• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modeling study of effective radiative forcing and climate response due to increased methane concentration

    2016-02-23 06:45:52XIEBingZHANGHuaYANGDongDongWANGZhiLi
    Advances in Climate Change Research 2016年4期

    XIE Bing,ZHANG Hua,*,YANG Dong-Dong,WANG Zhi-Li

    aLaboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing 210044,China

    cCollege of Atmospheric Science,Nanjing University of Information Science&Technology,Nanjing 210044,China

    dState Key Laboratory of Severe Weather&Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences,Beijing 100081,

    China

    A modeling study of effective radiative forcing and climate response due to increased methane concentration

    XIE Binga,b,ZHANG Huaa,b,*,YANG Dong-Dongc,WANG Zhi-Lid

    aLaboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China

    bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing 210044,China

    cCollege of Atmospheric Science,Nanjing University of Information Science&Technology,Nanjing 210044,China

    dState Key Laboratory of Severe Weather&Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences,Beijing 100081,

    China

    An atmospheric general circulation model BCC_AGCM2.0 and observation data from ARIS were used to calculate the effective radiative forcing(ERF)due to increased methane concentration since pre-industrial times and its impacts on climate.The ERF of methane from 1750 to 2011 was 0.46 W m-2by taking it as a well-mixed greenhouse gas,and the inhomogeneity of methane increased its ERF by about 0.02 W m-2. The change of methane concentration since pre-industrial led to an increase of 0.31°C in global mean surface air temperature and 0.02 mm d-1in global mean precipitation.The warming was prominent over the middle and high latitudes of the Northern Hemisphere(with a maximum increase exceeding 1.4°C).The precipitation notably increased(maximum increase of 1.8 mm d-1)over the ocean between 10°N and 20°N and signifcantly decreased(maximum decrease>-0.6 mm d-1)between 10°S and 10°N.These changes caused a northward movement of precipitation cell in the Intertropical Convergence Zone(ITCZ).Cloud cover signifcantly increased(by approximately 4%)in the high latitudes in both hemispheres,and sharply decreased(by approximately 3%)in tropical areas.

    Methane;Effective radiative forcing;Climate change

    1.Introduction

    Global surface air temperatures have increased due to increases in emissions of anthropogenic greenhouse gases(GHGs)since the start of the industrial era(IPCC,2013; Zhang et al.,2014b).Methane(CH4),with a relatively short lifetime(about 12 years),is the most important anthropogenic GHG besides CO2(IPCC,2013).Although the burden of CH4in the atmosphere is signifcantly smaller than that of CO2,the radiative effciency(RE)of CH4is 26.5 times as much as that of CO2(Yashiro et al.,2008;Renaud and Caillol,2011).The absorption of CH4on radiative fux infuence the temperature, especially near the Earth's surface.

    The atmospheric CH4concentration almost doubled from 1750 to 2011,the volume mixing ratio from 722×10-9to 1803×10-9(IPCC,2013).CH4increased rapidly until 2000. Then,after a decade of stabilization or slightly decreasing concentrations,the global CH4concentration showed a well-defned increase again in 2007(Dlugokencky et al.,2003; Rigby et al.,2008),measured using ground-based observations(Cunnold et al.,2002;Langenfelds et al.,2002; Dlugokencky et al.,2009)and aircraft profles(Wecht et al., 2012;Worden et al.,2012).The IPCC Fifth Assessment Report(IPCC,2013)showed that the radiative forcing(RF)of CH4was 0.48±0.05 W m-2from 1750 to 2011 based on Myhre et al.(1998).CH4is well mixed in the atmosphere,but its concentrations vary with latitude and altitude,contributing to 2%of the uncertainty in its RF(Freckleton et al.,1998).

    In this study,we estimated the effective radiative forcing (ERF)and climate response due to changes in atmospheric methane concentration from 1750 to 2011 using the general circulation model BCC_AGCM2.0 from the National Climate Center of China.

    2.Descriptions of model and method

    2.1.Model

    We used the general circulation model BCC_AGCM2.0 developed by the National Climate Center of China.The horizontal resolution of the model is approximately 2.8°×2.8°,and the vertical direction includes 26 layers,with a rigid lid at 2.9 hPa.This model was based on the Community Atmosphere Model Version 3(CAM3.0)from the National Center for Atmospheric Research,U.S.BCC_AGCM2.0 contains several enhancements in the physics: BCC_AGCM2.0 uses the radiation scheme of BCC_RAD (Beijing Climate Center Radiative Transfer Model),developed by Zhang et al.(2003,2006a,2006b),and the cloud overlap scheme of the Monte Carlo independent column approximation(Zhang et al.,2014a).These schemes increase the accuracy of the sub-grid cloud structure and its radiative transfer process.Further details on BCC_AGCM2.0 can be found in Wu et al.(2010).The model has been used to study the RFs and the subsequent effects on climate due to aerosols(e.g., Zhang et al.,2012;Wang et al.,2013a,2013b,2014,2015; Zhao et al.,2015)and tropospheric ozone(Xie et al.,2016).

    2.2.Satellite data

    CH4profle data observed by the Atmospheric Infrared Sounder(AIRS)(URL:http://www.nasa.gov/mission_pages/ aqua)was used.AIRS was onboard the Aqua spacecraft and launched by the National Aeronautic and Space Administration(NASA)in May 2002.An overview of the AIRS instrument is given by Aumann et al.(2003).AIRS has 2378 channels,which cover from 649 to 1136,1217 to 1613,and 2169 to 2674 cm-1with high spectral resolution(λ/ Δλ=1200),and the absorption band of CH4is included.The AIRS dataset used in this study is on a global spatial resolution of 1°×1°,and on vertical pressure levels from 1000 h Pa to 1 hPa(divided into 24 levels).More information about characterization and validation of methane products from AIRS can be found in Xiong et al.(2008)and Zhang et al.(2014c).

    2.3.Experimental design

    Our aim was to calculate the ERF and climate response due to changes in atmospheric CH4concentration.To this end,fve simulations(EXP1,EXP2,EXP3,EXP4,and EXP5)were conducted.EXP1,EXP2 and EXP3 were used to calculate the ERF of CH4at fxed sea surface temperature(SST)(Hurrell et al.,2008).The same model settings were used in these three simulations,only the CH4concentrations were different (Table 1 shows the details).The differences between EXP1 and EXP2(EXP2 minus EXP1)were regarded as the ERF of well mixed CH4,and differences between EXP1 and EXP3 (EXP3 minus EXP1)were the ERF of CH4with spatial variation.Each simulation was run for 15 years.Kristj?ansson et al. (2005)reported that,after a period of adjustment(generally 5 years for the model with prescribed SST and 30 years for the model with a coupled slab ocean model),the global mean surface air temperature reached equilibrium.Therefore,the results from the last 10 years of the 15-year simulations of EXP1,EXP2 and EXP3 were used to calculate the ERF,as follows:

    where ΔFis the net radiation fux(the difference between incoming and outgoing shortwave and longwave radiative fux)at the top of the atmosphere(TOA).

    EXP4 and EXP5 were used to calculate the climate response of CH4.We used the same CH4volume mixture ratios in EXP4 and EXP5 as in EXP1 and EXP2,respectively. However,to consider the feedback of the oceans to CH4forcing,a slab ocean model was coupled with BCC_AGCM2.0 in the simulations instead of using the fxed SST.The two simulations were run for 70 years,and we used the results from the last 40 years to discuss the climate response due to changes in CH4concentration.

    3.Simulation results and analysis

    3.1.ERF

    Human activities have increased anthropogenic emissions of CH4since pre-industrial times,leading to increases in its atmospheric concentration and,subsequently,changes in itsERF.Fig.1 shows the simulated ERF(the difference between EXP2 and EXP1)due to change in CH4as well mixed greenhouse gas(WMGHG).A well-defned positive ERF was generally observed near 60°in both hemispheres,with the maximum value of 7 W m-2.However,the ERF was negative in western Siberia,southern Africa,Greenland,and most parts of South America,with a value of approximately-6 W m-2over southern Africa.The negative ERF in those areas might be explained by an increase in low cloud cover.The simulated global mean CH4ERF was 0.46 W m-2,which is consistent with the value reported in IPCC AR5.As Fig.2 shown,CH4concentrations vary with latitude and sharply decrease above the tropopause.In lower troposphere,the concentration of methane was mainly in zonal division,and asymmetry on the Northern and Southern Hemispheres.The volume mixing ratio of CH4was reduced from north to south.The asymmetry of CH4concentration was becoming less distinct with the increase of altitude.In the stratosphere,the volume mixing ratio was symmetrically distributed in both hemispheres,and it got less with the increasing latitude.These spatial variations of CH4had little impact on ERF(less than 0.02 W m-2).

    Table 1Experimental design.

    Fig.1.Distribution of the effective radiative forcing(ERF)of well mixed atmospheric methane from 1750 to 2011(units:W m-2).Shaded area represents the value at 0.05 signifcance level.

    Fig.2.Zonal distribution of the volume mixing ratio of CH4in 2011(×10-6), observed by AIRS.

    3.2.Surface air temperature and cloud cover

    CH4is a key long-lived GHG that strongly absorbs longwave radiation.The ERF of CH4is generally positive,leading to a warming effect on the Earth's climate system and thus the surface.The difference between EXP5 and EXP4 showed that an increase in the atmospheric CH4concentration since preindustrial times caused an increase of 0.31°C in global mean surface air temperature.As shown in Fig.3a,the surface air temperature increased over the globe except for the small decreases in several high-latitude areas in both hemispheres. Warming over the middle latitudes of the Northern Hemisphere was prominent,with the maximum temperature increase exceeding 1.4°C.There was also signifcant warming (approximately 1.0°C)in the Antarctic area.Fig.3b shows the response of the surface net radiation fux(SNRF)due to the change in CH4.The distribution of change in SNRF was consistent with that of surface temperature over the ocean. There were signifcant increases in SNRF over the high latitudes in both hemispheres.For example,the SNRF over the North Pacifc Ocean increased by more than 6.0 W m-2,and the surface air temperature also increased signifcantly. Changes in cloud cover and heat transportation can also affect surface air temperature.Although the SNRF showed a welldefned decrease over the Indian Ocean,South Pacifc,and the high latitudes of the Southern Hemisphere,the surface air temperature in the same regions did not change accordingly.

    Fig.3c and d shows the changes in low-level(below 680 hPa)and high-level(above 440 hPa)cloud cover.Changes in cloud cover directly affect SNRF,thereby infuencing surface air temperature.Increases in low-level cloud result in decreases in SNRF and a cooling effect at the surface,whereas increases in high-level cloud cause increases in surface air temperature due to high-level cloud's warming effect on the Earth's climate system.As shown in Fig.1,the ERF was clearly negative in the western and southern regions of South America,and low-level cloud cover in these areas increased by about 20%(Fig.3c),resulting in marked decreases in surface temperature due to the scattering effect of low-level clouds to solar radiation.The increase in temperature observed over the eastern Japan Sea and Mediterranean regions might be due to increase in high-level cloud cover(Fig.3d).

    Fig.3e and f shows the zonally averaged distributions of the changes in cloud cover and relative humidity.There is a high level of correlation between the two variables.The relative humidity showed signifcant increases in most of the troposphere near 70°N and between 10°N and 20°N in the lower troposphere in the Southern Hemisphere,in the higher troposphere in tropical areas,and in most of the troposphere over the Antarctic,and the cloud cover increased by 0.2%-1% in these regions.These increases led to decreases in the SNRF (Fig.3b).In contrast,the relative humidity and cloud cover clearly decreased in the most of troposphere near 60°S and between 30°N and 40°N in the middle to upper troposphere near the equator and in most of stratosphere,resulting in increases in the SNRF(Fig.3b)in some areas.

    Fig.3.Climate responses due to changes in atmospheric CH4concentration since pre-industrial times.Distribution of(a)surface air temperature,(b)surface net radiation fux,(c)low cloud,and(d)high cloud.Zonal average distribution of(e)cloud and(f)relative humidity.Shaded area represents the values at 0.05 signifcance level.

    3.3.Precipitation and surface water fux

    The increase in CH4concentration resulted in a warming effect in the atmosphere and at the surface due to positive ERF at the TOA,which caused an increase of 0.02 kg m-2d-1in global mean surface water fux(SWF)(Fig.4b).The spatial distributions of the changes in SWF and SNRF were similar (Figs.2b and 3b).The SWF dramatically increased(by>0.12 kg m-2d-1)over most areas of the ocean,especially in the northern Pacifc,western Atlantic,and equatorial Pacifc. In contrast,the SWF showed well-defned decreases due to the decreased SNRF in most areas.In particular,the SWF decreased by approximately 0.14 kg m-2d-1in eastern South America and central Africa.

    Fig.4a shows the changes in precipitation due to CH4, which were notable in the Intertropical Convergence Zone. Precipitation signifcantly increased(by>0.5 mm d-1,with a maximum increase of 1.8 mm d-1)over the ocean between 10°N and 20°N.However,precipitation signifcantly decreased(maximum decrease>0.6 mm d-1)over the ocean between 10°S and 10°N.Hence,there was a negative correlation between changes in precipitation over the tropics in each hemisphere,with precipitation increased in the Northern Hemisphere and decreased in the Southern Hemisphere.

    Fig.4.Climate responses due to changes in atmospheric CH4concentration since pre-industrial times.Distribution of(a)precipitation and(b)surface water fux. Shaded area represents the values at 0.05 signifcance level.

    4.Conclusions

    The ERF and climate responses due to the change in atmospheric CH4concentration from pre-industrial times(1750) to 2011 were investigated using the atmospheric general circulation model BCC AGCM2.0,in combination with CH4volume mixture ratios from IPCC AR5.The global mean ERF for CH4as WMGHG was 0.46 W m-2,and the spatial variation of methane infuenced the ERF by 0.02 W m-2.The increase in atmospheric CH4led to an increase of 0.31°C and 0.02 mm d-1in global mean surface air temperature and precipitation,respectively.Warming was signifcant in the middle and high latitudes,especially in the Northern Hemisphere,with the maximum warming exceeding 1.4°C.The global distribution of change in precipitation was in line with that of changes in cloud cover,especially near the equator.The precipitation notably increased(maximum increase of 1.8 mm d-1)over the tropical regions of the Northern Hemisphere and sharply decreased(maximum decrease>-0.6 mm d-1)between 10°S and 10°N,and these changes led the precipitation cell in ITCZ to move northward.In the most of high latitudes in both hemispheres,cloud cover was signifcantly increased(by approximately 4%)and decreased (by approximately 3%)in tropical areas.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(41575002,91644211).

    Aumann,H.,Chahine,M.T.,Gautier,C.,et al.,2003.AIRS/AMSU/HSB on the Aqua mission:design,science objectives,data products,and processing systems.IEEE Trans.Geosci.Remote Sens.41,253-264.

    Cunnold,D.M.,Steele,L.P.,Fraser,P.J.,et al.,2002.In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences.J.Geophys.Res.Atmos.107.ACH20-1,Cite ID 4225.

    Dlugokencky,E.,Houweling,S.,Bruhwiler,L.,et al.,2003.Atmospheric methane levels off:temporary pause or a new steady-state.Geophys.Res. Lett.30(19),1992.http://dx.doi.org/10.1029/2003GL018126.

    Dlugokencky,E.,Bruhwiler,L.,White,J.W.C.,et al.,2009.Observational constraints on recent increases in the atmospheric CH4burden.J.Geophys. Res.Lett.36,L18803.http://dx.doi.org/10.1029/2009GL039780.

    Freckleton,R.,Highwood,E.,Shine,K.,et al.,1998.Greenhouse gas radiative forcing:effects of averaging and inhomogeneities in trace gas distribution. Q.J.R.Meteorol.Soc.124,2099-2127.

    Hurrell,J.W.,Hack,J.J.,Shea,D.,et al.,2008.A new sea surface temperature and sea ice boundary dataset for the community atmosphere modal.J. Clim.21,5145-5153.

    IPCC.Climate Change,2013.The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the IPCC.Cambridge University Press,Cambridge and New York.

    Kristj?ansson,J.E.,Iversen,T.,Kirkev?g,A.,et al.,2005.Response of the climate system to aerosol direct and indirect forcing:role of cloud feedbacks.J.Geophys.Res.110,D24206.http://dx.doi.org/10.1029/ 2005JD006299.

    Langenfelds,R.L.,Francey,R.J.,Pak,B.C.,et al.,2002.Interannual growth rate variations of atmospheric CO2and its δ13C,H2,CH4,and CO between 1992 and 1999 linked to biomass burning.Glob.Biogeochem.Cycles 16 (3),21-22.

    Myhre,G.,Highwood,E.J.,Shine,K.P.,et al.,1998.New estimates of radiative forcing due to well mixed greenhouse gases.Geophys.Res.Lett.25, 2715-2718.

    Renaud,de R.,Caillol,S.,2011.Fighting global warming:the potential of photocatalysis against CO2,CH4,N2O,CFCs,tropospheric O3,BC and other major contributors to climate change.J.Photochem.Photobiol.C 12, 1-19.

    Rigby,M.,Prinn,R.G.,Fraser,P.J.,et al.,2008.Renewed growth of atmospheric methane.Geophys.Res.Lett.35,L22805.http://dx.doi.org/ 10.1029/2008GL036037.

    Wang,Z.L.,Zhang,H.,Lu,P.,2014.Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero,evaluation against observations,and updated aerosol indirect effect.J.Geophys.Res. 119(13),8400-8417.

    Wang,Z.L.,Zhang,H.,Zhang,X.Y.,2015.Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect.Atmos.Chem.Phys.15(7),3671-3685.

    Wang,Z.L.,Zhang,H.,Jing,X.W.,et al.,2013a.Effect of non-spherical dust aerosol on its direct radiative forcing.Atmos.Res.120,112-126.

    Wang,Z.L.,Zhang,H.,Li,J.,et al.,2013b.Radiative forcing and climate response due to the presence of black carbon in cloud droplets.J.Geophys. Res.Atmos.118,3662-3675.

    Wecht,K.J.,Jacob,D.J.,Wofsy,S.C.,et al.,2012.Validation of TES methane with HIPPO aircraft observations:implications for inverse modeling of methane sources.Atmos.Chem.Phys.12,1823-1832.

    Worden,J.,Kulawik,S.,Frankenberg,C.,et al.,2012.Profles of CH4,HDO, H2O,and N2O with improved lower tropospheric vertical resolution from Aura TES radiances.Atmos.Meas.Techn.5,397-411.

    Wu,T.,Yu,R.C.,Zhang,F.,et al.,2010.The Beijing Climate Center atmospheric general circulation model:description and its performance for the present-day.Clim.Dyn.34,123-147.http://dx.doi.org/10.1007/s00382-009-0594-8.

    Xie,B.,Zhang,H.,Wang,Z.,et al.,2016.A modeling study of effective radiative forcing and climate response due to tropospheric ozone.Adv. Atmos.Sci.33(7),819-828.http://dx.doi.org/10.1007/s00376-016-5193-0.

    Xiong,X.,Barnet,C.,Maddy,E.,et al.,2008.Characterization and validation of methane products from the Atmospheric Infrared Sounder(AIRS).J. Geophys.Res.113,G00A01.http://dx.doi.org/10.1029/2007JG000500.

    Yashiro,Y.,Kadir,W.R.,Okuda,T.,et al.,2008.The effects of logging on soil greenhouse gas(CO2,CH4,and N2O)fux in a tropical rain forest, Peninsular Malaysia.Agric.For.Meteorol.148,799-806.

    Zhang,H.,Jing,X.W.,Li,J.,2014a.Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM_2.0.1.Geosci. Model Dev.7,737-754.

    Zhang,H.,Nakajima,T.,Shi,G.-Y.,et al.,2003.An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations.J.Geophys.Res.108(D20),4641.http:// dx.doi.org/10.1029/2002JD003358.

    Zhang,H.,Shi,G.,Nakajima,T.,et al.,2006a.The effects of the choice of the‘K’-interval number on radiative calculations.J.Quant.Spectrosc.Radiat. Transf.98,31-43.

    Zhang,H.,Suzuki,T.,Nakajima,T.,et al.,2006b.Effects of band division on radiative calculations.Opt.Eng.45,016002,1-10.

    Zhang,H.,Wang,Z.L.,Wang,Z.,et al.,2012.Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system.Clim.Dyn.38, 1675-1693.

    Zhang,H.,Xie,B.,Zhao,S.Y.,et al.,2014b.PM2.5 and tropospheric O3in China and an analysis of the impact of pollutant emission control.Adv. Clim.Change Res.5(3),136-141.

    Zhang,Y.,Xiong,X.Z.,Tao,J.H.,et al.,2014c.Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation.Chin.Sci.Bull.59(14),1508-1518.

    Zhao,S.Y.,Zhang,H.,Feng,S.,et al.,2015.Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol-climate model system.Int.J.Climatol.35(8),1858-1866.http://dx.doi.org/10.1002/ joc.4093.

    *Corresponding author.Laboratory for Climate Studies of China Meteorological Administration,National Climate Center,China Meteorological Administration,Beijing 100081,China.

    E-mail address:huazhang@cma.gov.cn(ZHANG H.).

    Peer review under responsibility of National Climate Center(China Meteorological Administration).

    http://dx.doi.org/10.1016/j.accre.2016.12.001

    1674-9278/Copyright?2016,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received 27 July 2016;accepted 8 December 2016 Available online 14 December 2016

    免费观看在线日韩| 国产精品爽爽va在线观看网站| 卡戴珊不雅视频在线播放| 国产 精品1| 国产久久久一区二区三区| 欧美人与善性xxx| 日韩av不卡免费在线播放| www.色视频.com| 综合色丁香网| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 看免费成人av毛片| 欧美亚洲 丝袜 人妻 在线| 亚洲av.av天堂| 国产成人免费无遮挡视频| 性色av一级| 另类亚洲欧美激情| 成人毛片60女人毛片免费| 亚洲综合色惰| 男男h啪啪无遮挡| 国产精品久久久久久久久免| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 亚洲精品色激情综合| 啦啦啦在线观看免费高清www| 久久 成人 亚洲| 美女高潮的动态| 午夜免费男女啪啪视频观看| 交换朋友夫妻互换小说| 国产男人的电影天堂91| 亚洲va在线va天堂va国产| 99热这里只有精品一区| 免费看光身美女| 黑丝袜美女国产一区| av免费观看日本| 中国国产av一级| 国产美女午夜福利| 久热这里只有精品99| 边亲边吃奶的免费视频| 日韩不卡一区二区三区视频在线| 午夜激情久久久久久久| 色哟哟·www| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 美女脱内裤让男人舔精品视频| 永久网站在线| 在线天堂最新版资源| 免费观看在线日韩| 免费人妻精品一区二区三区视频| 欧美日韩视频精品一区| 欧美日韩在线观看h| 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 99久久中文字幕三级久久日本| 亚洲国产欧美人成| 国产精品精品国产色婷婷| 91久久精品国产一区二区成人| 亚洲精品日本国产第一区| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 国产精品一区二区在线观看99| 伦理电影大哥的女人| 寂寞人妻少妇视频99o| 在线观看免费日韩欧美大片 | 中文乱码字字幕精品一区二区三区| 啦啦啦啦在线视频资源| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 亚洲精品aⅴ在线观看| 美女国产视频在线观看| 国产精品一区二区在线不卡| 欧美成人a在线观看| 久久久久精品性色| 午夜精品国产一区二区电影| 国产日韩欧美在线精品| 国产精品不卡视频一区二区| 成人亚洲欧美一区二区av| 男女边摸边吃奶| 久久久久精品久久久久真实原创| 国产精品三级大全| 91久久精品国产一区二区成人| 简卡轻食公司| 99热这里只有精品一区| 赤兔流量卡办理| 大香蕉久久网| 国产高潮美女av| 搡女人真爽免费视频火全软件| 国产亚洲欧美精品永久| 国精品久久久久久国模美| 婷婷色综合www| 国产精品久久久久久精品古装| 国产色爽女视频免费观看| 人妻一区二区av| 亚洲在久久综合| 亚洲欧美一区二区三区国产| 亚洲精品国产av蜜桃| 国产欧美日韩精品一区二区| 午夜免费观看性视频| 精品酒店卫生间| 麻豆成人午夜福利视频| 干丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 国产伦在线观看视频一区| 成年美女黄网站色视频大全免费 | 久久精品国产亚洲网站| 老师上课跳d突然被开到最大视频| 久久精品熟女亚洲av麻豆精品| 亚洲色图av天堂| av天堂中文字幕网| 亚洲精品亚洲一区二区| 国产精品成人在线| 日韩不卡一区二区三区视频在线| 高清日韩中文字幕在线| 亚洲av电影在线观看一区二区三区| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 久热久热在线精品观看| 久久久久久人妻| 精品一区二区三卡| 成人一区二区视频在线观看| av福利片在线观看| 日韩欧美 国产精品| 最近最新中文字幕大全电影3| 国产男女超爽视频在线观看| 又大又黄又爽视频免费| 91精品国产国语对白视频| 香蕉精品网在线| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 一区二区三区免费毛片| 亚洲av不卡在线观看| 亚洲精华国产精华液的使用体验| 精品熟女少妇av免费看| 在线观看三级黄色| 亚洲va在线va天堂va国产| 在线亚洲精品国产二区图片欧美 | 国产男女内射视频| 男人爽女人下面视频在线观看| 99热这里只有是精品50| 免费av不卡在线播放| 亚洲精品日韩av片在线观看| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩卡通动漫| 美女高潮的动态| 精品一品国产午夜福利视频| 看免费成人av毛片| 国产片特级美女逼逼视频| 熟妇人妻不卡中文字幕| 少妇的逼水好多| 精品久久久噜噜| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 九草在线视频观看| 国产乱人视频| 中文欧美无线码| 国产精品免费大片| 亚洲国产最新在线播放| 99热6这里只有精品| av在线老鸭窝| 人人妻人人爽人人添夜夜欢视频 | 久久精品国产亚洲av天美| 熟女av电影| 亚洲精品aⅴ在线观看| 国产精品av视频在线免费观看| 在线观看国产h片| 我要看黄色一级片免费的| 九九爱精品视频在线观看| 欧美人与善性xxx| 日日啪夜夜撸| 少妇的逼好多水| 干丝袜人妻中文字幕| 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 免费在线观看成人毛片| .国产精品久久| 亚洲精品色激情综合| 国产精品国产三级国产专区5o| 大香蕉久久网| 日韩av免费高清视频| 性色av一级| 国产av码专区亚洲av| 亚洲欧洲日产国产| 欧美极品一区二区三区四区| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 高清毛片免费看| 久久热精品热| 亚洲色图综合在线观看| 99热这里只有是精品50| 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 少妇的逼水好多| 草草在线视频免费看| 一本一本综合久久| 亚洲,欧美,日韩| 亚洲av.av天堂| 免费黄色在线免费观看| 人妻制服诱惑在线中文字幕| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 国产成人freesex在线| 十分钟在线观看高清视频www | 在线亚洲精品国产二区图片欧美 | 精品国产露脸久久av麻豆| 18禁裸乳无遮挡动漫免费视频| a级毛色黄片| 高清午夜精品一区二区三区| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 中文字幕av成人在线电影| 视频中文字幕在线观看| 婷婷色av中文字幕| 成人美女网站在线观看视频| 亚洲国产高清在线一区二区三| 激情五月婷婷亚洲| 亚洲av在线观看美女高潮| 午夜福利高清视频| 一区二区三区免费毛片| 97超碰精品成人国产| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 国产亚洲午夜精品一区二区久久| av线在线观看网站| 亚洲一区二区三区欧美精品| 久久青草综合色| 国产一区有黄有色的免费视频| 一区二区三区精品91| 最后的刺客免费高清国语| 熟女av电影| 亚洲精品色激情综合| 美女视频免费永久观看网站| 国产免费福利视频在线观看| 激情 狠狠 欧美| 男人狂女人下面高潮的视频| 久久久欧美国产精品| 大话2 男鬼变身卡| 亚洲av福利一区| 国产亚洲精品久久久com| 国产高清三级在线| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 精品亚洲乱码少妇综合久久| 欧美三级亚洲精品| 国产亚洲欧美精品永久| 久久久久精品性色| 午夜免费男女啪啪视频观看| 日本与韩国留学比较| 嫩草影院新地址| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 国产成人91sexporn| 日本一二三区视频观看| av黄色大香蕉| 黄色日韩在线| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 秋霞伦理黄片| 边亲边吃奶的免费视频| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 国产欧美日韩精品一区二区| 亚洲精品自拍成人| 亚洲国产精品一区三区| 婷婷色av中文字幕| 国产黄片美女视频| 亚州av有码| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| tube8黄色片| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 一级黄片播放器| 人妻一区二区av| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 精品人妻一区二区三区麻豆| 人妻夜夜爽99麻豆av| 成人影院久久| 国产v大片淫在线免费观看| 亚洲成色77777| 国产亚洲91精品色在线| 97精品久久久久久久久久精品| 内射极品少妇av片p| 亚洲欧洲国产日韩| 一级毛片我不卡| 精品一品国产午夜福利视频| av在线观看视频网站免费| 日本av手机在线免费观看| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 有码 亚洲区| 国产视频内射| 成人免费观看视频高清| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 丰满迷人的少妇在线观看| 免费看日本二区| 欧美激情极品国产一区二区三区 | 成年免费大片在线观看| 九草在线视频观看| 三级国产精品欧美在线观看| 2022亚洲国产成人精品| 精品一区在线观看国产| 国产v大片淫在线免费观看| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 午夜免费观看性视频| 美女国产视频在线观看| 亚洲av综合色区一区| 永久网站在线| 国产黄片视频在线免费观看| av播播在线观看一区| 欧美少妇被猛烈插入视频| 99热6这里只有精品| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 在线观看免费视频网站a站| 各种免费的搞黄视频| 婷婷色综合www| 久久久久久人妻| 欧美xxⅹ黑人| 六月丁香七月| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜 | 性色av一级| 久久久久久久亚洲中文字幕| 又爽又黄a免费视频| 两个人的视频大全免费| 嫩草影院新地址| 精品一区二区三卡| 最黄视频免费看| 毛片女人毛片| 亚洲欧美成人精品一区二区| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 欧美成人a在线观看| 少妇的逼水好多| 亚洲伊人久久精品综合| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 亚洲精品视频女| 久久精品久久精品一区二区三区| 亚洲人成网站高清观看| 国产黄频视频在线观看| 日韩欧美精品免费久久| 91狼人影院| 色吧在线观看| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花 | 久久综合国产亚洲精品| 国产一区有黄有色的免费视频| 国产一区二区三区av在线| 日本欧美国产在线视频| 久久久久久久久久成人| 国产男人的电影天堂91| 免费看日本二区| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 日本黄色片子视频| 身体一侧抽搐| 国精品久久久久久国模美| 99久久精品一区二区三区| 在线观看一区二区三区| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 噜噜噜噜噜久久久久久91| 精品亚洲成a人片在线观看 | 国产无遮挡羞羞视频在线观看| 亚洲欧美精品自产自拍| 久久青草综合色| 人妻 亚洲 视频| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 搡女人真爽免费视频火全软件| 麻豆乱淫一区二区| 九九在线视频观看精品| 大码成人一级视频| 国产爽快片一区二区三区| 午夜福利在线在线| 精品久久久精品久久久| 国产欧美日韩精品一区二区| 精品一区二区免费观看| 亚洲av综合色区一区| av网站免费在线观看视频| 日韩欧美精品免费久久| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 麻豆成人av视频| 国产一区亚洲一区在线观看| 国产v大片淫在线免费观看| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 日韩成人伦理影院| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 亚洲精品自拍成人| 久久久色成人| 久久女婷五月综合色啪小说| 国产永久视频网站| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 日韩视频在线欧美| 久久久久久伊人网av| 欧美日韩亚洲高清精品| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 国产成人aa在线观看| av.在线天堂| 久久97久久精品| 蜜桃在线观看..| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 建设人人有责人人尽责人人享有的 | 亚洲av国产av综合av卡| av不卡在线播放| 亚洲av二区三区四区| 国产黄片视频在线免费观看| 亚洲精品一二三| 免费av中文字幕在线| 国产免费又黄又爽又色| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 欧美日韩精品成人综合77777| 成人一区二区视频在线观看| 精品人妻视频免费看| 国产成人aa在线观看| 亚洲第一区二区三区不卡| 美女福利国产在线 | 99久久精品热视频| 天堂俺去俺来也www色官网| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 黄色怎么调成土黄色| 18+在线观看网站| 国产精品欧美亚洲77777| 国产一区有黄有色的免费视频| 国产精品国产三级国产av玫瑰| 国产伦精品一区二区三区视频9| 在线 av 中文字幕| 日本免费在线观看一区| 久久6这里有精品| 久久精品国产亚洲av涩爱| 日韩强制内射视频| 一个人免费看片子| 亚洲成人中文字幕在线播放| 秋霞在线观看毛片| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 三级国产精品欧美在线观看| 毛片女人毛片| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 国产在线免费精品| 色视频在线一区二区三区| 日韩成人伦理影院| 我要看日韩黄色一级片| 99久久精品一区二区三区| 一级片'在线观看视频| 最近最新中文字幕大全电影3| 美女国产视频在线观看| 直男gayav资源| 精品久久久久久电影网| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 色视频www国产| 国产午夜精品久久久久久一区二区三区| 亚洲精品成人av观看孕妇| 亚洲精品自拍成人| 少妇 在线观看| 国产黄色免费在线视频| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 亚洲国产色片| 欧美精品一区二区大全| 五月天丁香电影| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 在线观看av片永久免费下载| 亚洲国产色片| 日日啪夜夜撸| 热re99久久精品国产66热6| 亚洲真实伦在线观看| 欧美3d第一页| 国产精品无大码| 欧美成人精品欧美一级黄| 熟女电影av网| 国产 一区精品| 青春草国产在线视频| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 日本与韩国留学比较| 青春草国产在线视频| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 观看免费一级毛片| 丰满人妻一区二区三区视频av| av黄色大香蕉| 一本—道久久a久久精品蜜桃钙片| 国产 一区 欧美 日韩| 日日撸夜夜添| 极品少妇高潮喷水抽搐| 国产精品一及| 在线观看一区二区三区激情| 成人国产av品久久久| 黄色欧美视频在线观看| 一级片'在线观看视频| h视频一区二区三区| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 亚洲国产精品一区三区| 99国产精品免费福利视频| 一区二区三区四区激情视频| 国产黄片美女视频| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产91av在线免费观看| 久久久精品94久久精品| 亚洲成人av在线免费| 在线免费观看不下载黄p国产| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 六月丁香七月| 久久99精品国语久久久| 乱码一卡2卡4卡精品| 久久综合国产亚洲精品| 日本黄大片高清| 超碰97精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| av视频免费观看在线观看| 国产免费一区二区三区四区乱码| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 黄色怎么调成土黄色| 永久免费av网站大全| 蜜桃久久精品国产亚洲av| 亚洲内射少妇av| 黄色日韩在线| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 久久精品国产a三级三级三级| 777米奇影视久久| 国产午夜精品一二区理论片| 一级a做视频免费观看| 免费人成在线观看视频色| 自拍欧美九色日韩亚洲蝌蚪91 | 中国美白少妇内射xxxbb| 啦啦啦视频在线资源免费观看| 色网站视频免费| 大香蕉97超碰在线| 大话2 男鬼变身卡| 中文精品一卡2卡3卡4更新| 亚洲av中文字字幕乱码综合| 99九九线精品视频在线观看视频| 女性生殖器流出的白浆| av不卡在线播放| 只有这里有精品99| av线在线观看网站| 亚洲内射少妇av| 国产精品99久久久久久久久| 99久久综合免费| 日韩欧美 国产精品| 成人二区视频| 99热网站在线观看| 久久久久久久亚洲中文字幕| 亚洲欧洲日产国产| www.av在线官网国产| 一本久久精品| 国产乱人视频| 久久久久久人妻| 啦啦啦在线观看免费高清www| 国产精品99久久久久久久久| 亚洲综合精品二区| 午夜日本视频在线| 国产精品久久久久久精品古装| 一本色道久久久久久精品综合| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| 两个人的视频大全免费| 久久久久久久大尺度免费视频| xxx大片免费视频| 91狼人影院| 高清欧美精品videossex| 国产黄频视频在线观看| 丝袜喷水一区| 少妇裸体淫交视频免费看高清| 精品熟女少妇av免费看| 久久精品久久久久久久性|