• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Directional Differential-Fed UWB Antenna with Stable Radiation Pattern

    2016-02-09 01:54:17,,,,

    , , , ,

    1.School of Electronics and Information, Northwestern Polytechnical University, Xi′an 710072, P.R. China;2.Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi′an 710065, P.R. China;3.School of Computer Science and Technology, Xidian University, Xi′an 710071, P.R. China

    ?

    A Directional Differential-Fed UWB Antenna with Stable Radiation Pattern

    FangYang1,WangBaoping2*,SunChao1,SongZuxun1,WangShuzhen3

    1.School of Electronics and Information, Northwestern Polytechnical University, Xi′an 710072, P.R. China;2.Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi′an 710065, P.R. China;3.School of Computer Science and Technology, Xidian University, Xi′an 710071, P.R. China

    (Received 7 December 2015; revised 26 July 2016; accepted 29 August 2016)

    A directional ultra-wideband (UWB) antenna with improved radiation patterns is presented. The proposed sheme comprises a differential-fed microstrip antenna and a rectangular cavity. The hexagon-shaped slot and four triangle-cut corners on the ground plane of the planar antenna are used to improve the impedance matching within the UWB frequency range. A rectangular cavity is used as the reflector for the planar microstrip antenna, so as to achieve directed radiation. The measured results indicate that the designed antenna exhibits a stable broadside directional radiation patterns within the entire operating frequency band. Furthermore, thanks to the differentially driven technique, the cross-polarization is greatly decreased and the polarization purity is maintained in a high level.

    differential-fed; ultra wide band; microstrip antenna

    0 Introduction

    Thanks to the advantages of high date rate, great capacity, simplicity, and low cost, ultra-wideband (UWB) short-range wireless technology has attracted more and more attention since the Federal Commercial Commission (FCC) released the frequency band 3.1—10.6 GHz for commercial UWB systems[1]. As an important component of UWB system, UWB antenna holds appealing features of simple structure, wide impedance bandwidth (BW), stable radiation patterns, and constant gain in the desired direction. So far, various planar UWB antennas have been presented[2-6]. However, those planar antennas exhibit omnidirectional radiation patterns. In some applications that require unidirectional radiation patterns, the planar antennas will waste radiation power in needless directions. Thus, UWB antennas with stable directional radiation patterns are needed. Although some directed UWB antennas have been proposed[7-9], most of them have a common deficiency: Radiation pattern degrading in high frequency band. Most degradations mean splitting the radiation pattern, low polarization purity of the radiation pattern in the high frequency band, etc.

    Recently, the differential-fed antennas have been increasingly popular, thanks to their easy integration with the differential devices, low cross polarization and so on[10-16]. A differential-fed directional UWB antenna with improved radiation patterns is presented. The proposed antenna comprises a differentially driven microstrip antenna and a rectangular cavity. The rectangular cavity, working as a reflector, unidirectional reflect radiation within the entire operation frequency band. Furthermore, thanks to the differentially excited strategy, the cross-polarization level is maintained less 20 dB than co-polarization over the whole UWB frequency range, which results in high polarization purity of radiation patterns. All the simulated results are drawn by using the software of ANSYS high frequency structure simulator (HFSS), a commercial 3-D full-wave electromagnetic simulation tool.

    1 Antenna Configuration

    Fig.1 shows the configuration of the differential-fed planar antenna backed by a rectangular cavity. The proposed differentially driven microstrip antenna is printed on FR4 substrate with thickness of 1 mm, relative dielectric constant of 4.4, and loss tangent of 0.02. As shown in Fig.1(b), on top of the substrate, the differential microstirp feeding lines are etched, loading with two partially cut elliptical patches. The width of the feeding lines is chosen as 1.86 mm to achieve the characteristic impedance of 50 Ω. For good impedance matching, part of the feeding lines taper from 1.86 mm to 1 mm. The ground plane with central hexagon-shaped slot is printed on the bottom side of the substrate. Four corners of the ground plane are cut to further ameliorate the impedance matching, especially in the high frequency band. To realize the stable wideband directional radiation patterns, the proposed planar antenna is backed by an inverted pyramidal cavity with a inverted pyramidal cross section which occupies a volume of 70 mm×85 mm×10 mm. Two coaxial cables are used to conveniently feed the differenti-al antenna. The coaxial inner conductor is con-nected to the feedline of top planar patch, while the outer conductor is connected both the ground of the top patch antenna and the backed cavity. Based on the optimized parameters on Table 1, an antenna prototype is designed and fabricated as shown in Fig.1(c).

    Fig.1 Configuration of the proposed antenna

    Table 1 Optimized antenna parameters

    2 Antenna Design and Analysis

    2.1 Differential-fed microstrip antenna

    A differential-fed antenna can be regarded as a two-port differential device, excited by two signals with equal amplitude and out of phase. Thus the reflection coefficient of the differentially driven can be defined as

    (1)

    Fig.2 The evolving process of the top planar patch

    Fig.3 The simulated |Sd11| results of Ants A, B, and C

    2.2 Proposed directional UWB antenna

    Fig.4 shows the simulated three-dimensional radiation plots of the planar differential-fed antenna without backed cavity. It can be observed that the main beams of the antenna are stabilized in the broadside direction within the whole frequency range. This stable radiation property may somewhat avoid splitting radiation pattern, especially in the high frequency band, when the proposed antenna is backed with a reflector. Here, instead of a planar reflector, an inverted pyramidal cavity, which is placed 21 mm away from the ground plane of the microstrip antenna, is used to realize the directional radiation patterns. Fig.5 shows the comparison of gains in the broadside direction for the antenna backed by a planar reflector and the proposed cavity with a same horizontal area. It can be seen that by using the inverted pyramidal cavity as the reflector, the realized gain of the antenna, especially in the high frequency band, can be increased to some extent. Fig. 6 shows the simulated |Sd11| results of the differential-fed antenna with and without the cavity in their optimized parameters, which indicates that the impedance matching would degraded both in the low and high frequency bands for introducing the cavity.

    Fig.4 The simulated 3-D radiation plots of the top planar antenna

    Fig.5 The gain comparison for the antenna backed by a planar reflector and the proposed cavity

    Fig.6 The simulated |Sd11| results of the antenna with and without the cavity

    2.3 Measured result and discussion

    An Agilent N5230A vector network analyzer is used to measure theS-parameter:S11,S22,S12, andS21for the proposed antenna. Then the differential reflection coefficient |Sd11| can be obtained by using Eq.(1). Fig.7 shows the measured and simulated results of the designed directional differential-fed UWB antenna. It can be seen that the fabricated antenna can achieve an UWB performance from 3.3 to 10.4 GHz for |Sd11|<-10 dB. The discrepancy between the simulated and the measured results is probably owing to the fluctuation constant or process tolerance.

    Fig.7 The measured and the simulated results of the proposed antenna

    In the radiation pattern measurement, be-cause the differential excited signals are hard to be implemented directly, a UWB anti-phase power hybrid coupler Krytar 4020180 is used to measure the radiation characteristics of the proposed differentially driven antenna. The radiation patterns in the E- and H-plane at 3.5, 6, 8, and 10 GHz are plotted in Fig.8, where Sim-Co represents the simulation result of main polarization of radiation pattern; Sim-Cx the simulation result of cross-polarization of radiation pattern; Mea-Co the measurement result of main polarization of radiation pattern; Mea-Cx the measurement result of cross-polarization of radiation pattern. It can be seen that the proposed antenna exhibits a stable directional radiation patterns within the entire operating frequency band. Moreover, all the measured cross-polarization levels of the designed antenna are less -20 dB than the cross-polarization, which means that the polarization purity can be maintained in a high level across the whole UWB frequency range. Fig.9 shows the simulated and the measured gains of the antenna in the broadside direction. It should be noted that the measured gains have been amended by removing the transmission loss of the power hybrid coupler. From 3.5 to 10.5 GHz, the measured gain is confined between 7 and 11 dB, while the simulated gain varied in the range of 7.3—12.5 dB. Since the 180° power hybrid coupler may not be perfect, there exists a disagreement between the simulated and the measured results.

    Fig.8 The radiation patterns in the E- and H-planes at different frequencies

    Fig.9 The simulated and the measured gains of the proposed antenna in the broadside direction

    3 Conclusions

    In this study, a directional differential-fed antenna is presented for some UWB communication systems. Thanks to the hexagon-shaped slot in the central part of the ground plane, the impedance matching of the antenna is greatly improved, especially in the low frequency band. To further improve the impedance matching at high frequencies, four symmetrical isosceles right triangles are cut from the four corners of the ground plane. An inverted pyramidal cavity is used as the reflector for the planar antenna so that the stable directional radiation patterns is obtained. More importantly, thanks to the differentially driven strategy, the cross-polarization is kept in a low level within the whole operating frequency range, which results in high polarization purity of the antenna. Therefore, the simple structure and improved radiation patterns lead the proposed antenna to a broader future of various UWB utilizations.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Nos.61472324, 61073106, 61540028).

    [1] Federal Communications Commission (FCC). ET-Docket FCC02-48, Revision of part 15 of the commission′s rules regarding ultra-wideband transmission systems FCC [S]. Washington, D.C.:[s.n.], 2002.

    [2] LIANG J X, CHIAU C C, CHEN X D, et al. Study of a printed circular disc monopole antenna for UWB systems[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3500-3504.

    [3] LIN Y C, HUNG K J. Compact ultrawideband rectangular aperture antenna and band-notched designs[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3075-3081.

    [4] SIM C, CHUNG W T, LEE C H. Compact slot antenna for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 63-66.

    [5] LI D T, MAO J F. A Koch-like sided fractal Bow-Tie dipole antenna: Antennas and propagation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2242-2251.

    [6] HUANG X D, CHENG C H, ZHU L. An ultrawideband (UWB) slotline antenna under multiple-mode resonance[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 385-389.

    [7] MOODY R A, SHARMA S K. Ultrawide bandwidth (UWB) planar monopole antenna backed by novel pyramidal-shaped cavity providing directional radiation patterns[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1469-1472.

    [8] ELSHERBINI A, SARABANDI K. Directive coupled sectorial loops antenna for ultrawideband applications[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 576-579.

    [9] NAIR S M, SHAMEENA V A, DINESH R, et al. Compact semicircular directive dipole antenna for UWB applications[J]. Electronics Letters, 2011, 47(23): 1260-1262.

    [10]MA C Y, LI Z G. Beamforming of whole airspace phased array TT & C system based on linear subarrays[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1): 128-132.

    [11]HUM S V, HUI Y X. Analysis and design of a differentially-fed frequency agile microstrip patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2010, 58 (10):3122-3130.

    [12]ZHANG Y P. Design and experiment on differentially-driven microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 2007, 55 (10):2701-2708.

    [13]XUE Q, ZHANG X L, CHIN C H K. A novel differential-fed patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5(1): 471-474.

    [14]WU H W, ZHANG J, YAN L Y, et al. Differential dual-band antenna-in-package with T-shaped slots[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:1446-1449.

    [15]SIM C, CHANG C C, ROW J S. Dual-feed dual-polarized patch antenna with low cross polarization and high isolation[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3321-3324.

    [16]JIN K, ZHAN D W, YANG Y, et al. Design of compact and high gain differential micro-strip antenna[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 49(6): 911-916. (in Chinese)

    Mr. Fang Yang received his M.S. degree from School of Electronics and Information, Northwestern Poly technical University. He is currently a Ph.D. candidate working in department of Electronics and Information, Northwestern Polytechnical University. His current research interests include telemetry antenna, radar imaging and imaging processing.

    Prof. Wang Baoping received his Ph.D. degree from Department of Electronic Engineering, Xidian University, in 2004. He is now a professor and a master instructor in National Key Laboratory of Science and Technology on UAV. So far he has published more than 30 papers, in which two papers were indexed by SCI and ten papers by EI. His current research interests include imaging processing, radar imaging.

    Mr. Sun Chao received his B.S. degree in electronic information science and technology from Qufu Normal University, in 2010, and M.S. degree in signal and information processing from Northwestern Polytechnical University, in 2013, where he is currently working as a Ph.D. candidate in information and communication engineering. His research interest is radar imaging.

    Prof. Song Zuxun received his Bachelor, Master, and Ph. D. degrees in School of Electronics and Information, Northwestern Polytechnical University in 1986, 1989, and 2004, respectively. He now is a professor in the School of Electronics and Information, Northwestern Polytechnical University. His research interests include signal information acquisition and processing, overall design of microwave communication link, and EMC design and diagnosis.

    Prof. Wang Shuzhen is currently an associate professor in the School of Computer Science and Technology, Xidian University. He received his Ph.D. degree from School of Electro-Mechanical Engineering, Xidian University in 2005. So far he has published more than 20 papers, in which four papers were indexed by SCI. His research interests include radar imaging, machine learning, and computer vision.

    (Executive Editor: Zhang Bei)

    TN823 Document code:A Article ID:1005-1120(2016)06-0747-07

    *Corresponding author, E-mail address: wbpluo@sina.com. How to cite this article: Fang Yang, Wang Baoping, Sun Chao, et al. A directional differential-fed UWB antenna with stable radiation pattern[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(6):747-753. http://dx.doi.org/10.16356/j.1005-1120.2016.06.747

    成人午夜精彩视频在线观看| 国产一区二区三区av在线| 欧美精品国产亚洲| 亚洲国产精品成人久久小说| 国产精品久久电影中文字幕| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 免费播放大片免费观看视频在线观看 | 国产精品国产高清国产av| 一区二区三区高清视频在线| 有码 亚洲区| 美女cb高潮喷水在线观看| 直男gayav资源| 欧美人与善性xxx| 神马国产精品三级电影在线观看| 天堂√8在线中文| 亚洲欧美清纯卡通| 黄色欧美视频在线观看| 一区二区三区高清视频在线| 日韩强制内射视频| 最近2019中文字幕mv第一页| 亚洲欧美成人精品一区二区| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 18禁裸乳无遮挡免费网站照片| 中文字幕制服av| 国产伦在线观看视频一区| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 国产淫片久久久久久久久| av在线老鸭窝| 中文天堂在线官网| 一级毛片电影观看 | 国产黄片美女视频| 国产私拍福利视频在线观看| 久久久色成人| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲综合色惰| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 一级二级三级毛片免费看| 秋霞在线观看毛片| 搞女人的毛片| 日本wwww免费看| 久久精品久久精品一区二区三区| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 久久精品91蜜桃| 我的女老师完整版在线观看| 中文乱码字字幕精品一区二区三区 | 国产 一区 欧美 日韩| 夫妻性生交免费视频一级片| av免费在线看不卡| 国产片特级美女逼逼视频| 日本一本二区三区精品| 国产一级毛片七仙女欲春2| 国产一区亚洲一区在线观看| 国产麻豆成人av免费视频| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 亚洲av电影在线观看一区二区三区 | 久久精品影院6| 日韩亚洲欧美综合| 少妇的逼水好多| 日韩人妻高清精品专区| 日本免费a在线| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国产黄a三级三级三级人| 久久久国产成人免费| 亚洲丝袜综合中文字幕| 日韩精品青青久久久久久| 久久久精品94久久精品| 三级国产精品片| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 99久久无色码亚洲精品果冻| 欧美97在线视频| 永久免费av网站大全| 精品久久国产蜜桃| 成人鲁丝片一二三区免费| 久久久久久久久久成人| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 直男gayav资源| 亚洲中文字幕日韩| 欧美一区二区国产精品久久精品| 18禁动态无遮挡网站| 欧美激情久久久久久爽电影| 美女黄网站色视频| 国产精品一区www在线观看| 小蜜桃在线观看免费完整版高清| 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 日韩视频在线欧美| 人人妻人人澡欧美一区二区| 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 午夜日本视频在线| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 99久国产av精品国产电影| a级一级毛片免费在线观看| 22中文网久久字幕| 久久精品久久精品一区二区三区| 午夜久久久久精精品| 国产亚洲精品久久久com| 一级毛片aaaaaa免费看小| 国产三级中文精品| 精品久久久久久久末码| 黄色欧美视频在线观看| 男人舔奶头视频| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆| 久久欧美精品欧美久久欧美| 国产成人a∨麻豆精品| 级片在线观看| 久久99精品国语久久久| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 床上黄色一级片| 一级黄片播放器| 搞女人的毛片| 亚洲国产欧美在线一区| 国产精品伦人一区二区| 亚洲av日韩在线播放| 国产高清国产精品国产三级 | 国产成人91sexporn| 久久久色成人| 黄色一级大片看看| 国产一区亚洲一区在线观看| 免费看日本二区| 在线观看66精品国产| 亚洲av成人av| 热99re8久久精品国产| 搞女人的毛片| 九色成人免费人妻av| 日韩一区二区三区影片| 美女脱内裤让男人舔精品视频| 国产黄a三级三级三级人| 久久99热6这里只有精品| 黄色配什么色好看| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 在线观看av片永久免费下载| 欧美激情在线99| 国产综合懂色| 亚洲经典国产精华液单| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 欧美日韩一区二区视频在线观看视频在线 | 日日摸夜夜添夜夜添av毛片| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 久久久久国产网址| 亚洲国产欧洲综合997久久,| 中文字幕制服av| 国产一级毛片七仙女欲春2| 听说在线观看完整版免费高清| 欧美极品一区二区三区四区| 日韩一本色道免费dvd| 亚洲av一区综合| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 18禁在线播放成人免费| 日韩视频在线欧美| av免费观看日本| 春色校园在线视频观看| 日本熟妇午夜| 日本猛色少妇xxxxx猛交久久| 国产精品伦人一区二区| 国产高潮美女av| 免费观看人在逋| 在线播放国产精品三级| 自拍偷自拍亚洲精品老妇| 亚洲五月天丁香| 精品国内亚洲2022精品成人| 成人国产麻豆网| 亚洲国产色片| 免费无遮挡裸体视频| 床上黄色一级片| 晚上一个人看的免费电影| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 久久久精品大字幕| 男人舔女人下体高潮全视频| 99热6这里只有精品| 亚洲成色77777| 国产精品三级大全| 直男gayav资源| 国产三级中文精品| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 色哟哟·www| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂 | 热99在线观看视频| 成年免费大片在线观看| 国产爱豆传媒在线观看| 亚洲欧美清纯卡通| 亚洲色图av天堂| 97在线视频观看| 亚洲精品乱码久久久v下载方式| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 日韩在线高清观看一区二区三区| av又黄又爽大尺度在线免费看 | 男人舔奶头视频| videossex国产| 欧美日本视频| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 18禁在线无遮挡免费观看视频| 麻豆一二三区av精品| 草草在线视频免费看| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 亚洲五月天丁香| 国产精品不卡视频一区二区| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 91久久精品电影网| 插阴视频在线观看视频| 亚洲最大成人中文| 久久久精品欧美日韩精品| 久久人妻av系列| 日韩欧美精品v在线| 国内精品宾馆在线| 成人亚洲欧美一区二区av| 久久久精品欧美日韩精品| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 99久国产av精品国产电影| 亚洲国产精品合色在线| 我要看日韩黄色一级片| av在线老鸭窝| 日本wwww免费看| 久久99热6这里只有精品| 午夜福利在线观看免费完整高清在| 一个人免费在线观看电影| 夜夜爽夜夜爽视频| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 69人妻影院| 天堂av国产一区二区熟女人妻| 日本wwww免费看| 色视频www国产| 1000部很黄的大片| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 日本熟妇午夜| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 长腿黑丝高跟| 亚洲av成人精品一区久久| 日本色播在线视频| 成人鲁丝片一二三区免费| 成人毛片a级毛片在线播放| 性插视频无遮挡在线免费观看| av在线亚洲专区| 有码 亚洲区| 国产亚洲av片在线观看秒播厂 | 国产成人精品婷婷| 国产综合懂色| 少妇被粗大猛烈的视频| 极品教师在线视频| 亚洲乱码一区二区免费版| 欧美色视频一区免费| 老司机影院毛片| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 又爽又黄a免费视频| av免费观看日本| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 国产成人精品婷婷| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| 女人被狂操c到高潮| 白带黄色成豆腐渣| 成人漫画全彩无遮挡| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 看免费成人av毛片| 日日干狠狠操夜夜爽| 日韩成人伦理影院| 乱人视频在线观看| 亚洲人成网站在线观看播放| 色综合站精品国产| 国产在线男女| 色综合站精品国产| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 亚洲av中文字字幕乱码综合| 亚洲内射少妇av| 国产精品麻豆人妻色哟哟久久 | 成人无遮挡网站| 少妇熟女aⅴ在线视频| 18禁在线播放成人免费| 日韩成人伦理影院| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 男女国产视频网站| 欧美高清成人免费视频www| 有码 亚洲区| 精品久久久噜噜| 免费av毛片视频| 亚洲不卡免费看| 少妇丰满av| 国产精品伦人一区二区| av国产免费在线观看| 麻豆精品久久久久久蜜桃| ponron亚洲| 在现免费观看毛片| 午夜福利在线观看免费完整高清在| 欧美成人一区二区免费高清观看| 国产精品1区2区在线观看.| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 欧美性猛交╳xxx乱大交人| 少妇的逼水好多| 成年女人永久免费观看视频| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 老女人水多毛片| 亚洲怡红院男人天堂| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| 亚洲一区高清亚洲精品| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| 亚洲精品成人久久久久久| 国产69精品久久久久777片| 只有这里有精品99| 免费看日本二区| 亚洲精品日韩av片在线观看| 国产单亲对白刺激| 3wmmmm亚洲av在线观看| 欧美另类亚洲清纯唯美| 精品国产三级普通话版| 高清在线视频一区二区三区 | 久久草成人影院| 日韩欧美精品v在线| 免费看av在线观看网站| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 六月丁香七月| 九九爱精品视频在线观看| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 免费看a级黄色片| 日韩人妻高清精品专区| 日韩一区二区三区影片| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 亚洲真实伦在线观看| 久久人人爽人人片av| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 久久久精品94久久精品| 亚洲无线观看免费| 岛国在线免费视频观看| 波野结衣二区三区在线| 免费观看的影片在线观看| 永久网站在线| 国产真实乱freesex| 边亲边吃奶的免费视频| 99热6这里只有精品| av在线观看视频网站免费| 欧美3d第一页| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 亚洲国产精品专区欧美| 亚洲欧美精品专区久久| 亚洲欧美精品综合久久99| 少妇丰满av| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 中文在线观看免费www的网站| 国产精品,欧美在线| 亚洲在线观看片| 亚洲av成人av| 日韩在线高清观看一区二区三区| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 国产精品一区www在线观看| 国产三级中文精品| 免费看日本二区| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 免费电影在线观看免费观看| 黄色欧美视频在线观看| 激情 狠狠 欧美| 伦精品一区二区三区| 亚洲av熟女| 欧美最新免费一区二区三区| 男人和女人高潮做爰伦理| 22中文网久久字幕| 免费看av在线观看网站| 久久婷婷人人爽人人干人人爱| videos熟女内射| 亚洲国产欧美在线一区| 在线播放无遮挡| 免费看美女性在线毛片视频| 国产黄片美女视频| 精品欧美国产一区二区三| 久久精品人妻少妇| 国产人妻一区二区三区在| 国产精品国产三级专区第一集| 又爽又黄无遮挡网站| 少妇丰满av| 亚洲天堂国产精品一区在线| 国产精品三级大全| 国产探花极品一区二区| 最后的刺客免费高清国语| 成人毛片60女人毛片免费| 久久精品夜色国产| eeuss影院久久| 日韩欧美国产在线观看| 亚洲欧洲日产国产| 两性午夜刺激爽爽歪歪视频在线观看| 一个人观看的视频www高清免费观看| 最近中文字幕2019免费版| 欧美色视频一区免费| 亚洲精品久久久久久婷婷小说 | 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 亚洲av.av天堂| 成人一区二区视频在线观看| 超碰av人人做人人爽久久| 久久久久国产网址| 大香蕉97超碰在线| 国产av在哪里看| 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 国产黄色小视频在线观看| 三级经典国产精品| 久久久久网色| 亚洲欧美日韩无卡精品| 高清在线视频一区二区三区 | 日本欧美国产在线视频| 成人毛片a级毛片在线播放| 桃色一区二区三区在线观看| 亚洲欧美成人综合另类久久久 | 青青草视频在线视频观看| 国产精品一区二区三区四区免费观看| 国产精品久久久久久av不卡| 纵有疾风起免费观看全集完整版 | av线在线观看网站| 国产成人福利小说| 天天一区二区日本电影三级| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 国产91av在线免费观看| 国产av不卡久久| 久久久久免费精品人妻一区二区| 毛片一级片免费看久久久久| 成人毛片a级毛片在线播放| 国产单亲对白刺激| 日韩欧美三级三区| 亚洲精华国产精华液的使用体验| 日韩av在线大香蕉| 亚洲精品aⅴ在线观看| 国产69精品久久久久777片| 精品一区二区免费观看| 赤兔流量卡办理| 欧美激情在线99| 国产一级毛片七仙女欲春2| 久久99热6这里只有精品| 久久99热这里只有精品18| 联通29元200g的流量卡| 嫩草影院新地址| 免费观看在线日韩| 人妻系列 视频| 亚洲怡红院男人天堂| 美女被艹到高潮喷水动态| 日韩成人av中文字幕在线观看| 高清午夜精品一区二区三区| 免费黄色在线免费观看| 欧美bdsm另类| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月| 亚洲中文字幕一区二区三区有码在线看| 秋霞在线观看毛片| 国产精品久久久久久精品电影| 波多野结衣巨乳人妻| 免费搜索国产男女视频| 久久热精品热| 亚洲不卡免费看| 国产一区二区亚洲精品在线观看| 伦理电影大哥的女人| 一本一本综合久久| 免费观看a级毛片全部| 观看免费一级毛片| 久久久精品欧美日韩精品| 夫妻性生交免费视频一级片| 99热6这里只有精品| 久久99热这里只有精品18| 国产午夜精品一二区理论片| 久久午夜福利片| 男人舔奶头视频| 久久精品国产鲁丝片午夜精品| 有码 亚洲区| 欧美不卡视频在线免费观看| 麻豆成人午夜福利视频| 最新中文字幕久久久久| 精品久久久久久久人妻蜜臀av| 99久久无色码亚洲精品果冻| 亚洲激情五月婷婷啪啪| 高清在线视频一区二区三区 | 亚洲三级黄色毛片| 岛国在线免费视频观看| 久久久久久九九精品二区国产| 成人亚洲精品av一区二区| 日本猛色少妇xxxxx猛交久久| 少妇高潮的动态图| 亚洲国产精品成人久久小说| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| videossex国产| 国产av在哪里看| 丝袜喷水一区| 一个人免费在线观看电影| 国内精品美女久久久久久| 欧美成人精品欧美一级黄| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 午夜激情欧美在线| 久久久久久久久大av| 日韩在线高清观看一区二区三区| 久久久久九九精品影院| 精品人妻视频免费看| 日本一本二区三区精品| 两个人视频免费观看高清| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久v下载方式| 91久久精品国产一区二区三区| 国产高清不卡午夜福利| 久久99热6这里只有精品| 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产淫片久久久久久久久| 亚洲欧美成人综合另类久久久 | av卡一久久| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 极品教师在线视频| 久久久久久国产a免费观看| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 久久久成人免费电影| 亚洲欧美成人精品一区二区| 2021少妇久久久久久久久久久| 日韩中字成人| 看片在线看免费视频| 亚洲va在线va天堂va国产| 日本色播在线视频| 亚洲av中文字字幕乱码综合| 插阴视频在线观看视频| 亚洲精品成人久久久久久| 精品久久久久久久人妻蜜臀av| 一区二区三区乱码不卡18| 亚洲欧美日韩无卡精品| 日韩一区二区视频免费看| 日韩欧美精品免费久久| 亚洲成人精品中文字幕电影| 一级毛片aaaaaa免费看小| 成人无遮挡网站| 日本色播在线视频| 波多野结衣巨乳人妻| 午夜福利视频1000在线观看| 婷婷色综合大香蕉| 人人妻人人看人人澡| 大香蕉97超碰在线| 亚洲欧美成人综合另类久久久 | 性色avwww在线观看| 亚洲成人中文字幕在线播放| 亚洲人成网站在线观看播放| 国产亚洲av嫩草精品影院| 精品久久久久久久久亚洲| 欧美高清成人免费视频www| 久久久色成人| 日韩制服骚丝袜av| 亚洲在久久综合| 三级毛片av免费|