• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modeling study of effective radiative forcing and climate response due to increased methane concentration

    2016-02-23 06:45:52XIEBingZHANGHuaYANGDongDongWANGZhiLi
    Advances in Climate Change Research 2016年4期

    XIE Bing,ZHANG Hua,*,YANG Dong-Dong,WANG Zhi-Li

    aLaboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing 210044,China

    cCollege of Atmospheric Science,Nanjing University of Information Science&Technology,Nanjing 210044,China

    dState Key Laboratory of Severe Weather&Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences,Beijing 100081,

    China

    A modeling study of effective radiative forcing and climate response due to increased methane concentration

    XIE Binga,b,ZHANG Huaa,b,*,YANG Dong-Dongc,WANG Zhi-Lid

    aLaboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing 210044,China

    cCollege of Atmospheric Science,Nanjing University of Information Science&Technology,Nanjing 210044,China

    dState Key Laboratory of Severe Weather&Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences,Beijing 100081,

    China

    An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing(ERF)due to increased methane concentration since pre-industrial times and its impacts on climate.The ERF of methane from 1750 to 2011 was 0.46 W m-2by taking it as a well-mixed greenhouse gas,and the inhomogeneity of methane increased its ERF by about 0.02 W m-2. The change of methane concentration since pre-industrial led to an increase of 0.31°C in global mean surface air temperature and 0.02 mm d-1in global mean precipitation.The warming was prominent over the middle and high latitudes of the Northern Hemisphere(with a maximum increase exceeding 1.4°C).The precipitation notably increased(maximum increase of 1.8 mm d-1)over the ocean between 10°N and 20°N and signifcantly decreased(maximum decrease>-0.6 mm d-1)between 10°S and 10°N.These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone(ITCZ).Cloud cover signifcantly increased(by approximately 4%)in the high latitudes in both hemispheres,and sharply decreased(by approximately 3%)in tropical areas.

    Methane;Effective radiative forcing;Climate change

    1.Introduction

    Global surface air temperatures have increased due to increases in emissions of anthropogenic greenhouse gases(GHGs)since the start of the industrial era(IPCC,2013; Zhang et al.,2014b).Methane(CH4),with a relatively short lifetime(about 12 years),is the most important anthropogenic GHG besides CO2(IPCC,2013).Although the burden of CH4in the atmosphere is signifcantly smaller than that of CO2,the radiative effciency(RE)of CH4is 26.5 times as much as that of CO2(Yashiro et al.,2008;Renaud and Caillol,2011).The absorption of CH4on radiative fux infuence the temperature, especially near the Earth's surface.

    The atmospheric CH4concentration almost doubled from 1750 to 2011,the volume mixing ratio from 722×10-9to 1803×10-9(IPCC,2013).CH4increased rapidly until 2000. Then,after a decade of stabilization or slightly decreasing concentrations,the global CH4concentration showed a well-defned increase again in 2007(Dlugokencky et al.,2003; Rigby et al.,2008),measured using ground-based observations(Cunnold et al.,2002;Langenfelds et al.,2002; Dlugokencky et al.,2009)and aircraft profles(Wecht et al., 2012;Worden et al.,2012).The IPCC Fifth Assessment Report(IPCC,2013)showed that the radiative forcing(RF)of CH4was 0.48±0.05 W m-2from 1750 to 2011 based on Myhre et al.(1998).CH4is well mixed in the atmosphere,but its concentrations vary with latitude and altitude,contributing to 2%of the uncertainty in its RF(Freckleton et al.,1998).

    In this study,we estimated the effective radiative forcing (ERF)and climate response due to changes in atmospheric methane concentration from 1750 to 2011 using the general circulation model BCC_AGCM2.0 from the National Climate Center of China.

    2.Descriptions of model and method

    2.1.Model

    We used the general circulation model BCC_AGCM2.0 developed by the National Climate Center of China.The horizontal resolution of the model is approximately 2.8°×2.8°,and the vertical direction includes 26 layers,with a rigid lid at 2.9 hPa.This model was based on the Community Atmosphere Model Version 3(CAM3.0)from the National Center for Atmospheric Research,U.S.BCC_AGCM2.0 contains several enhancements in the physics: BCC_AGCM2.0 uses the radiation scheme of BCC_RAD (Beijing Climate Center Radiative Transfer Model),developed by Zhang et al.(2003,2006a,2006b),and the cloud overlap scheme of the Monte Carlo independent column approximation(Zhang et al.,2014a).These schemes increase the accuracy of the sub-grid cloud structure and its radiative transfer process.Further details on BCC_AGCM2.0 can be found in Wu et al.(2010).The model has been used to study the RFs and the subsequent effects on climate due to aerosols(e.g., Zhang et al.,2012;Wang et al.,2013a,2013b,2014,2015; Zhao et al.,2015)and tropospheric ozone(Xie et al.,2016).

    2.2.Satellite data

    CH4profle data observed by the Atmospheric Infrared Sounder(AIRS)(URL:http://www.nasa.gov/mission_pages/ aqua)was used.AIRS was onboard the Aqua spacecraft and launched by the National Aeronautic and Space Administration(NASA)in May 2002.An overview of the AIRS instrument is given by Aumann et al.(2003).AIRS has 2378 channels,which cover from 649 to 1136,1217 to 1613,and 2169 to 2674 cm-1with high spectral resolution(λ/ Δλ=1200),and the absorption band of CH4is included.The AIRS dataset used in this study is on a global spatial resolution of 1°×1°,and on vertical pressure levels from 1000 h Pa to 1 hPa(divided into 24 levels).More information about characterization and validation of methane products from AIRS can be found in Xiong et al.(2008)and Zhang et al.(2014c).

    2.3.Experimental design

    Our aim was to calculate the ERF and climate response due to changes in atmospheric CH4concentration.To this end,fve simulations(EXP1,EXP2,EXP3,EXP4,and EXP5)were conducted.EXP1,EXP2 and EXP3 were used to calculate the ERF of CH4at fxed sea surface temperature(SST)(Hurrell et al.,2008).The same model settings were used in these three simulations,only the CH4concentrations were different (Table 1 shows the details).The differences between EXP1 and EXP2(EXP2 minus EXP1)were regarded as the ERF of well mixed CH4,and differences between EXP1 and EXP3 (EXP3 minus EXP1)were the ERF of CH4with spatial variation.Each simulation was run for 15 years.Kristj?ansson et al. (2005)reported that,after a period of adjustment(generally 5 years for the model with prescribed SST and 30 years for the model with a coupled slab ocean model),the global mean surface air temperature reached equilibrium.Therefore,the results from the last 10 years of the 15-year simulations of EXP1,EXP2 and EXP3 were used to calculate the ERF,as follows:

    where ΔFis the net radiation fux(the difference between incoming and outgoing shortwave and longwave radiative fux)at the top of the atmosphere(TOA).

    EXP4 and EXP5 were used to calculate the climate response of CH4.We used the same CH4volume mixture ratios in EXP4 and EXP5 as in EXP1 and EXP2,respectively. However,to consider the feedback of the oceans to CH4forcing,a slab ocean model was coupled with BCC_AGCM2.0 in the simulations instead of using the fxed SST.The two simulations were run for 70 years,and we used the results from the last 40 years to discuss the climate response due to changes in CH4concentration.

    3.Simulation results and analysis

    3.1.ERF

    Human activities have increased anthropogenic emissions of CH4since pre-industrial times,leading to increases in its atmospheric concentration and,subsequently,changes in itsERF.Fig.1 shows the simulated ERF(the difference between EXP2 and EXP1)due to change in CH4as well mixed greenhouse gas(WMGHG).A well-defned positive ERF was generally observed near 60°in both hemispheres,with the maximum value of 7 W m-2.However,the ERF was negative in western Siberia,southern Africa,Greenland,and most parts of South America,with a value of approximately-6 W m-2over southern Africa.The negative ERF in those areas might be explained by an increase in low cloud cover.The simulated global mean CH4ERF was 0.46 W m-2,which is consistent with the value reported in IPCC AR5.As Fig.2 shown,CH4concentrations vary with latitude and sharply decrease above the tropopause.In lower troposphere,the concentration of methane was mainly in zonal division,and asymmetry on the Northern and Southern Hemispheres.The volume mixing ratio of CH4was reduced from north to south.The asymmetry of CH4concentration was becoming less distinct with the increase of altitude.In the stratosphere,the volume mixing ratio was symmetrically distributed in both hemispheres,and it got less with the increasing latitude.These spatial variations of CH4had little impact on ERF(less than 0.02 W m-2).

    Table 1Experimental design.

    Fig.1.Distribution of the effective radiative forcing(ERF)of well mixed atmospheric methane from 1750 to 2011(units:W m-2).Shaded area represents the value at 0.05 signifcance level.

    Fig.2.Zonal distribution of the volume mixing ratio of CH4in 2011(×10-6), observed by AIRS.

    3.2.Surface air temperature and cloud cover

    CH4is a key long-lived GHG that strongly absorbs longwave radiation.The ERF of CH4is generally positive,leading to a warming effect on the Earth's climate system and thus the surface.The difference between EXP5 and EXP4 showed that an increase in the atmospheric CH4concentration since preindustrial times caused an increase of 0.31°C in global mean surface air temperature.As shown in Fig.3a,the surface air temperature increased over the globe except for the small decreases in several high-latitude areas in both hemispheres. Warming over the middle latitudes of the Northern Hemisphere was prominent,with the maximum temperature increase exceeding 1.4°C.There was also signifcant warming (approximately 1.0°C)in the Antarctic area.Fig.3b shows the response of the surface net radiation fux(SNRF)due to the change in CH4.The distribution of change in SNRF was consistent with that of surface temperature over the ocean. There were signifcant increases in SNRF over the high latitudes in both hemispheres.For example,the SNRF over the North Pacifc Ocean increased by more than 6.0 W m-2,and the surface air temperature also increased signifcantly. Changes in cloud cover and heat transportation can also affect surface air temperature.Although the SNRF showed a welldefned decrease over the Indian Ocean,South Pacifc,and the high latitudes of the Southern Hemisphere,the surface air temperature in the same regions did not change accordingly.

    Fig.3c and d shows the changes in low-level(below 680 hPa)and high-level(above 440 hPa)cloud cover.Changes in cloud cover directly affect SNRF,thereby infuencing surface air temperature.Increases in low-level cloud result in decreases in SNRF and a cooling effect at the surface,whereas increases in high-level cloud cause increases in surface air temperature due to high-level cloud's warming effect on the Earth's climate system.As shown in Fig.1,the ERF was clearly negative in the western and southern regions of South America,and low-level cloud cover in these areas increased by about 20%(Fig.3c),resulting in marked decreases in surface temperature due to the scattering effect of low-level clouds to solar radiation.The increase in temperature observed over the eastern Japan Sea and Mediterranean regions might be due to increase in high-level cloud cover(Fig.3d).

    Fig.3e and f shows the zonally averaged distributions of the changes in cloud cover and relative humidity.There is a high level of correlation between the two variables.The relative humidity showed signifcant increases in most of the troposphere near 70°N and between 10°N and 20°N in the lower troposphere in the Southern Hemisphere,in the higher troposphere in tropical areas,and in most of the troposphere over the Antarctic,and the cloud cover increased by 0.2%-1% in these regions.These increases led to decreases in the SNRF (Fig.3b).In contrast,the relative humidity and cloud cover clearly decreased in the most of troposphere near 60°S and between 30°N and 40°N in the middle to upper troposphere near the equator and in most of stratosphere,resulting in increases in the SNRF(Fig.3b)in some areas.

    Fig.3.Climate responses due to changes in atmospheric CH4concentration since pre-industrial times.Distribution of(a)surface air temperature,(b)surface net radiation fux,(c)low cloud,and(d)high cloud.Zonal average distribution of(e)cloud and(f)relative humidity.Shaded area represents the values at 0.05 signifcance level.

    3.3.Precipitation and surface water fux

    The increase in CH4concentration resulted in a warming effect in the atmosphere and at the surface due to positive ERF at the TOA,which caused an increase of 0.02 kg m-2d-1in global mean surface water fux(SWF)(Fig.4b).The spatial distributions of the changes in SWF and SNRF were similar (Figs.2b and 3b).The SWF dramatically increased(by>0.12 kg m-2d-1)over most areas of the ocean,especially in the northern Pacifc,western Atlantic,and equatorial Pacifc. In contrast,the SWF showed well-defned decreases due to the decreased SNRF in most areas.In particular,the SWF decreased by approximately 0.14 kg m-2d-1in eastern South America and central Africa.

    Fig.4a shows the changes in precipitation due to CH4, which were notable in the Intertropical Convergence Zone. Precipitation signifcantly increased(by>0.5 mm d-1,with a maximum increase of 1.8 mm d-1)over the ocean between 10°N and 20°N.However,precipitation signifcantly decreased(maximum decrease>0.6 mm d-1)over the ocean between 10°S and 10°N.Hence,there was a negative correlation between changes in precipitation over the tropics in each hemisphere,with precipitation increased in the Northern Hemisphere and decreased in the Southern Hemisphere.

    Fig.4.Climate responses due to changes in atmospheric CH4concentration since pre-industrial times.Distribution of(a)precipitation and(b)surface water fux. Shaded area represents the values at 0.05 signifcance level.

    4.Conclusions

    The ERF and climate responses due to the change in atmospheric CH4concentration from pre-industrial times(1750) to 2011 were investigated using the atmospheric general circulation model BCC AGCM2.0,in combination with CH4volume mixture ratios from IPCC AR5.The global mean ERF for CH4as WMGHG was 0.46 W m-2,and the spatial variation of methane infuenced the ERF by 0.02 W m-2.The increase in atmospheric CH4led to an increase of 0.31°C and 0.02 mm d-1in global mean surface air temperature and precipitation,respectively.Warming was signifcant in the middle and high latitudes,especially in the Northern Hemisphere,with the maximum warming exceeding 1.4°C.The global distribution of change in precipitation was in line with that of changes in cloud cover,especially near the equator.The precipitation notably increased(maximum increase of 1.8 mm d-1)over the tropical regions of the Northern Hemisphere and sharply decreased(maximum decrease>-0.6 mm d-1)between 10°S and 10°N,and these changes led the precipitation cell in ITCZ to move northward.In the most of high latitudes in both hemispheres,cloud cover was signifcantly increased(by approximately 4%)and decreased (by approximately 3%)in tropical areas.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(41575002,91644211).

    Aumann,H.,Chahine,M.T.,Gautier,C.,et al.,2003.AIRS/AMSU/HSB on the Aqua mission:design,science objectives,data products,and processing systems.IEEE Trans.Geosci.Remote Sens.41,253-264.

    Cunnold,D.M.,Steele,L.P.,Fraser,P.J.,et al.,2002.In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences.J.Geophys.Res.Atmos.107.ACH20-1,Cite ID 4225.

    Dlugokencky,E.,Houweling,S.,Bruhwiler,L.,et al.,2003.Atmospheric methane levels off:temporary pause or a new steady-state.Geophys.Res. Lett.30(19),1992.http://dx.doi.org/10.1029/2003GL018126.

    Dlugokencky,E.,Bruhwiler,L.,White,J.W.C.,et al.,2009.Observational constraints on recent increases in the atmospheric CH4burden.J.Geophys. Res.Lett.36,L18803.http://dx.doi.org/10.1029/2009GL039780.

    Freckleton,R.,Highwood,E.,Shine,K.,et al.,1998.Greenhouse gas radiative forcing:effects of averaging and inhomogeneities in trace gas distribution. Q.J.R.Meteorol.Soc.124,2099-2127.

    Hurrell,J.W.,Hack,J.J.,Shea,D.,et al.,2008.A new sea surface temperature and sea ice boundary dataset for the community atmosphere modal.J. Clim.21,5145-5153.

    IPCC.Climate Change,2013.The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the IPCC.Cambridge University Press,Cambridge and New York.

    Kristj?ansson,J.E.,Iversen,T.,Kirkev?g,A.,et al.,2005.Response of the climate system to aerosol direct and indirect forcing:role of cloud feedbacks.J.Geophys.Res.110,D24206.http://dx.doi.org/10.1029/ 2005JD006299.

    Langenfelds,R.L.,Francey,R.J.,Pak,B.C.,et al.,2002.Interannual growth rate variations of atmospheric CO2and its δ13C,H2,CH4,and CO between 1992 and 1999 linked to biomass burning.Glob.Biogeochem.Cycles 16 (3),21-22.

    Myhre,G.,Highwood,E.J.,Shine,K.P.,et al.,1998.New estimates of radiative forcing due to well mixed greenhouse gases.Geophys.Res.Lett.25, 2715-2718.

    Renaud,de R.,Caillol,S.,2011.Fighting global warming:the potential of photocatalysis against CO2,CH4,N2O,CFCs,tropospheric O3,BC and other major contributors to climate change.J.Photochem.Photobiol.C 12, 1-19.

    Rigby,M.,Prinn,R.G.,Fraser,P.J.,et al.,2008.Renewed growth of atmospheric methane.Geophys.Res.Lett.35,L22805.http://dx.doi.org/ 10.1029/2008GL036037.

    Wang,Z.L.,Zhang,H.,Lu,P.,2014.Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero,evaluation against observations,and updated aerosol indirect effect.J.Geophys.Res. 119(13),8400-8417.

    Wang,Z.L.,Zhang,H.,Zhang,X.Y.,2015.Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect.Atmos.Chem.Phys.15(7),3671-3685.

    Wang,Z.L.,Zhang,H.,Jing,X.W.,et al.,2013a.Effect of non-spherical dust aerosol on its direct radiative forcing.Atmos.Res.120,112-126.

    Wang,Z.L.,Zhang,H.,Li,J.,et al.,2013b.Radiative forcing and climate response due to the presence of black carbon in cloud droplets.J.Geophys. Res.Atmos.118,3662-3675.

    Wecht,K.J.,Jacob,D.J.,Wofsy,S.C.,et al.,2012.Validation of TES methane with HIPPO aircraft observations:implications for inverse modeling of methane sources.Atmos.Chem.Phys.12,1823-1832.

    Worden,J.,Kulawik,S.,Frankenberg,C.,et al.,2012.Profles of CH4,HDO, H2O,and N2O with improved lower tropospheric vertical resolution from Aura TES radiances.Atmos.Meas.Techn.5,397-411.

    Wu,T.,Yu,R.C.,Zhang,F.,et al.,2010.The Beijing Climate Center atmospheric general circulation model:description and its performance for the present-day.Clim.Dyn.34,123-147.http://dx.doi.org/10.1007/s00382-009-0594-8.

    Xie,B.,Zhang,H.,Wang,Z.,et al.,2016.A modeling study of effective radiative forcing and climate response due to tropospheric ozone.Adv. Atmos.Sci.33(7),819-828.http://dx.doi.org/10.1007/s00376-016-5193-0.

    Xiong,X.,Barnet,C.,Maddy,E.,et al.,2008.Characterization and validation of methane products from the Atmospheric Infrared Sounder(AIRS).J. Geophys.Res.113,G00A01.http://dx.doi.org/10.1029/2007JG000500.

    Yashiro,Y.,Kadir,W.R.,Okuda,T.,et al.,2008.The effects of logging on soil greenhouse gas(CO2,CH4,and N2O)fux in a tropical rain forest, Peninsular Malaysia.Agric.For.Meteorol.148,799-806.

    Zhang,H.,Jing,X.W.,Li,J.,2014a.Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM_2.0.1.Geosci. Model Dev.7,737-754.

    Zhang,H.,Nakajima,T.,Shi,G.-Y.,et al.,2003.An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations.J.Geophys.Res.108(D20),4641.http:// dx.doi.org/10.1029/2002JD003358.

    Zhang,H.,Shi,G.,Nakajima,T.,et al.,2006a.The effects of the choice of the‘K’-interval number on radiative calculations.J.Quant.Spectrosc.Radiat. Transf.98,31-43.

    Zhang,H.,Suzuki,T.,Nakajima,T.,et al.,2006b.Effects of band division on radiative calculations.Opt.Eng.45,016002,1-10.

    Zhang,H.,Wang,Z.L.,Wang,Z.,et al.,2012.Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system.Clim.Dyn.38, 1675-1693.

    Zhang,H.,Xie,B.,Zhao,S.Y.,et al.,2014b.PM2.5 and tropospheric O3in China and an analysis of the impact of pollutant emission control.Adv. Clim.Change Res.5(3),136-141.

    Zhang,Y.,Xiong,X.Z.,Tao,J.H.,et al.,2014c.Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation.Chin.Sci.Bull.59(14),1508-1518.

    Zhao,S.Y.,Zhang,H.,Feng,S.,et al.,2015.Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol-climate model system.Int.J.Climatol.35(8),1858-1866.http://dx.doi.org/10.1002/ joc.4093.

    *Corresponding author.Laboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China.

    E-mail address:huazhang@cma.gov.cn(ZHANG H.).

    Peer review under responsibility of National Climate Center(China Meteorological Administration).

    http://dx.doi.org/10.1016/j.accre.2016.12.001

    1674-9278/Copyright?2016,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received 27 July 2016;accepted 8 December 2016 Available online 14 December 2016

    国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 中文字幕熟女人妻在线| 熟女电影av网| 一本综合久久免费| 尤物成人国产欧美一区二区三区| 成人av在线播放网站| 观看美女的网站| 欧美黄色片欧美黄色片| 午夜福利18| 亚洲专区中文字幕在线| 无限看片的www在线观看| 色av中文字幕| 51国产日韩欧美| 欧美色视频一区免费| 18美女黄网站色大片免费观看| 免费大片18禁| 国产亚洲欧美在线一区二区| 九九久久精品国产亚洲av麻豆| 麻豆成人av在线观看| 9191精品国产免费久久| 国产aⅴ精品一区二区三区波| 蜜桃亚洲精品一区二区三区| 国产成人av教育| 99精品久久久久人妻精品| 91麻豆精品激情在线观看国产| 免费看a级黄色片| 日韩人妻高清精品专区| 不卡一级毛片| 欧美三级亚洲精品| 白带黄色成豆腐渣| 国产午夜精品论理片| 国产熟女xx| 老司机深夜福利视频在线观看| 搡老熟女国产l中国老女人| 9191精品国产免费久久| 亚洲一区二区三区不卡视频| 熟妇人妻久久中文字幕3abv| 无限看片的www在线观看| 99国产精品一区二区三区| 老熟妇乱子伦视频在线观看| 国产精品国产高清国产av| 老司机在亚洲福利影院| 欧美三级亚洲精品| 欧美三级亚洲精品| 12—13女人毛片做爰片一| av在线蜜桃| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 亚洲美女黄片视频| 欧美av亚洲av综合av国产av| 无遮挡黄片免费观看| 午夜影院日韩av| 亚洲美女黄片视频| 五月伊人婷婷丁香| 真人一进一出gif抽搐免费| 长腿黑丝高跟| 一二三四社区在线视频社区8| 久久香蕉国产精品| 女生性感内裤真人,穿戴方法视频| 国产国拍精品亚洲av在线观看 | 淫秽高清视频在线观看| 国产一区二区三区在线臀色熟女| 制服丝袜大香蕉在线| 精品久久久久久久末码| 18美女黄网站色大片免费观看| 久久九九热精品免费| 三级毛片av免费| 性欧美人与动物交配| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 免费看日本二区| 法律面前人人平等表现在哪些方面| 精品久久久久久成人av| 成人av在线播放网站| 日本与韩国留学比较| 丰满乱子伦码专区| 日韩高清综合在线| 国产精品一区二区免费欧美| 午夜精品久久久久久毛片777| 色播亚洲综合网| 久久久久久久精品吃奶| 久久精品91无色码中文字幕| 真人一进一出gif抽搐免费| 日韩有码中文字幕| 两人在一起打扑克的视频| 国产单亲对白刺激| 亚洲国产中文字幕在线视频| 亚洲av电影不卡..在线观看| 欧美日韩亚洲国产一区二区在线观看| 婷婷丁香在线五月| 黄色丝袜av网址大全| 美女被艹到高潮喷水动态| 国产 一区 欧美 日韩| 成人18禁在线播放| 欧美大码av| 午夜久久久久精精品| 中文在线观看免费www的网站| 黑人欧美特级aaaaaa片| 99热这里只有是精品50| 国产aⅴ精品一区二区三区波| 99热这里只有是精品50| 99热精品在线国产| 国产伦在线观看视频一区| 老熟妇乱子伦视频在线观看| 小说图片视频综合网站| 午夜福利在线在线| 男女床上黄色一级片免费看| 最近最新中文字幕大全免费视频| 久久久久性生活片| 成人精品一区二区免费| 小说图片视频综合网站| 一a级毛片在线观看| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片| 精品无人区乱码1区二区| 在线免费观看不下载黄p国产 | 亚洲色图av天堂| 欧美不卡视频在线免费观看| 国产精品1区2区在线观看.| 1000部很黄的大片| 国产av在哪里看| 国产真人三级小视频在线观看| avwww免费| 男女床上黄色一级片免费看| 久久久久久国产a免费观看| 久久久精品欧美日韩精品| 岛国在线免费视频观看| 十八禁人妻一区二区| 女警被强在线播放| 国内精品久久久久久久电影| 久久精品国产99精品国产亚洲性色| 国产成人欧美在线观看| 尤物成人国产欧美一区二区三区| 高潮久久久久久久久久久不卡| 亚洲av中文字字幕乱码综合| 熟妇人妻久久中文字幕3abv| 欧美日韩综合久久久久久 | 久久亚洲精品不卡| 免费av毛片视频| АⅤ资源中文在线天堂| 有码 亚洲区| 香蕉丝袜av| 欧美激情在线99| 桃红色精品国产亚洲av| 真人一进一出gif抽搐免费| 狂野欧美激情性xxxx| 99久久成人亚洲精品观看| 看片在线看免费视频| 亚洲va日本ⅴa欧美va伊人久久| 在线观看66精品国产| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区久久| 九九久久精品国产亚洲av麻豆| 一二三四社区在线视频社区8| 深爱激情五月婷婷| 老鸭窝网址在线观看| 亚洲成av人片免费观看| 97超级碰碰碰精品色视频在线观看| 精品99又大又爽又粗少妇毛片 | 草草在线视频免费看| 十八禁网站免费在线| 性色av乱码一区二区三区2| 男人的好看免费观看在线视频| 成年免费大片在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产蜜桃级精品一区二区三区| 亚洲精品粉嫩美女一区| 欧美激情在线99| 在线观看免费午夜福利视频| 成人亚洲精品av一区二区| 啦啦啦韩国在线观看视频| 91在线观看av| 国产精品亚洲一级av第二区| 日本五十路高清| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 午夜福利在线观看吧| 热99re8久久精品国产| 黄色丝袜av网址大全| 韩国av一区二区三区四区| 精品不卡国产一区二区三区| 国产男靠女视频免费网站| 久久久久久久久久黄片| 欧美成人性av电影在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美中文综合在线视频| 国产探花在线观看一区二区| 网址你懂的国产日韩在线| 欧美日本亚洲视频在线播放| 亚洲熟妇熟女久久| 日本a在线网址| 成人性生交大片免费视频hd| 中文在线观看免费www的网站| 国产伦一二天堂av在线观看| 国产99白浆流出| av欧美777| 99国产精品一区二区蜜桃av| 久久精品国产99精品国产亚洲性色| 日日夜夜操网爽| 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 国产黄a三级三级三级人| 国产精华一区二区三区| 特大巨黑吊av在线直播| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| av欧美777| 天天添夜夜摸| 毛片女人毛片| 法律面前人人平等表现在哪些方面| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 国产午夜精品久久久久久一区二区三区 | 午夜福利视频1000在线观看| 人妻久久中文字幕网| 少妇的逼水好多| 国产极品精品免费视频能看的| 国产成人系列免费观看| 国产精品日韩av在线免费观看| 一区二区三区免费毛片| 欧美3d第一页| 可以在线观看毛片的网站| 波野结衣二区三区在线 | 成人特级av手机在线观看| 夜夜爽天天搞| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 免费av不卡在线播放| 男女午夜视频在线观看| 久久久久久久午夜电影| 久久久久国内视频| 国产成人欧美在线观看| 啦啦啦韩国在线观看视频| 亚洲av二区三区四区| 亚洲精品在线观看二区| 天堂动漫精品| 69人妻影院| 一进一出抽搐动态| 日韩欧美国产在线观看| 精品一区二区三区av网在线观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久亚洲av鲁大| 他把我摸到了高潮在线观看| 欧美性感艳星| 欧美激情在线99| 国产麻豆成人av免费视频| www.熟女人妻精品国产| 搡老熟女国产l中国老女人| 我的老师免费观看完整版| 婷婷六月久久综合丁香| 日本a在线网址| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 国产野战对白在线观看| 男女床上黄色一级片免费看| 日韩欧美精品免费久久 | 热99re8久久精品国产| 国产高清三级在线| 国产精品国产高清国产av| 91字幕亚洲| 免费高清视频大片| 国产欧美日韩一区二区三| 日本免费a在线| 51国产日韩欧美| 国产欧美日韩精品一区二区| 在线天堂最新版资源| eeuss影院久久| 在线观看美女被高潮喷水网站 | 免费电影在线观看免费观看| 亚洲熟妇熟女久久| 亚洲精华国产精华精| 99久久综合精品五月天人人| 午夜视频国产福利| 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 青草久久国产| 中文字幕人妻熟人妻熟丝袜美 | 老汉色∧v一级毛片| 国产一区二区激情短视频| 毛片女人毛片| 真实男女啪啪啪动态图| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久一区二区三区 | 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 最新中文字幕久久久久| 亚洲国产精品成人综合色| 校园春色视频在线观看| 少妇高潮的动态图| 亚洲欧美日韩无卡精品| 午夜福利免费观看在线| 女警被强在线播放| 欧美高清成人免费视频www| 女人高潮潮喷娇喘18禁视频| 噜噜噜噜噜久久久久久91| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 午夜影院日韩av| 免费大片18禁| 国产69精品久久久久777片| 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | 精品国内亚洲2022精品成人| 变态另类成人亚洲欧美熟女| 中文字幕人成人乱码亚洲影| 国产高清有码在线观看视频| 老司机福利观看| 无限看片的www在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲av一区综合| 欧美成人免费av一区二区三区| 少妇高潮的动态图| 婷婷六月久久综合丁香| 在线观看午夜福利视频| xxx96com| 我的老师免费观看完整版| 亚洲无线在线观看| 亚洲人成伊人成综合网2020| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 一夜夜www| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 男女做爰动态图高潮gif福利片| www.www免费av| 日本一本二区三区精品| 999久久久精品免费观看国产| www.999成人在线观看| 久99久视频精品免费| 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 日本一二三区视频观看| 99精品在免费线老司机午夜| 国产精品影院久久| 两个人视频免费观看高清| 国产av一区在线观看免费| 亚洲中文字幕日韩| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 国产午夜精品论理片| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 在线播放国产精品三级| 一区二区三区激情视频| 少妇的逼好多水| 欧美3d第一页| 精品福利观看| 国产高清视频在线观看网站| xxxwww97欧美| 欧美精品啪啪一区二区三区| 99热只有精品国产| 久99久视频精品免费| 搡老熟女国产l中国老女人| av欧美777| 成年人黄色毛片网站| 国产激情欧美一区二区| 色在线成人网| 夜夜爽天天搞| 久久久久久久亚洲中文字幕 | 欧美一区二区精品小视频在线| 18禁美女被吸乳视频| 国产在视频线在精品| 欧美+亚洲+日韩+国产| 一个人免费在线观看电影| 国产高清videossex| 午夜福利高清视频| 日本免费a在线| www.熟女人妻精品国产| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 桃色一区二区三区在线观看| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 99热6这里只有精品| 欧美日韩瑟瑟在线播放| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 啦啦啦韩国在线观看视频| 欧美av亚洲av综合av国产av| а√天堂www在线а√下载| 看免费av毛片| 两个人的视频大全免费| 超碰av人人做人人爽久久 | 中文资源天堂在线| 一a级毛片在线观看| 男插女下体视频免费在线播放| 午夜视频国产福利| 免费在线观看影片大全网站| 最近视频中文字幕2019在线8| 久久久久精品国产欧美久久久| 亚洲乱码一区二区免费版| 真人一进一出gif抽搐免费| 观看免费一级毛片| 亚洲在线自拍视频| 91av网一区二区| 亚洲欧美激情综合另类| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 国产精品爽爽va在线观看网站| 高潮久久久久久久久久久不卡| 欧美午夜高清在线| e午夜精品久久久久久久| 我的老师免费观看完整版| 亚洲五月天丁香| 黄片小视频在线播放| 欧美色视频一区免费| 99国产精品一区二区三区| 97超视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩综合久久久久久 | 嫩草影院精品99| 高清在线国产一区| 日韩欧美 国产精品| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 国产一区二区激情短视频| 亚洲久久久久久中文字幕| 午夜两性在线视频| 亚洲av一区综合| 制服人妻中文乱码| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放| 黑人欧美特级aaaaaa片| 国产真实伦视频高清在线观看 | 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| av国产免费在线观看| 国产精品美女特级片免费视频播放器| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 国产精品久久久久久久久免 | 国产激情偷乱视频一区二区| 99热只有精品国产| 在线观看av片永久免费下载| 最近视频中文字幕2019在线8| 观看免费一级毛片| 国产三级在线视频| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 男女床上黄色一级片免费看| 久久久久性生活片| 一区二区三区激情视频| 我要搜黄色片| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 夜夜夜夜夜久久久久| 亚洲人成网站在线播放欧美日韩| 99国产综合亚洲精品| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 亚洲av第一区精品v没综合| 欧美大码av| 国产真人三级小视频在线观看| 三级毛片av免费| 国产99白浆流出| 久久6这里有精品| 中文资源天堂在线| 国产黄a三级三级三级人| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 男人和女人高潮做爰伦理| 国产乱人伦免费视频| 国产精品精品国产色婷婷| 九色国产91popny在线| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 色综合亚洲欧美另类图片| 国产视频内射| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 成人18禁在线播放| 最好的美女福利视频网| 青草久久国产| 成人国产综合亚洲| 国产一区二区三区在线臀色熟女| 高清在线国产一区| 日本与韩国留学比较| 在线观看日韩欧美| 九九在线视频观看精品| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| www日本在线高清视频| 成人特级av手机在线观看| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| www.www免费av| 欧美不卡视频在线免费观看| 丰满乱子伦码专区| 在线播放国产精品三级| 老汉色∧v一级毛片| 亚洲av成人av| 国产成人影院久久av| 夜夜夜夜夜久久久久| a级毛片a级免费在线| 深夜精品福利| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 91麻豆av在线| 一区二区三区高清视频在线| 久久久久国内视频| 在线观看66精品国产| 夜夜爽天天搞| 免费无遮挡裸体视频| 亚洲七黄色美女视频| 欧美+日韩+精品| 久久久国产精品麻豆| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 国产 一区 欧美 日韩| 久久婷婷人人爽人人干人人爱| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 成年免费大片在线观看| 97碰自拍视频| 少妇人妻精品综合一区二区 | 欧美日韩乱码在线| 国产亚洲精品一区二区www| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 免费观看人在逋| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 亚洲国产欧美网| 嫩草影院精品99| 国产亚洲精品综合一区在线观看| 九色成人免费人妻av| 国产色爽女视频免费观看| 久久这里只有精品中国| 内地一区二区视频在线| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 91av网一区二区| 婷婷丁香在线五月| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看 | 免费看光身美女| 日本a在线网址| 亚洲va日本ⅴa欧美va伊人久久| 久久6这里有精品| 亚洲色图av天堂| 夜夜爽天天搞| 欧美最新免费一区二区三区 | 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 亚洲熟妇熟女久久| 国产激情欧美一区二区| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频| 变态另类丝袜制服| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 免费人成在线观看视频色| 久久久久久大精品| 欧美乱码精品一区二区三区| 嫩草影院精品99| 757午夜福利合集在线观看| 亚洲七黄色美女视频| 国产毛片a区久久久久| 69av精品久久久久久| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 午夜老司机福利剧场| 国产一区二区三区视频了| 欧美日韩福利视频一区二区| 亚洲精品亚洲一区二区| 亚洲欧美激情综合另类| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 欧美在线黄色| 内地一区二区视频在线| 久久久成人免费电影| av黄色大香蕉| 97超视频在线观看视频| 脱女人内裤的视频| 一个人免费在线观看的高清视频| 91九色精品人成在线观看| 久久6这里有精品| 黄色成人免费大全| 成年人黄色毛片网站| 亚洲 国产 在线| 老司机午夜十八禁免费视频| 美女大奶头视频| 亚洲国产中文字幕在线视频| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全电影3| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 一个人免费在线观看电影| 婷婷亚洲欧美| a在线观看视频网站| 一区二区三区高清视频在线| xxxwww97欧美| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 亚洲av成人av| 99久久99久久久精品蜜桃| 91在线精品国自产拍蜜月 | 免费看美女性在线毛片视频|