• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Directional Differential-Fed UWB Antenna with Stable Radiation Pattern

    2016-02-09 01:54:17,,,,

    , , , ,

    1.School of Electronics and Information, Northwestern Polytechnical University, Xi′an 710072, P.R. China;2.Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi′an 710065, P.R. China;3.School of Computer Science and Technology, Xidian University, Xi′an 710071, P.R. China

    ?

    A Directional Differential-Fed UWB Antenna with Stable Radiation Pattern

    FangYang1,WangBaoping2*,SunChao1,SongZuxun1,WangShuzhen3

    1.School of Electronics and Information, Northwestern Polytechnical University, Xi′an 710072, P.R. China;2.Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi′an 710065, P.R. China;3.School of Computer Science and Technology, Xidian University, Xi′an 710071, P.R. China

    (Received 7 December 2015; revised 26 July 2016; accepted 29 August 2016)

    A directional ultra-wideband (UWB) antenna with improved radiation patterns is presented. The proposed sheme comprises a differential-fed microstrip antenna and a rectangular cavity. The hexagon-shaped slot and four triangle-cut corners on the ground plane of the planar antenna are used to improve the impedance matching within the UWB frequency range. A rectangular cavity is used as the reflector for the planar microstrip antenna, so as to achieve directed radiation. The measured results indicate that the designed antenna exhibits a stable broadside directional radiation patterns within the entire operating frequency band. Furthermore, thanks to the differentially driven technique, the cross-polarization is greatly decreased and the polarization purity is maintained in a high level.

    differential-fed; ultra wide band; microstrip antenna

    0 Introduction

    Thanks to the advantages of high date rate, great capacity, simplicity, and low cost, ultra-wideband (UWB) short-range wireless technology has attracted more and more attention since the Federal Commercial Commission (FCC) released the frequency band 3.1—10.6 GHz for commercial UWB systems[1]. As an important component of UWB system, UWB antenna holds appealing features of simple structure, wide impedance bandwidth (BW), stable radiation patterns, and constant gain in the desired direction. So far, various planar UWB antennas have been presented[2-6]. However, those planar antennas exhibit omnidirectional radiation patterns. In some applications that require unidirectional radiation patterns, the planar antennas will waste radiation power in needless directions. Thus, UWB antennas with stable directional radiation patterns are needed. Although some directed UWB antennas have been proposed[7-9], most of them have a common deficiency: Radiation pattern degrading in high frequency band. Most degradations mean splitting the radiation pattern, low polarization purity of the radiation pattern in the high frequency band, etc.

    Recently, the differential-fed antennas have been increasingly popular, thanks to their easy integration with the differential devices, low cross polarization and so on[10-16]. A differential-fed directional UWB antenna with improved radiation patterns is presented. The proposed antenna comprises a differentially driven microstrip antenna and a rectangular cavity. The rectangular cavity, working as a reflector, unidirectional reflect radiation within the entire operation frequency band. Furthermore, thanks to the differentially excited strategy, the cross-polarization level is maintained less 20 dB than co-polarization over the whole UWB frequency range, which results in high polarization purity of radiation patterns. All the simulated results are drawn by using the software of ANSYS high frequency structure simulator (HFSS), a commercial 3-D full-wave electromagnetic simulation tool.

    1 Antenna Configuration

    Fig.1 shows the configuration of the differential-fed planar antenna backed by a rectangular cavity. The proposed differentially driven microstrip antenna is printed on FR4 substrate with thickness of 1 mm, relative dielectric constant of 4.4, and loss tangent of 0.02. As shown in Fig.1(b), on top of the substrate, the differential microstirp feeding lines are etched, loading with two partially cut elliptical patches. The width of the feeding lines is chosen as 1.86 mm to achieve the characteristic impedance of 50 Ω. For good impedance matching, part of the feeding lines taper from 1.86 mm to 1 mm. The ground plane with central hexagon-shaped slot is printed on the bottom side of the substrate. Four corners of the ground plane are cut to further ameliorate the impedance matching, especially in the high frequency band. To realize the stable wideband directional radiation patterns, the proposed planar antenna is backed by an inverted pyramidal cavity with a inverted pyramidal cross section which occupies a volume of 70 mm×85 mm×10 mm. Two coaxial cables are used to conveniently feed the differenti-al antenna. The coaxial inner conductor is con-nected to the feedline of top planar patch, while the outer conductor is connected both the ground of the top patch antenna and the backed cavity. Based on the optimized parameters on Table 1, an antenna prototype is designed and fabricated as shown in Fig.1(c).

    Fig.1 Configuration of the proposed antenna

    Table 1 Optimized antenna parameters

    2 Antenna Design and Analysis

    2.1 Differential-fed microstrip antenna

    A differential-fed antenna can be regarded as a two-port differential device, excited by two signals with equal amplitude and out of phase. Thus the reflection coefficient of the differentially driven can be defined as

    (1)

    Fig.2 The evolving process of the top planar patch

    Fig.3 The simulated |Sd11| results of Ants A, B, and C

    2.2 Proposed directional UWB antenna

    Fig.4 shows the simulated three-dimensional radiation plots of the planar differential-fed antenna without backed cavity. It can be observed that the main beams of the antenna are stabilized in the broadside direction within the whole frequency range. This stable radiation property may somewhat avoid splitting radiation pattern, especially in the high frequency band, when the proposed antenna is backed with a reflector. Here, instead of a planar reflector, an inverted pyramidal cavity, which is placed 21 mm away from the ground plane of the microstrip antenna, is used to realize the directional radiation patterns. Fig.5 shows the comparison of gains in the broadside direction for the antenna backed by a planar reflector and the proposed cavity with a same horizontal area. It can be seen that by using the inverted pyramidal cavity as the reflector, the realized gain of the antenna, especially in the high frequency band, can be increased to some extent. Fig. 6 shows the simulated |Sd11| results of the differential-fed antenna with and without the cavity in their optimized parameters, which indicates that the impedance matching would degraded both in the low and high frequency bands for introducing the cavity.

    Fig.4 The simulated 3-D radiation plots of the top planar antenna

    Fig.5 The gain comparison for the antenna backed by a planar reflector and the proposed cavity

    Fig.6 The simulated |Sd11| results of the antenna with and without the cavity

    2.3 Measured result and discussion

    An Agilent N5230A vector network analyzer is used to measure theS-parameter:S11,S22,S12, andS21for the proposed antenna. Then the differential reflection coefficient |Sd11| can be obtained by using Eq.(1). Fig.7 shows the measured and simulated results of the designed directional differential-fed UWB antenna. It can be seen that the fabricated antenna can achieve an UWB performance from 3.3 to 10.4 GHz for |Sd11|<-10 dB. The discrepancy between the simulated and the measured results is probably owing to the fluctuation constant or process tolerance.

    Fig.7 The measured and the simulated results of the proposed antenna

    In the radiation pattern measurement, be-cause the differential excited signals are hard to be implemented directly, a UWB anti-phase power hybrid coupler Krytar 4020180 is used to measure the radiation characteristics of the proposed differentially driven antenna. The radiation patterns in the E- and H-plane at 3.5, 6, 8, and 10 GHz are plotted in Fig.8, where Sim-Co represents the simulation result of main polarization of radiation pattern; Sim-Cx the simulation result of cross-polarization of radiation pattern; Mea-Co the measurement result of main polarization of radiation pattern; Mea-Cx the measurement result of cross-polarization of radiation pattern. It can be seen that the proposed antenna exhibits a stable directional radiation patterns within the entire operating frequency band. Moreover, all the measured cross-polarization levels of the designed antenna are less -20 dB than the cross-polarization, which means that the polarization purity can be maintained in a high level across the whole UWB frequency range. Fig.9 shows the simulated and the measured gains of the antenna in the broadside direction. It should be noted that the measured gains have been amended by removing the transmission loss of the power hybrid coupler. From 3.5 to 10.5 GHz, the measured gain is confined between 7 and 11 dB, while the simulated gain varied in the range of 7.3—12.5 dB. Since the 180° power hybrid coupler may not be perfect, there exists a disagreement between the simulated and the measured results.

    Fig.8 The radiation patterns in the E- and H-planes at different frequencies

    Fig.9 The simulated and the measured gains of the proposed antenna in the broadside direction

    3 Conclusions

    In this study, a directional differential-fed antenna is presented for some UWB communication systems. Thanks to the hexagon-shaped slot in the central part of the ground plane, the impedance matching of the antenna is greatly improved, especially in the low frequency band. To further improve the impedance matching at high frequencies, four symmetrical isosceles right triangles are cut from the four corners of the ground plane. An inverted pyramidal cavity is used as the reflector for the planar antenna so that the stable directional radiation patterns is obtained. More importantly, thanks to the differentially driven strategy, the cross-polarization is kept in a low level within the whole operating frequency range, which results in high polarization purity of the antenna. Therefore, the simple structure and improved radiation patterns lead the proposed antenna to a broader future of various UWB utilizations.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Nos.61472324, 61073106, 61540028).

    [1] Federal Communications Commission (FCC). ET-Docket FCC02-48, Revision of part 15 of the commission′s rules regarding ultra-wideband transmission systems FCC [S]. Washington, D.C.:[s.n.], 2002.

    [2] LIANG J X, CHIAU C C, CHEN X D, et al. Study of a printed circular disc monopole antenna for UWB systems[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3500-3504.

    [3] LIN Y C, HUNG K J. Compact ultrawideband rectangular aperture antenna and band-notched designs[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3075-3081.

    [4] SIM C, CHUNG W T, LEE C H. Compact slot antenna for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 63-66.

    [5] LI D T, MAO J F. A Koch-like sided fractal Bow-Tie dipole antenna: Antennas and propagation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2242-2251.

    [6] HUANG X D, CHENG C H, ZHU L. An ultrawideband (UWB) slotline antenna under multiple-mode resonance[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 385-389.

    [7] MOODY R A, SHARMA S K. Ultrawide bandwidth (UWB) planar monopole antenna backed by novel pyramidal-shaped cavity providing directional radiation patterns[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1469-1472.

    [8] ELSHERBINI A, SARABANDI K. Directive coupled sectorial loops antenna for ultrawideband applications[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 576-579.

    [9] NAIR S M, SHAMEENA V A, DINESH R, et al. Compact semicircular directive dipole antenna for UWB applications[J]. Electronics Letters, 2011, 47(23): 1260-1262.

    [10]MA C Y, LI Z G. Beamforming of whole airspace phased array TT & C system based on linear subarrays[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1): 128-132.

    [11]HUM S V, HUI Y X. Analysis and design of a differentially-fed frequency agile microstrip patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2010, 58 (10):3122-3130.

    [12]ZHANG Y P. Design and experiment on differentially-driven microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 2007, 55 (10):2701-2708.

    [13]XUE Q, ZHANG X L, CHIN C H K. A novel differential-fed patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5(1): 471-474.

    [14]WU H W, ZHANG J, YAN L Y, et al. Differential dual-band antenna-in-package with T-shaped slots[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:1446-1449.

    [15]SIM C, CHANG C C, ROW J S. Dual-feed dual-polarized patch antenna with low cross polarization and high isolation[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3321-3324.

    [16]JIN K, ZHAN D W, YANG Y, et al. Design of compact and high gain differential micro-strip antenna[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 49(6): 911-916. (in Chinese)

    Mr. Fang Yang received his M.S. degree from School of Electronics and Information, Northwestern Poly technical University. He is currently a Ph.D. candidate working in department of Electronics and Information, Northwestern Polytechnical University. His current research interests include telemetry antenna, radar imaging and imaging processing.

    Prof. Wang Baoping received his Ph.D. degree from Department of Electronic Engineering, Xidian University, in 2004. He is now a professor and a master instructor in National Key Laboratory of Science and Technology on UAV. So far he has published more than 30 papers, in which two papers were indexed by SCI and ten papers by EI. His current research interests include imaging processing, radar imaging.

    Mr. Sun Chao received his B.S. degree in electronic information science and technology from Qufu Normal University, in 2010, and M.S. degree in signal and information processing from Northwestern Polytechnical University, in 2013, where he is currently working as a Ph.D. candidate in information and communication engineering. His research interest is radar imaging.

    Prof. Song Zuxun received his Bachelor, Master, and Ph. D. degrees in School of Electronics and Information, Northwestern Polytechnical University in 1986, 1989, and 2004, respectively. He now is a professor in the School of Electronics and Information, Northwestern Polytechnical University. His research interests include signal information acquisition and processing, overall design of microwave communication link, and EMC design and diagnosis.

    Prof. Wang Shuzhen is currently an associate professor in the School of Computer Science and Technology, Xidian University. He received his Ph.D. degree from School of Electro-Mechanical Engineering, Xidian University in 2005. So far he has published more than 20 papers, in which four papers were indexed by SCI. His research interests include radar imaging, machine learning, and computer vision.

    (Executive Editor: Zhang Bei)

    TN823 Document code:A Article ID:1005-1120(2016)06-0747-07

    *Corresponding author, E-mail address: wbpluo@sina.com. How to cite this article: Fang Yang, Wang Baoping, Sun Chao, et al. A directional differential-fed UWB antenna with stable radiation pattern[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(6):747-753. http://dx.doi.org/10.16356/j.1005-1120.2016.06.747

    精品免费久久久久久久清纯 | 国产蜜桃级精品一区二区三区 | 欧美日韩国产mv在线观看视频| 一边摸一边做爽爽视频免费| 国产高清激情床上av| 欧美激情极品国产一区二区三区| 男人的好看免费观看在线视频 | netflix在线观看网站| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 国产伦人伦偷精品视频| 麻豆国产av国片精品| 法律面前人人平等表现在哪些方面| 麻豆av在线久日| 国产麻豆69| 成人18禁在线播放| 国产乱人伦免费视频| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 青草久久国产| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 天天影视国产精品| 久久中文字幕一级| 午夜老司机福利片| 色综合婷婷激情| 超碰97精品在线观看| 国产主播在线观看一区二区| 99国产精品一区二区蜜桃av | 国产主播在线观看一区二区| 交换朋友夫妻互换小说| 日韩欧美在线二视频 | 交换朋友夫妻互换小说| 国产成人啪精品午夜网站| 一本综合久久免费| 丝袜在线中文字幕| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 国产高清国产精品国产三级| 侵犯人妻中文字幕一二三四区| 一级a爱片免费观看的视频| 视频区欧美日本亚洲| 青草久久国产| 50天的宝宝边吃奶边哭怎么回事| 久久久精品区二区三区| 黄片小视频在线播放| 久久亚洲真实| 多毛熟女@视频| 国产免费男女视频| 丁香欧美五月| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 亚洲成人免费av在线播放| 人人妻人人澡人人爽人人夜夜| 男人操女人黄网站| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 高清视频免费观看一区二区| 中文欧美无线码| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 人人妻,人人澡人人爽秒播| 久久久久精品人妻al黑| 午夜福利免费观看在线| 国产精品.久久久| 国产男女超爽视频在线观看| 久久久久久久久久久久大奶| 久9热在线精品视频| 高清毛片免费观看视频网站 | tube8黄色片| 无遮挡黄片免费观看| 午夜福利免费观看在线| av片东京热男人的天堂| 成人永久免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 亚洲综合色网址| av不卡在线播放| 午夜福利视频在线观看免费| 天堂中文最新版在线下载| 欧美丝袜亚洲另类 | 69av精品久久久久久| 校园春色视频在线观看| av电影中文网址| 97人妻天天添夜夜摸| 国产一区有黄有色的免费视频| 免费少妇av软件| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 色老头精品视频在线观看| 久久国产乱子伦精品免费另类| 黄色视频,在线免费观看| 无人区码免费观看不卡| 韩国av一区二区三区四区| 黑人巨大精品欧美一区二区蜜桃| 亚洲九九香蕉| 高清av免费在线| 高清欧美精品videossex| av线在线观看网站| 91av网站免费观看| 777米奇影视久久| 搡老熟女国产l中国老女人| 国产深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 久久久久国产精品人妻aⅴ院 | √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 欧美精品高潮呻吟av久久| 亚洲精品美女久久av网站| tocl精华| 黄色毛片三级朝国网站| 男人舔女人的私密视频| videosex国产| 免费在线观看亚洲国产| 在线观看舔阴道视频| 美女视频免费永久观看网站| 久久国产精品大桥未久av| av片东京热男人的天堂| 色老头精品视频在线观看| avwww免费| av网站免费在线观看视频| 日韩欧美在线二视频 | 别揉我奶头~嗯~啊~动态视频| 我的亚洲天堂| 日韩免费av在线播放| 久久久国产精品麻豆| 国产精品美女特级片免费视频播放器 | 超碰97精品在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲男人天堂网一区| 久久久久精品人妻al黑| 女人久久www免费人成看片| 免费人成视频x8x8入口观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| 欧美午夜高清在线| 免费高清在线观看日韩| 男人的好看免费观看在线视频 | 最新的欧美精品一区二区| 老司机福利观看| 成年版毛片免费区| 久久天堂一区二区三区四区| 亚洲成a人片在线一区二区| 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区三| 制服诱惑二区| 免费在线观看视频国产中文字幕亚洲| 成年动漫av网址| 亚洲五月婷婷丁香| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 免费在线观看日本一区| 在线观看一区二区三区激情| 91国产中文字幕| 亚洲色图综合在线观看| 91成人精品电影| 久久久久久久久久久久大奶| 脱女人内裤的视频| 亚洲成人免费av在线播放| 久久久久久久久久久久大奶| 一级毛片高清免费大全| 少妇被粗大的猛进出69影院| 亚洲人成伊人成综合网2020| 麻豆乱淫一区二区| 老司机影院毛片| 成熟少妇高潮喷水视频| 18禁观看日本| 狠狠婷婷综合久久久久久88av| 国产精品久久电影中文字幕 | 看免费av毛片| 久久久久久人人人人人| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 欧美日韩亚洲国产一区二区在线观看 | 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 亚洲精品自拍成人| www.精华液| 欧美激情久久久久久爽电影 | av网站在线播放免费| 色综合婷婷激情| 国产欧美日韩一区二区三区在线| 久久亚洲真实| 免费av中文字幕在线| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 国产成人精品在线电影| 18禁黄网站禁片午夜丰满| 91大片在线观看| 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 狠狠婷婷综合久久久久久88av| 免费在线观看黄色视频的| 国产高清videossex| 两性午夜刺激爽爽歪歪视频在线观看 | 日本精品一区二区三区蜜桃| 久久亚洲真实| 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 亚洲,欧美精品.| 视频在线观看一区二区三区| 国产成人av激情在线播放| 老汉色∧v一级毛片| 欧美午夜高清在线| 中亚洲国语对白在线视频| 亚洲色图综合在线观看| 自线自在国产av| 黄色视频不卡| 一区在线观看完整版| xxxhd国产人妻xxx| 欧美 日韩 精品 国产| 80岁老熟妇乱子伦牲交| 18禁美女被吸乳视频| 中文字幕色久视频| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 十分钟在线观看高清视频www| 丝袜美足系列| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| 亚洲色图 男人天堂 中文字幕| 最新美女视频免费是黄的| 亚洲精品在线美女| 国产精品免费一区二区三区在线 | 国产精品偷伦视频观看了| 一级片'在线观看视频| 不卡av一区二区三区| 十八禁高潮呻吟视频| 女性生殖器流出的白浆| av福利片在线| 黑人巨大精品欧美一区二区mp4| 亚洲第一av免费看| 国产亚洲精品久久久久5区| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 久久精品国产亚洲av香蕉五月 | 久99久视频精品免费| 午夜免费鲁丝| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 国产麻豆69| 色综合婷婷激情| videos熟女内射| 中文字幕另类日韩欧美亚洲嫩草| 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 日日夜夜操网爽| 欧美久久黑人一区二区| 国产高清videossex| 亚洲自偷自拍图片 自拍| 亚洲中文字幕日韩| 亚洲三区欧美一区| 亚洲,欧美精品.| 久久精品亚洲av国产电影网| 精品国产乱子伦一区二区三区| 欧美亚洲日本最大视频资源| 久久中文字幕人妻熟女| 欧美黄色淫秽网站| 好看av亚洲va欧美ⅴa在| 丁香欧美五月| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇熟女久久| 69精品国产乱码久久久| 国产99久久九九免费精品| 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 免费日韩欧美在线观看| 亚洲精品一二三| 久久性视频一级片| 一级毛片高清免费大全| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看| 91老司机精品| 成人av一区二区三区在线看| 久久中文字幕人妻熟女| 国产成人欧美在线观看 | 亚洲精品久久成人aⅴ小说| 亚洲人成电影免费在线| 午夜日韩欧美国产| 精品视频人人做人人爽| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 丝袜在线中文字幕| 黄片大片在线免费观看| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 涩涩av久久男人的天堂| 日本a在线网址| 校园春色视频在线观看| 一级黄色大片毛片| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 下体分泌物呈黄色| 成在线人永久免费视频| 亚洲综合色网址| 亚洲熟女毛片儿| 亚洲av美国av| 99久久精品国产亚洲精品| 亚洲情色 制服丝袜| 久久香蕉精品热| 国产一区二区三区综合在线观看| 美女 人体艺术 gogo| 亚洲自偷自拍图片 自拍| 亚洲精品久久成人aⅴ小说| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区 | 啪啪无遮挡十八禁网站| 国产精品欧美亚洲77777| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 久久久久视频综合| 涩涩av久久男人的天堂| 桃红色精品国产亚洲av| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| 中文欧美无线码| 国产免费男女视频| 亚洲,欧美精品.| 久99久视频精品免费| 女人爽到高潮嗷嗷叫在线视频| 国产男靠女视频免费网站| 国产有黄有色有爽视频| 中文字幕高清在线视频| 搡老岳熟女国产| 亚洲一区二区三区欧美精品| 亚洲精品av麻豆狂野| 女人被躁到高潮嗷嗷叫费观| tocl精华| 亚洲一区二区三区不卡视频| 亚洲精品一二三| av片东京热男人的天堂| 久久精品国产a三级三级三级| 精品免费久久久久久久清纯 | 国产深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 国产成人系列免费观看| 男人的好看免费观看在线视频 | 国产日韩欧美亚洲二区| 免费高清在线观看日韩| 91精品国产国语对白视频| 国产一区在线观看成人免费| 欧美日韩一级在线毛片| 美女视频免费永久观看网站| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 亚洲第一av免费看| 黄色视频,在线免费观看| 91精品国产国语对白视频| 精品视频人人做人人爽| 99香蕉大伊视频| 无限看片的www在线观看| 久久精品aⅴ一区二区三区四区| 国产精品久久电影中文字幕 | 久久久久精品人妻al黑| 美女扒开内裤让男人捅视频| 午夜视频精品福利| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 国产精品九九99| 大码成人一级视频| 精品久久久久久,| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 激情视频va一区二区三区| 亚洲一区中文字幕在线| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 久久久国产精品麻豆| 成熟少妇高潮喷水视频| 欧美黑人精品巨大| 日本wwww免费看| 国产精品99久久99久久久不卡| 亚洲第一青青草原| 免费久久久久久久精品成人欧美视频| 无遮挡黄片免费观看| 1024视频免费在线观看| 韩国av一区二区三区四区| 亚洲精品久久成人aⅴ小说| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 亚洲人成电影观看| 久久人人爽av亚洲精品天堂| 欧美黑人精品巨大| 午夜精品在线福利| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 欧美人与性动交α欧美精品济南到| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 欧美日韩亚洲综合一区二区三区_| 大码成人一级视频| 亚洲第一欧美日韩一区二区三区| 国产人伦9x9x在线观看| 手机成人av网站| 欧美精品高潮呻吟av久久| 日韩熟女老妇一区二区性免费视频| 这个男人来自地球电影免费观看| 国产97色在线日韩免费| 国产免费男女视频| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 欧美不卡视频在线免费观看 | 国产成人影院久久av| 18禁黄网站禁片午夜丰满| 91国产中文字幕| 成人精品一区二区免费| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 亚洲国产欧美一区二区综合| 色综合婷婷激情| 国产一卡二卡三卡精品| 久久精品成人免费网站| 999久久久精品免费观看国产| 欧美日韩乱码在线| 啦啦啦在线免费观看视频4| 欧美+亚洲+日韩+国产| 老鸭窝网址在线观看| 在线观看日韩欧美| 久久 成人 亚洲| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 一级黄色大片毛片| 天堂中文最新版在线下载| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 人人妻人人澡人人看| 国产精品 欧美亚洲| 亚洲精品在线观看二区| 午夜精品在线福利| 性少妇av在线| 国产精品一区二区免费欧美| 天天影视国产精品| 成年人黄色毛片网站| 国产高清国产精品国产三级| 欧美乱妇无乱码| 99国产精品一区二区三区| 黄色视频不卡| svipshipincom国产片| 波多野结衣av一区二区av| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 十八禁网站免费在线| 男女高潮啪啪啪动态图| 人妻久久中文字幕网| 亚洲美女黄片视频| 久久中文字幕一级| 91麻豆av在线| 超碰97精品在线观看| 中亚洲国语对白在线视频| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 无人区码免费观看不卡| 91字幕亚洲| 老司机影院毛片| 母亲3免费完整高清在线观看| netflix在线观看网站| 国产一区二区三区综合在线观看| 最近最新中文字幕大全电影3 | 久久精品国产a三级三级三级| 两人在一起打扑克的视频| 老汉色∧v一级毛片| 亚洲人成电影观看| 下体分泌物呈黄色| 欧美激情高清一区二区三区| 91精品国产国语对白视频| 99香蕉大伊视频| 国产亚洲精品一区二区www | 在线观看免费日韩欧美大片| 婷婷成人精品国产| 国产精华一区二区三区| 99国产精品一区二区三区| 露出奶头的视频| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 久久精品国产综合久久久| 人人妻人人澡人人爽人人夜夜| 岛国在线观看网站| 久久性视频一级片| 久久久精品区二区三区| 很黄的视频免费| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 久久九九热精品免费| 手机成人av网站| 精品人妻熟女毛片av久久网站| av电影中文网址| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 国产一卡二卡三卡精品| 夜夜爽天天搞| 激情在线观看视频在线高清 | 岛国毛片在线播放| 国产精品永久免费网站| 下体分泌物呈黄色| 久久99一区二区三区| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频| 视频区图区小说| 成人特级黄色片久久久久久久| 免费不卡黄色视频| 欧美+亚洲+日韩+国产| 久99久视频精品免费| 精品电影一区二区在线| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 成人精品一区二区免费| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 亚洲五月色婷婷综合| 视频区图区小说| 亚洲专区中文字幕在线| 天天影视国产精品| 黄片大片在线免费观看| 亚洲欧美一区二区三区久久| av在线播放免费不卡| 黄色片一级片一级黄色片| 又黄又爽又免费观看的视频| 一a级毛片在线观看| 精品国产一区二区三区久久久樱花| 欧美日韩乱码在线| 国产欧美日韩一区二区精品| 高清欧美精品videossex| 亚洲国产欧美日韩在线播放| 天天操日日干夜夜撸| 91大片在线观看| 天天躁夜夜躁狠狠躁躁| 母亲3免费完整高清在线观看| 99久久精品国产亚洲精品| 黄色成人免费大全| 国产一区在线观看成人免费| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美软件| 国产精品国产av在线观看| 人人妻人人澡人人看| 下体分泌物呈黄色| 丁香欧美五月| 视频区图区小说| 老熟妇乱子伦视频在线观看| 国产成人系列免费观看| 国产av又大| 黄色丝袜av网址大全| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 欧美在线黄色| 成年人黄色毛片网站| 老汉色∧v一级毛片| 久9热在线精品视频| 精品高清国产在线一区| 黄频高清免费视频| 久久国产亚洲av麻豆专区| 一级a爱片免费观看的视频| 久久久国产成人精品二区 | 人人妻人人澡人人爽人人夜夜| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 变态另类成人亚洲欧美熟女 | 夫妻午夜视频| 亚洲欧美色中文字幕在线| 在线观看日韩欧美| 日韩欧美国产一区二区入口| 久久久国产成人精品二区 | 少妇 在线观看| 麻豆av在线久日| 久久国产乱子伦精品免费另类| 首页视频小说图片口味搜索| 成年动漫av网址| 国产高清videossex| 久久精品国产亚洲av香蕉五月 | 最新美女视频免费是黄的| 国产精品免费一区二区三区在线 | 亚洲精品美女久久av网站| 欧美精品av麻豆av| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产区一区二| av网站在线播放免费| 婷婷成人精品国产| 国产精品 欧美亚洲| 精品国产乱码久久久久久男人| 无限看片的www在线观看| 在线天堂中文资源库| 人妻丰满熟妇av一区二区三区 | 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 成人国产一区最新在线观看| 天天添夜夜摸| 黄色丝袜av网址大全| 日本欧美视频一区| 免费av中文字幕在线| 91精品三级在线观看| 两个人看的免费小视频| av不卡在线播放| 欧美激情高清一区二区三区|