王 平, 陳舉林
(1.泰安市農(nóng)業(yè)科學(xué)研究院,山東泰安 271000;2.山東農(nóng)業(yè)大學(xué),山東泰安 271000)
?
植物氮素吸收過(guò)程研究進(jìn)展
王 平1,2, 陳舉林1
(1.泰安市農(nóng)業(yè)科學(xué)研究院,山東泰安 271000;2.山東農(nóng)業(yè)大學(xué),山東泰安 271000)
氮素是植物生長(zhǎng)需要的重要元素之一,是蛋白質(zhì)、核酸、磷脂等植物生長(zhǎng)發(fā)育所必需物質(zhì)的組成成分,是植物需求量最大的營(yíng)養(yǎng)元素。氮在植物生命活動(dòng)中占有重要的地位,因而具有“生命的元素”之稱[1]。1994年美國(guó)著名植物遺傳育種家、諾貝爾和平獎(jiǎng)獲得者Borlang博士斷言,全世界作物產(chǎn)量增加的50%來(lái)自化肥的施用,其中氮肥占1/2以上。
1植物生長(zhǎng)對(duì)氮素的需求
氮的需求就是植物從土壤中吸收氮,用于滿足植物生長(zhǎng)和同化合成新組織所需求的氮量。氮需求主要受植株地上部生物量的調(diào)節(jié)。植物地上部的生物量大,長(zhǎng)勢(shì)高,不斷產(chǎn)生新的組織,對(duì)氮的需求大[7]。地上部生長(zhǎng)作為一個(gè)庫(kù),它的大小決定了植物需吸收多少氮素以滿足生長(zhǎng)[8]。
氮素吸收由植物生長(zhǎng)的氮素需求決定。當(dāng)?shù)毓?yīng)不限制植物生長(zhǎng)時(shí),植物地上部的生長(zhǎng)在整株水平上決定氮的吸收。作物對(duì)氮的需求通過(guò)植物氮濃度體現(xiàn),氮濃度在最大氮濃度(植物本身所能累積的最大氮量)和最小氮濃度(當(dāng)?shù)陀诖酥禃r(shí)植物不能存活)之間變化。氮的濃度受地上部生物量的影響。地上部全氮濃度和生物量之間存在稀釋效應(yīng),即地上部生物量的增加,氮濃度下降,造成由于生長(zhǎng)產(chǎn)生的氮需求。地上部的旺盛生長(zhǎng)又通過(guò)反饋?zhàn)饔么龠M(jìn)根系對(duì)氮素的吸收[9-10]。植物根系吸收的礦質(zhì)養(yǎng)分在植物體內(nèi)可以不斷循環(huán)和再循環(huán)。
2植物生長(zhǎng)對(duì)氮素的吸收
植株根系的建成既受基因的控制,又有很大的可塑性,即根系發(fā)育不僅受外界環(huán)境因素的影響,而且受植株本身生理狀況的調(diào)節(jié)。也就是說(shuō),植株對(duì)氮素的吸收過(guò)程既受基因的控制,又受到外界環(huán)境因素的影響。
3植物氮素吸收過(guò)程的影響因素
3.2激素對(duì)氮素吸收過(guò)程的調(diào)控激素對(duì)小麥根系吸收氮素具有調(diào)控作用,主要有細(xì)胞分裂素、生長(zhǎng)素、脫落酸等。生長(zhǎng)素通過(guò)韌皮部從地上部向根中的運(yùn)輸影響側(cè)根的發(fā)生。外源生長(zhǎng)素對(duì)側(cè)根的發(fā)生有促進(jìn)作用[39]。細(xì)胞分裂素和脫落酸在一定程度上降低根系的生長(zhǎng)[40];赤霉素沒(méi)有顯著影響;乙烯則通過(guò)調(diào)節(jié)生長(zhǎng)素的代謝而起一定的作用。
4展望
植物氮素吸收能力的高低直接影響其生長(zhǎng)狀態(tài),對(duì)植物的生長(zhǎng)發(fā)育具有重要的影響。植物對(duì)氮素的吸收既受到基因型的影響,又受到環(huán)境條件的調(diào)控。因此,下一步應(yīng)加強(qiáng)對(duì)氮素吸收效率基因型的選育,優(yōu)化種植環(huán)境,提高植物對(duì)氮素的吸收利用。
參考文獻(xiàn).
[1] 李合生.現(xiàn)代植物生理學(xué)[M].北京:高等教育出版社,2006:71-75.
[2] LEA P J,AZEVEDO R A.Nitrogen use efficiency.1.Uptake of nitrogen from the soil[J].Annals of applied biology,2006,49(3):243-247.
[3] 段英華,張亞麗,沈其榮.水稻根際的硝化作用與水稻的硝態(tài)氮營(yíng)養(yǎng)[J].土壤學(xué)報(bào),2004,41(5):803-809.
[4] 宋奇超,曹鳳秋,鞏元勇,等.高等植物氨基酸吸收與轉(zhuǎn)運(yùn)及生物學(xué)功能的研究進(jìn)展[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(6):1507-1517.
[5] 王宇通,邵新慶,黃欣穎,等.植物根系氮吸收過(guò)程的研究進(jìn)展[J].草業(yè)科學(xué),2010,27(7):105-111.
[6] 樊劍波,張亞麗,王東升,等.水稻氮素高效吸收利用機(jī)理研究進(jìn)展[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,31(2):129-134.
[7] GABRIELLE B,DENOROY P,GOSSE G,et al.Development and evaluation of a CERES-type model for winter oilseed rape[J].Field Crops Res,1998,7:95-111.
[8] COOPER H D,CLARKSON D T.Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-apossible mechanism integrating shoot and root in the regulation of nutrient uptake[J].J of Exp Bot,1989,40:753-762.
[9] HERMANS C,HAMMOND J P,WHITE P J,et al.How do plants respond to nutrient shortage by biomass allocation[J].Trends in plant science,2006,11(12):610-617.
[10] BOUSSADIA O,STEPPE K,ZGALLAI H,et al.Effects of nitrogen deficiency on leaf photosynthesis,carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’[J].Scientia horticulturae,2010,123:336-342.
[11] 茚麗萍,黃勤妮,吳平.植物營(yíng)養(yǎng)分子生物學(xué)及信號(hào)轉(zhuǎn)導(dǎo)[M].北京:科學(xué)出版社,2006(9):1-2.
[12] GUO S W,CHEN G,ZHOU Y,et al.Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice[J].Plant soil,2007,296:115-124.
[13] 康清,馬曉林,徐隆華,等.氮循環(huán)及植物對(duì)氮素吸收特點(diǎn)[J].青海草業(yè),2014,23(2):23-25.
[14] 林興軍,陳鵬,孫燕,等.咖啡硝態(tài)氮代謝研究進(jìn)展[J].熱帶農(nóng)業(yè)科學(xué),2015,35(3):100-105.
[15] GLASS A D M.Nitrogen use efficiency of crop plants:Physiological constraints upon nitrogen absorption[J].Crit Rev Plant Sci,2003,22:453-470.
[16] 王超,項(xiàng)超,曲麗君,等.水稻氮吸收轉(zhuǎn)運(yùn)利用生理機(jī)制及耐低氮遺傳基礎(chǔ)研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(3):1-9.
[17] 張鵬,張然然,都韶婷.植物體對(duì)硝態(tài)氮的吸收轉(zhuǎn)運(yùn)機(jī)制研究進(jìn)展[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(3):752-762.
[18] CRAWFORD N M,GLASS A D M.Molecular and physiological aspects of nitrate uptake in plants[J].Trends Plant Sci,1998,3:389-395.
[19] DANIEL-VEDELE F,FILLEUR S,CABOCHE M.Nitrate transport:A key step in nitrate assimilation[J].Curr Opin Plant Biol,1998,3:235-239.
[20] FORDE B G.Local and long-ranges ignaling pathways regulating plant responses to nitrate[J].Annu Rev Plant Biol,2002,53:203-224.
[21] OKAMOTO M,KUMAR A,LI W,et al.High-affinity nitrate transport in roots ofArabidopsisdepends on expression of the NAR2-Like GeneAtNRT3.1[J].Plant physiology,2006,40(3):1036-1046.
[22] LIU J X,CHEN F J,OLOKHNUUD C L,et al.Root size and nitrogen-uptake activity in two maize (Zeamays) inbred lines differing in nitrogen-use efficiency[J].J Plant Nutr Soil Sci,2009,172(2):230-236.
[23] 春亮,陳范駿,張福鎖,等.不同氮效率玉米雜交種的根系生長(zhǎng)、氮素吸收及產(chǎn)量形成[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2005,11(5):615-619.
[24] SATTELMACHER B,KLOTZ F,MARSCHNER H.Influence of the nitrogen ievel on root growth and morphology of two potato varieties dieffering in nitrogen acquisition[J].Plant soil,1990,123:131-137.
[25] 魏海燕,張洪程,張勝飛,等.不同氮利用效率水稻基因型的根系形態(tài)與生理指標(biāo)的研究[J].作物學(xué)報(bào),2008,34(3):429-436.
[28] 張亞麗,樊劍波,段英華,等.不同基因型水稻氮利用效率的差異及評(píng)價(jià)[J].土壤學(xué)報(bào),2008,45(2):267-273.
[29] 王東升,張亞麗,陳石,等.不同氮效率水稻品種增硝營(yíng)養(yǎng)下根系生長(zhǎng)的響應(yīng)特征[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2007,13(4):585-590.
[30] ZHANG H M,RONG H L,PILBEAM D.Signalling mechanisms underlying the morphological responses of the root system to nitrogen inArabidopsisthaliana[J].J Exp Bot,2007,58(9):2329-2338.
[31] ZHANG H,FORDE B G.AnArabidopsisMADS box gene that controls nutrient-induced changes in root architecture[J].Science,1998,279:407-409.
[32] ZHANG H,JENNINGS A,BARLOW P W,et al.Dual pathways for regulation of root branching by nitrate[J].Plant Biol,1999,96:6529-6534.
[33] WALCH-LIU P,FORDE B G.Nitrate signaling mediated by the NRT1.1 nitrate transporter antagonises L-Glutamate induced changes in root architecture[J].Plant J,2008,54:820-828.
[34] ZHAO X Q,LI Y J,LIU J Z,et al.Isolation and expression analysis of a high-affinity nitrate transporterTaNRT2.3 from roots of wheat[J].Acta botanica sinica,2004,46:347-354.
[36] VIDMAR J J,ZHUO D,SIDDIQI M Y,et al.Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley[J].Plant physiol,2000,123:307-318.
[37] ZHUO D,OKAMOTO M,VIDMAR J J,et al.Regulation of a putative high affinity nitrate transporter (AtNRT2.1) in roots ofArabidopsisthaliana[J].Plant J,1999,17:563-568.
[38]李寶珍,范曉榮,徐國(guó)華.植物吸收利用銨態(tài)氮和硝態(tài)氮的分子調(diào)控[J].植物生理學(xué)通訊,2009,45(1):80-88.
[39] 鄭冬超,夏新莉,尹偉倫.生長(zhǎng)素促進(jìn)擬南芥AtNRT1.1基因表達(dá)增強(qiáng)硝酸鹽吸收[J].北京林業(yè)大學(xué)學(xué)報(bào),2013,35(2):80-85.
[40] SIGNORA L,SMET I D,FOYER C H,et al.ABA plays a central role in mediating the regulatory effects of nitrate on root branehing inArabidopsis[J].Plant J,2001,28:655-662.
[41] GUO F Q,WANG R C,CRAWFORD N M.TheArabidopsisdual-affinity nitrate transporter geneAtNRT1.1(CHL1) is regulated by auxin in both shoots and roots[J].J Exp Bot,2002,53:835-844.
[42] LU J L,ERTL J R,CHEN C.Transcriptional regulation of nitrate reductase mRNA levels by cytokinin-abscisic acid interactions in etiolated barley leaves[J].Plant physiol,1992,98:1255-1260.
[43] SAKAKIBARA H.Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants[J].J Plant Res,2003,116:253-257.
[44] CAI C,TONG Y P.Regulation of the high-affinity ntrate transport systems in wheat roots by exogenous abscisci acid and glutamine[J].Journal of integrative plant biology,2007,12:1719-1725.
[45] GLASS A D M,SIDDIQI M Y,RUTH T J.Studies of the uptake of nitrate in barley II.Energetics[J].Plant physiol,1990,93:1585-1589.
[46] 童依平,蔡超,劉全友,等.植物吸收硝態(tài)氮的分子生物學(xué)進(jìn)展[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2004,10(4):433-440.
[47] FORDE B G.Nitrate transporters in plants:structure,function and regulation[J].Biochim biophys acta,2000,1465:219-235.
[48] 鞏元勇,瞿小青,宋奇超,等.谷氨酸調(diào)節(jié)根系形態(tài)建成的研究進(jìn)展[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2011,13(1):34-43.
[51] THORNTON B.Inhibition of nitrate influx by glutamine in loliumperennedepends upon the contribution of the HATS to the total influx[J].J Exp Bot,2004,55:761-769.
[52] SUGIURA D,TATENO M.Optimal leaf-to-root ratio and leaf nitrogen content determined by light and nitrogen availabilities[J].PLOS ONE,2011,6(7):1-9 .
[53] MOREAU D,ALLARD V,GAJU O,et al.Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy[J].Plant physiology,2012,160:1479-1490.
[54] LILLO C.Signalling cascades integrating light enhanced nitrate metabolism[J].Biochemical journal,2008,415:11-19.
[57] BINGHAM L J,BLAEKWOOD J M,STEVENSON E A.Relationship between tissue sugar content,phloem import and lateral root initiation in wheat[J].Physiol plant,1998,103:107-113.
[58] 周詩(shī)毅,高軒,何光源,等.不同糖類對(duì)水稻硝酸鹽吸收的影響[J].華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,43(1):124-127.
摘要氮是植株生長(zhǎng)發(fā)育所需求的第一大礦質(zhì)營(yíng)養(yǎng)元素,主要通過(guò)根系從土壤吸收獲得。因此,了解植物吸收氮素的過(guò)程及影響因素對(duì)明確氮素吸收機(jī)理,提高氮素吸收利用,促進(jìn)植物生長(zhǎng)具有重要意義。土壤中的氮素主要以無(wú)機(jī)態(tài)氮)和小分子有機(jī)態(tài)氮的形式存在,其中植物所能吸收利用的主要是態(tài)氮素。該研究介紹了植物對(duì)氮素的需求吸收過(guò)程及其影響因素的研究進(jìn)展。這對(duì)認(rèn)識(shí)氮素吸收機(jī)理、提高氮素吸收效率具有重要的意義。
關(guān)鍵詞氮素需求;氮素吸收;硝態(tài)氮
Research Progress on Nitrogen Absorption in Plant
WANG Ping1,2,CHEN Ju-lin1(1.Tai’an Academy of Agricultural Sciences,Tai’an,Shandong 271000; 2.Shandong Agricultural University,Tai’an,Shandong 271000)
AbstractNitrogen is the first mineral nutrient element in plant growth and development,and plants uptake nitrogen from soil through root.Therefore,it is important to understand the process and the influencing factors of plant absorption of nitrogen,which can improve the absorption of nitrogen and promote plants growth.The nitrogen in soil mainly exists in the form of inorganic nitrogen) and small molecule organic nitrogen,in which the plant can absorb and utilize thestate nitrogen.The research progress of plants’ requirement onabsorption process and its influencing factors were introduced,which has important significance for understanding the mechanism of nitrogen absorption and improving nitrogen absorption efficiency.
Key wordsNitrogen demand; Nitrogen absorption; Nitrate nitrogen
收稿日期2015-12-04
作者簡(jiǎn)介王平(1981- ),男,山東萊蕪人,高級(jí)農(nóng)藝師,博士,從事玉米高產(chǎn)栽培及遺傳育種方面的研究。
基金項(xiàng)目山東省自然基金項(xiàng)目(ZR2013CQ001);山東農(nóng)業(yè)大學(xué)作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放性基金項(xiàng)目(2013KF14);山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)項(xiàng)目(SDAIT-01-022-03);山東省農(nóng)科院院地科技合作引導(dǎo)計(jì)劃項(xiàng)目(2015YDHZ07);泰安市農(nóng)業(yè)良種工程項(xiàng)目(2015LZ07)。
中圖分類號(hào)S 501
文獻(xiàn)標(biāo)識(shí)碼A
文章編號(hào)0517-6611(2016)01-033-03