 少妇的逼好多水| 国产免费视频播放在线视频| 一本色道久久久久久精品综合| 亚洲综合色惰| 日本午夜av视频| 中文欧美无线码| 国产午夜精品久久久久久一区二区三区| 热99久久久久精品小说推荐| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡人人爽人人夜夜| 永久免费av网站大全| 国产黄频视频在线观看| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 成人毛片a级毛片在线播放| 男的添女的下面高潮视频| 国产成人freesex在线| 国产在线免费精品| 国产探花极品一区二区| 内地一区二区视频在线| 美女中出高潮动态图| 午夜福利,免费看| 国产av一区二区精品久久| 蜜桃久久精品国产亚洲av| 国产精品麻豆人妻色哟哟久久| 精品99又大又爽又粗少妇毛片| 建设人人有责人人尽责人人享有的| 午夜福利影视在线免费观看| 中文字幕最新亚洲高清| 免费av中文字幕在线| 亚洲av电影在线观看一区二区三区| 男女国产视频网站| 亚洲欧美色中文字幕在线| 91久久精品电影网| 我的老师免费观看完整版| 黄色配什么色好看| 亚洲无线观看免费| 亚洲欧美成人精品一区二区| 高清视频免费观看一区二区| 欧美人与善性xxx| 欧美激情国产日韩精品一区| 女性生殖器流出的白浆| 午夜免费观看性视频| 日韩欧美一区视频在线观看| 97超碰精品成人国产| 国产精品国产av在线观看| 久久久a久久爽久久v久久| 狠狠精品人妻久久久久久综合| 91精品国产九色| 在线观看免费高清a一片| 免费观看性生交大片5| 男女高潮啪啪啪动态图| 狂野欧美激情性xxxx在线观看| 伦理电影免费视频| 丰满乱子伦码专区| 午夜久久久在线观看| 18禁裸乳无遮挡动漫免费视频| 色哟哟·www| 亚洲色图 男人天堂 中文字幕 | 免费高清在线观看视频在线观看| 母亲3免费完整高清在线观看 | 日日爽夜夜爽网站| 五月玫瑰六月丁香| 国产极品天堂在线| 边亲边吃奶的免费视频| 亚洲一区二区三区欧美精品| 汤姆久久久久久久影院中文字幕| 亚洲av国产av综合av卡| 亚洲国产av新网站| 三级国产精品欧美在线观看| 国产在线视频一区二区| 国产免费现黄频在线看| 欧美精品人与动牲交sv欧美| 中文天堂在线官网| 久久热精品热| 欧美精品一区二区大全| 99精国产麻豆久久婷婷| 免费少妇av软件| av视频免费观看在线观看| 男女无遮挡免费网站观看| 欧美+日韩+精品| 伦理电影大哥的女人| 久久久久久久久久人人人人人人| 精品国产露脸久久av麻豆| 成人无遮挡网站| 黄色视频在线播放观看不卡| 国产精品国产三级国产专区5o| 丝瓜视频免费看黄片| 亚洲人成网站在线观看播放| 中文字幕久久专区| 99久久人妻综合| 18+在线观看网站| 亚洲国产欧美日韩在线播放| 黄色视频在线播放观看不卡| 国产精品久久久久久精品古装| 国产一级毛片在线| 免费看av在线观看网站| av黄色大香蕉| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 国产精品秋霞免费鲁丝片| 亚洲av.av天堂| 亚洲一级一片aⅴ在线观看| 亚洲国产av影院在线观看| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片| xxx大片免费视频| 久久 成人 亚洲| 日日摸夜夜添夜夜爱| 能在线免费看毛片的网站| a 毛片基地| 亚洲精品成人av观看孕妇| 内地一区二区视频在线| 欧美老熟妇乱子伦牲交| 人妻制服诱惑在线中文字幕| 黄色一级大片看看| 免费观看在线日韩| 日日啪夜夜爽| 男女无遮挡免费网站观看| 男女免费视频国产| 最黄视频免费看| 亚洲内射少妇av| 久久久国产一区二区| 综合色丁香网| 一级a做视频免费观看| 综合色丁香网| 美女中出高潮动态图| 精品一区二区三区视频在线| 一边亲一边摸免费视频| 飞空精品影院首页| 中文字幕av电影在线播放| 日本爱情动作片www.在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲婷婷狠狠爱综合网| 亚洲欧美中文字幕日韩二区| 中文字幕精品免费在线观看视频 | 成年美女黄网站色视频大全免费 | 少妇的逼水好多| 免费人成在线观看视频色| 国产免费福利视频在线观看| 久久免费观看电影| 成人毛片a级毛片在线播放| 亚洲av中文av极速乱| 草草在线视频免费看| 日韩中文字幕视频在线看片| 伦理电影免费视频| 一区二区三区乱码不卡18| 秋霞在线观看毛片| 久久国产精品男人的天堂亚洲 | 蜜桃久久精品国产亚洲av| 又黄又爽又刺激的免费视频.| 免费看光身美女| 成人毛片60女人毛片免费| 亚洲精品日韩av片在线观看| 色婷婷av一区二区三区视频| 国产男女内射视频| 国产黄片视频在线免费观看| 亚洲精品第二区| 999精品在线视频| 18禁动态无遮挡网站| 久久精品熟女亚洲av麻豆精品| 国产日韩欧美亚洲二区| av专区在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美精品自产自拍| 国产精品一国产av| 国产精品偷伦视频观看了| 少妇人妻 视频| 人人妻人人澡人人看| 日韩强制内射视频| 国语对白做爰xxxⅹ性视频网站| 日韩成人av中文字幕在线观看| 91在线精品国自产拍蜜月| 一本一本综合久久| 日韩 亚洲 欧美在线| 成年av动漫网址| 热re99久久国产66热| 亚洲综合精品二区| 亚洲欧美日韩另类电影网站| 久久毛片免费看一区二区三区| 最近中文字幕2019免费版| 91国产中文字幕| 一级二级三级毛片免费看| 国产黄色视频一区二区在线观看| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 久久热精品热| 日本午夜av视频| 欧美另类一区| 丰满少妇做爰视频| 久久精品国产亚洲网站| 极品少妇高潮喷水抽搐| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 国产一区二区在线观看av| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 中文字幕免费在线视频6| 又黄又爽又刺激的免费视频.| 日本与韩国留学比较| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院 | 成人免费观看视频高清| 国产片内射在线| 久久久久网色| 最近中文字幕2019免费版| 精品熟女少妇av免费看| 黄色毛片三级朝国网站| 国产一区二区三区综合在线观看 | 国产女主播在线喷水免费视频网站| 青春草亚洲视频在线观看| 国产亚洲精品第一综合不卡 | 99国产综合亚洲精品| 男女国产视频网站| 亚洲无线观看免费| 久久青草综合色| 99热这里只有精品一区| 午夜av观看不卡| 丰满饥渴人妻一区二区三| 亚洲第一区二区三区不卡| 亚洲国产最新在线播放| 精品酒店卫生间| 精品少妇久久久久久888优播| videos熟女内射| av在线观看视频网站免费| 中文字幕av电影在线播放| 久久久欧美国产精品| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| 夫妻午夜视频| 熟女av电影| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图 | 人体艺术视频欧美日本| 久久午夜综合久久蜜桃| 亚洲性久久影院| 国产精品免费大片| av在线app专区| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 99热国产这里只有精品6| 亚洲人与动物交配视频| 欧美激情极品国产一区二区三区 | 亚洲婷婷狠狠爱综合网| 99国产精品免费福利视频| 成人国产av品久久久| 成人国产麻豆网| 女性被躁到高潮视频| 成年美女黄网站色视频大全免费 | 欧美97在线视频| 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 日本vs欧美在线观看视频| 久久久久网色| 欧美日韩一区二区视频在线观看视频在线| 91在线精品国自产拍蜜月| 女人久久www免费人成看片| 18禁在线播放成人免费| 国产成人精品福利久久| 丰满乱子伦码专区| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 欧美 亚洲 国产 日韩一| 免费观看在线日韩| 我要看黄色一级片免费的| 狠狠婷婷综合久久久久久88av| 久久韩国三级中文字幕| 插逼视频在线观看| 能在线免费看毛片的网站| 插逼视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久久a久久爽久久v久久| 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 99热6这里只有精品| 高清黄色对白视频在线免费看| 卡戴珊不雅视频在线播放| 麻豆成人av视频| 国产成人精品婷婷| 少妇的逼水好多| 欧美精品国产亚洲| 热99久久久久精品小说推荐| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 日本wwww免费看| 亚洲欧美清纯卡通| 国产精品国产av在线观看| av免费在线看不卡| 精品亚洲成国产av| 少妇的逼好多水| 久久久久久久亚洲中文字幕| 国产国语露脸激情在线看| 婷婷成人精品国产| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久| 亚洲国产精品成人久久小说| 国产在线免费精品| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 国精品久久久久久国模美| 热99久久久久精品小说推荐| 日本猛色少妇xxxxx猛交久久| 久久久国产欧美日韩av| 国产伦精品一区二区三区视频9| 国产一区有黄有色的免费视频| 久久精品国产自在天天线| 少妇熟女欧美另类| 91久久精品电影网| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 91精品伊人久久大香线蕉| 尾随美女入室| 美女xxoo啪啪120秒动态图| 97在线人人人人妻| 国产伦精品一区二区三区视频9| 午夜精品国产一区二区电影| 少妇丰满av| 亚洲精品成人av观看孕妇| 精品久久久久久久久亚洲| 少妇 在线观看| 寂寞人妻少妇视频99o| 嫩草影院入口| 国产男女超爽视频在线观看| a级毛片黄视频| 国产免费一级a男人的天堂| 婷婷色综合www| 高清午夜精品一区二区三区| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 色网站视频免费| 水蜜桃什么品种好| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 久久午夜福利片| 色94色欧美一区二区| 亚洲情色 制服丝袜| 欧美变态另类bdsm刘玥| 成人国产av品久久久| 99热网站在线观看| 日日啪夜夜爽| 久久99精品国语久久久| 内地一区二区视频在线| 精品一区二区免费观看| 亚洲人成网站在线播| 日本色播在线视频| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 黄色视频在线播放观看不卡| 美女主播在线视频| a级毛色黄片| 三级国产精品欧美在线观看| 人妻少妇偷人精品九色| 国产欧美日韩综合在线一区二区| 嘟嘟电影网在线观看| 超色免费av| 欧美丝袜亚洲另类| 久久久亚洲精品成人影院| 嘟嘟电影网在线观看| 国产 一区精品| 国产视频内射| 中文欧美无线码| 人妻系列 视频| 亚洲国产av影院在线观看| 国产深夜福利视频在线观看| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 欧美人与性动交α欧美精品济南到 | 最近2019中文字幕mv第一页| 久久免费观看电影| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠久久av| 99热这里只有精品一区| 国产精品秋霞免费鲁丝片| av在线app专区| av免费在线看不卡| 国产伦理片在线播放av一区| 久久午夜综合久久蜜桃| 一个人看视频在线观看www免费| 一区二区三区乱码不卡18| av.在线天堂| 国产在视频线精品| 国产免费一级a男人的天堂| 欧美成人精品欧美一级黄| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 欧美bdsm另类| 天天影视国产精品| 日韩中文字幕视频在线看片| 男人添女人高潮全过程视频| 亚洲内射少妇av| 日韩熟女老妇一区二区性免费视频| 国产成人a∨麻豆精品| 亚洲中文av在线| 热re99久久国产66热| 欧美日本中文国产一区发布| 精品久久国产蜜桃| 日韩电影二区| 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 少妇被粗大的猛进出69影院 | 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| h视频一区二区三区| 成人国产av品久久久| 久热久热在线精品观看| 亚洲天堂av无毛| 免费黄网站久久成人精品| 97超视频在线观看视频| 精品久久久噜噜| 色吧在线观看| 免费看不卡的av| 免费大片18禁| www.av在线官网国产| 国产av国产精品国产| 精品人妻偷拍中文字幕| 热re99久久精品国产66热6| 精品国产乱码久久久久久小说| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 国产一区二区三区av在线| 成年av动漫网址| 日韩大片免费观看网站| 简卡轻食公司| 看免费成人av毛片| 99久久综合免费| 老司机影院毛片| 男人爽女人下面视频在线观看| 大香蕉久久成人网| 久久久久久人妻| 搡老乐熟女国产| 另类亚洲欧美激情| 最后的刺客免费高清国语| 寂寞人妻少妇视频99o| 欧美 亚洲 国产 日韩一| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 日韩成人伦理影院| 丝袜美足系列| 午夜日本视频在线| 99热这里只有精品一区| 精品一区在线观看国产| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 成人黄色视频免费在线看| 男人添女人高潮全过程视频| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o| 777米奇影视久久| 人妻 亚洲 视频| 夜夜骑夜夜射夜夜干| 制服丝袜香蕉在线| 欧美成人午夜免费资源| 18禁裸乳无遮挡动漫免费视频| 国产精品人妻久久久久久| 免费观看性生交大片5| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| 久久人人爽人人爽人人片va| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91精品三级在线观看|