• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy Logic Based UAV Suspicious Behavior Detection

    2016-02-09 01:54:06,,

    , ,

    College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R.China

    ?

    Fuzzy Logic Based UAV Suspicious Behavior Detection

    SunRui*,ZhangYucheng,HuMinghua

    College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R.China

    (Received 18 January 2016; revised 20 June 2016; accepted 5 July 2016)

    In recent years, unmanned air vehicles (UAVs) are widely used in many military and civilian applications. With the big amount of UAVs operation in air space, the potential security and privacy problems are arising. This can lead to consequent harm for critical infrastructure in the event of these UAVs being used for criminal or terrorist purposes. Therefore, it is crucial to promptly identify the suspicious behaviors from the surrounding UAVs for some important regions. In this paper, a novel fuzzy logic based UAV behavior detection system has been presented to detect the different levels of risky behaviors of the incoming UAVs. The heading velocity and region type are two input indicators proposed for the risk indicator output in the designed fuzzy logic based system. The simulation has shown the effective and feasible of the proposed algorithm in terms of recall and precision of the detection. Especially, the suspicious behavior detection algorithm can provide a recall of 0.89 and a precision of 0.95 for the high risk scenario in the simulation.

    UAV; suspicious behavior detection; fuzzy logic; decision making

    0 Introduction

    UAVs have been increasing rapidly within recent years in military and civil applications, especially for surveillance, reconnaissance and search/destroy missions. The arbitrary flying UAVs will bring potential safe threat to some important regions, such as the airport or other military base areas. In addition, with the great advantages over the manned aerial vehicles, the UAVs could be used for criminal or terrorist purposes. Therefore, it is crucial to detect suspicious behaviors of incoming UAVs for preventing the possible threats and ensuring the safety of the important regions. Designing an advanced algorithm to extract the real-time UAV behaviors from the measurement of UAV on-board sensors is essential for recognition of the suspicious UAV behaviors.

    Some previous research has addressed the issue related to UAV behaviour detection. Lin et al.[1]proposed a Mahalanobis distance based anomalies behaviours detection algorithm in UAV. Mitchell and Chen[2]introduced an adaptive behavior rule-based UAV intrusion detection based on the comparison of the current UAV states with the defined specified safe states. Khalastchi et al.[3-4]proposed an online data driven approach for the UAV anomaly data detection. Birnbaum et al.[5]introduced a prototype of UAV behaviour monitoring system based on the judgement of the estimation for the real-time flight data, airframe and controller parameters. From the discussion of related literatures, most of the research is still on the preliminary stage. Furthermore, the assumptions for most of the current approaches are too ideal and thus not adaptive for practical applications. Moreover, current research only focuses on the anomaly or non-anomaly detection, while none of the research has mentioned different levels of suspicious behavior classification, which is critical for the UAV behavior detection.

    In this paper, a novel fuzzy logic based UAV suspicious behavior detection algorithm has been presented. Fuzzy logic variables define a truth value that ranges in degree between 0 and 1 instead of the traditional logic theory, where only true or false is defined for the binary sets. Fuzzy logic is able to deal with the concept of partial truth, where the truth value is ranging between completely true and completely false. The three stages of the fuzzy logic system are: Fuzzification, fuzzy inference and defuzzification[6]. The contributions of the paper can be illustrated as follows: (1) A newly designed fuzzy logic based UAV behavior grade classification algorithm by fusion the on-board sensor data, location information and expert knowledge information; (2) Simulations are presented to demonstrate the success application of the different levels of suspicious behavior detection algorithm based on the designed scenarios.

    1 Fuzzy Logic Based Model Design

    The flowchart of the system framework for the fuzzy logic based UAV suspicious behavior detection algorithm is illustrated in Fig.1.

    Fig.1 Structure of the behavior detection algorithm

    The assumption for this paper is as follows. The incoming commercially civilian UAV devices are with several open ports by default and therefore, could be accessed remotely by a third party[7]. Based on this assumption, the real-time data from on-board sensors of the incoming UAVs could be extracted. The global positioning system (GPS) senor and inertial measurement unit(IMU) sensor output information, including the UAV positioning and dynamic information, is used for determing the UAV status. The output information of the GPS/IMU sensors is then to feed the fuzzy logic based decision making system, which is supported by the expert knowledge information and local map information. Finally, different risk levels of the UAV behavior are output based on the proposed algorithm.

    The first input of fuzzy logic parameter is the heading velocity of the UAV, which is extracted from the GPS/IMU integrated results based on the Kalman filter. The fuzzy values are defined to be low (L), medium (M) and high (H). The second input of fuzzy logic parameter is the region of the UAV located, which is extracted from the Kalman filter estimated positioning results. The region type is designed by the scenario. The fuzzy values are defined to be non-interest (NI), ambiguous (A), high-Interest (HI). The fuzzy output parameter is the risk, which is defined to be Low (L), Medium (M) and High (H). The designed membership function of fuzzy inputs and outputs are illustrated in Fig.2 and the corresponding fuzzy rules for the fuzzy logic system are in Table 1 and the surface view of the fuzzy rules is in Fig.3. It is indicated that as the increase of the velocity and interest level of the region, the risk level of the UAV behavior will increase. In the following section, the simulation scenarios are designed based on the defined fuzzy logic parameters and rules to test the effectiveness of the proposed algorithm.

    Fig.2 Membership functions for the fuzzy inputs and outputs

    Table 1 Fuzzy rules for the fuzzy inference system based UAV dangerous behavior detection

    HeadingvelocityRegiontypeRiskLNILALLHIMMNILMAMHIMHNIMHAHHIH

    Fig.3 Surface view of the fuzzy rules

    2 Numerical Simulation

    This section presents the numerical simulation scenario for the flying UAV. The simulated UAV starts to approach the military base and then leaves the place of interest based on the designed route. The simulation time is about 140 s and the simulated UAV′s trajectory includes the behaviors with different heading velocities towards the different level of place of interest. Fig.4 shows the region of interest for the designed scenario. The route of the UAV is from the non-interest area to the less interest area and then to the high interest area and finally flies out to the non-interest area again. The designed flying velocity is changing from around 15 m/s to 30 m/s, which is an achievable flying velocity for the commercial UAV. The red region is the designed military base, which is not allowed for entering. The region with blue color is designed for the high interest region. The flying UAVs in this region may results in the potential threats to the base safety. The region with green color is considered as the less interest area. The fuzzy values of the region type for the UAV′s positions are calculated in three steps. Firstly, the position of the UAV′s real time location is calculated to match with the simulated map information for the determination of the UAV′s location in the region. Secondly, calculate the distance between the UAV′s location and nearest region border. Finally, based on the computed distance between the location and nearest region border, normalize the distances for all of the positioning points in the located region. The simulation is based on the Matlab and Simulink. The UAV motion model is based on the constant turn rate and velocity (CTRV) model, as it has been proved to perform reasonable estimations for the vehicle dynamic states[8]. The reference risk level in the simulation is the predefined risk level for the UAV trajectory from the expert knowledge. The estimated risk level output from the designed fuzzy logic based behavior detection is compared with the reference to evaluate the performance of the proposed algorithm.

    Fig.4 Simulated UAV trajectory and region of interest for the designed scenario

    Fig.5 shows the simulation results for the designed fuzzy logic based UAV dangerous behavior detection algorithm. The values of input velocity and region type with the corresponding output risk level has been presented. It is obviously that output risk level is identified as ″High″ during 10 s to 80 s, in which the UAV is flying in the blue region with high interest. Afterwards, during the time interval form 80 s to 100 s, the UAV is heading to the less interest area, which is corresponding to the drop risk level as indicated in the figure. The risk level is continuously indicated as medium when the UAV is flying in the green region and dropped dramatically after it entering the non-interest region.

    Recall and precision are two of the parameters proposed to quantify the performance of the proposed algorithm. Recall is the percentage of correct detected activities in relation to the number of total known activities and precision is the percentage of the correct activities in relation to the total number of detected activities by the algorithm.

    The recall and precision can be expressed as

    (1)

    (2)

    Fig.5 Simulation results of the designed fuzzy logic based UAV dangerous behavior detection algorithm

    The performance evaluation for the low risk scenario, medium risk scenario and high risk scenario are presented in Table 2. It is shown that the proposed algorithm has performed the highest recall and precision for the high risk scenario, followed by the low risk scenario. The medium risk scenario provides the least satisfactory results. The reason for the worst performance of the medium risk scenario is due to the insufficient accuracy of the positioning estimations for the UAV during the border of the region based on the on-board navigation sensors outputs.

    Table 2 Performance evaluation for the simulated UAV trajectory

    PerformanceevaluationRecallPrecisionLowrisk0.750.84Mediumrisk0.630.83Highrisk0.890.95

    3 Conclusions

    A novel UAV dangerous behavior detection algorithm has been presented in this paper. This study exploits the fuzzy logic based algorithm to classify the UAV behaviors in different risk levels. The performance of the algorithm developed in this paper has been demonstrated in the simulation based on the designed scenarios. The simulation results have shown the effectivness of the designed dangerous behavior detection. Future work will involve collection filed data in different real scenarios and evaluate the designed algorithm in different field situations. The location choice, region level definition and the expert knowledge extraction for the UAV behaviors are the critical issues may be proposed in the field test[9-11].

    Acknowledgement

    This study is supported by the Fundamental Research Funds for the Central Universities(No. NJ20160015).

    [1] LIN R, KHALASTCHI E, KAMINKA G A. Detecting anomalies in unmanned vehicles using the mahalanobis distance[C]∥Robotics and Automation (ICRA), 2010 IEEE International Conference Anchorage. AK: IEEE,2010: 3038-3044.

    [2] MITCHELL R, CHEN R. Adaptive intrusion detection of malicious unmanned air vehicles using behavior rule specifications[J]. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 2014, 44(5): 593-604.

    [3] KHALASTCHI E, KAMINKA G A, KALECH M, et al. Online anomaly detection in unmanned vehicles[C]∥The 10th International Conference on Autonomous Agents and Multiagent Systems—Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, Taiwan:AAMAS,2011: 115-122.

    [4] KHALASTCHI E, KALECH M, KAMINKA G A, et al. Online data-driven anomaly detection in autonomous robots[J]. Knowledge and Information Systems.Taiwan: AAMAS, 2015, 43(3): 657-688.

    [5] BIRNBAUM Z, DOLGIKH A, SKORMIN V, et al. Unmanned aerial vehicle security using recursive parameter estimation[C]∥IEEE 2014 Conference on Unmanned Aircraft Systems (ICUAS).Colorado, USA: IEEE, 2014: 692-702.

    [6] LECCE V D, CALABRESE M. Experimental system to support real-time driving pattern recognition[C]∥Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, International Conference on Intelligent Computing.Shanghai, China:ICIC, 2008:1192-1199.

    [7] PEACOCK M, JOHNSTONE M N. Towards detection and control of civilian unmanned aerial vehicles[C]∥2013 Australian Information Warfare Conference.Perth, Australia:Edith Cowan University,2013:9-15.

    [8] TSOGAS M, POLYCHRONOPOULOS A, AMDITIS A. Unscented Kalman filter design for curvilinear motion models suitable for automotive safety applications[C]∥2005 International Conference on Information Fusion.Philadelphia, USA:IEEE,2005:1295-1302.

    [9] GAO Yanhui, ZHU Feifei, ZHANG Yong.Wind estimation for uav based on multi-sensor information fusion[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(1):42-47.

    [10]YUAN Suozhong, ZHEN Ziyang, JIANG Ju. Guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015,32(1):35-41.

    [11]HUANG Daqing, XU Cheng, HAN Wei. UAV velocity measurement for ground moving target[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):9-15.

    Dr. Sun Rui joined the College of Civil Aviation at Nanjing University of Aeronautics and Astronautics in 2015 as a Lecturer in Air Traffic Management (ATM). She received her Ph.D. degree in Intelligent Transportation Systems (TIS) from Imperial College London, UK and Master′s degree in Satellite Positioning Technology from the University of Nottingham, UK. Dr. Sun′s research interests span a variety of aspects of intelligent transport systems and services (ITSS), integrated GNSS and other location sensors for road transport, Air traffic management (ATM), ubiquitous computing and advanced filtering technologies. Dr. Sun is the memeber of Royal Institute of Navigation (RIN) and also is the reviewer of many top journals, such as Journal of Intelligent Transportation Systems, Expert System with Applications, Journal of Location Based Services etc.

    Mr. Zhang Yucheng received B.S. degree in Air Traffic Management from Nanjing University of Aeronautics and Astronautics in 2015 and currently a postgraduate in air traffic management.

    Prof. Hu Minghua is the dean of college of civil aviation and his research is focused on air traffic management and traffic planning.

    (Executive Editor: Zhang Bei)

    TN925 Document code: A Article ID: 1005-1120(2016)06-0721-05

    *Corresponding author, E-mail address:rui.sun@nuaa.edu.cn. How to cite this article: Sun Rui, Zhang Yucheng, Hu Minghua. Fuzzy logic based UAV suspicious behavior detection[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(6):721-725. http://dx.doi.org/10.16356/j.1005-1120.2016.06.721

    АⅤ资源中文在线天堂| 男男h啪啪无遮挡| 日日夜夜操网爽| 黄片播放在线免费| 免费在线观看日本一区| 精品国内亚洲2022精品成人| 久久久久久亚洲精品国产蜜桃av| 亚洲熟妇中文字幕五十中出| 一区二区三区激情视频| 成熟少妇高潮喷水视频| 香蕉av资源在线| 亚洲成人免费电影在线观看| netflix在线观看网站| 亚洲欧美精品综合久久99| 免费搜索国产男女视频| 欧美色视频一区免费| 久久香蕉激情| 免费看日本二区| 亚洲第一电影网av| 麻豆一二三区av精品| 校园春色视频在线观看| 两人在一起打扑克的视频| 中出人妻视频一区二区| 午夜福利成人在线免费观看| 男女那种视频在线观看| 亚洲专区字幕在线| 一级黄色大片毛片| 波多野结衣高清无吗| 日韩欧美国产一区二区入口| www日本黄色视频网| 国产一卡二卡三卡精品| 国产精品一区二区三区四区久久 | 日本黄色视频三级网站网址| av中文乱码字幕在线| 精品久久久久久,| 国产欧美日韩一区二区三| 国产精品二区激情视频| 精品免费久久久久久久清纯| 香蕉国产在线看| 非洲黑人性xxxx精品又粗又长| 首页视频小说图片口味搜索| 一本精品99久久精品77| 精品国产国语对白av| 男男h啪啪无遮挡| 亚洲va日本ⅴa欧美va伊人久久| 色老头精品视频在线观看| 在线观看免费视频日本深夜| 国产男靠女视频免费网站| 国产高清激情床上av| 久久国产精品影院| 亚洲中文字幕一区二区三区有码在线看 | 午夜精品在线福利| 在线观看免费午夜福利视频| 国产激情久久老熟女| 日本一本二区三区精品| 亚洲国产日韩欧美精品在线观看 | 一级毛片女人18水好多| 韩国av一区二区三区四区| 国产黄片美女视频| 熟女电影av网| 国产又爽黄色视频| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 美女高潮到喷水免费观看| 国产精品一区二区三区四区久久 | 嫩草影院精品99| 99国产精品一区二区蜜桃av| 久久久精品国产亚洲av高清涩受| 久久久国产成人免费| 午夜久久久久精精品| 女同久久另类99精品国产91| 亚洲精品美女久久久久99蜜臀| 成人手机av| 两个人看的免费小视频| 午夜视频精品福利| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 亚洲一区二区三区不卡视频| 日韩精品免费视频一区二区三区| 免费搜索国产男女视频| 国产在线精品亚洲第一网站| 午夜福利高清视频| 叶爱在线成人免费视频播放| 精品久久久久久成人av| 熟女电影av网| 淫秽高清视频在线观看| www国产在线视频色| 99国产精品一区二区三区| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 免费观看精品视频网站| 亚洲人成网站在线播放欧美日韩| 欧美在线黄色| 黄色视频,在线免费观看| av视频在线观看入口| 久9热在线精品视频| 色av中文字幕| 精品久久久久久久人妻蜜臀av| 国产黄片美女视频| 男人舔女人的私密视频| 欧美激情 高清一区二区三区| 18禁美女被吸乳视频| 91国产中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日日爽夜夜爽网站| 免费在线观看日本一区| 首页视频小说图片口味搜索| 免费看十八禁软件| 成在线人永久免费视频| 嫩草影视91久久| 国产亚洲精品av在线| svipshipincom国产片| e午夜精品久久久久久久| 1024视频免费在线观看| 国产一区二区在线av高清观看| 精华霜和精华液先用哪个| 亚洲精品国产精品久久久不卡| 在线永久观看黄色视频| 久久国产乱子伦精品免费另类| 国产一级毛片七仙女欲春2 | 美国免费a级毛片| 色播在线永久视频| 国产亚洲精品av在线| 日本熟妇午夜| 色老头精品视频在线观看| 人妻丰满熟妇av一区二区三区| 狂野欧美激情性xxxx| 色播在线永久视频| 亚洲全国av大片| 日韩欧美三级三区| 久久天躁狠狠躁夜夜2o2o| 久久久久国产一级毛片高清牌| 欧美最黄视频在线播放免费| 少妇粗大呻吟视频| 精品国产美女av久久久久小说| 一夜夜www| 黄色片一级片一级黄色片| 久久热在线av| 超碰成人久久| 亚洲国产精品sss在线观看| 在线天堂中文资源库| 日韩大码丰满熟妇| 黄色丝袜av网址大全| www.精华液| 无限看片的www在线观看| 午夜福利高清视频| 啦啦啦 在线观看视频| 亚洲黑人精品在线| 丝袜人妻中文字幕| 欧美+亚洲+日韩+国产| 国产av一区在线观看免费| 一级片免费观看大全| 美国免费a级毛片| 一级毛片女人18水好多| 看黄色毛片网站| 女性被躁到高潮视频| 身体一侧抽搐| 午夜福利18| 国产精品久久久av美女十八| 日本精品一区二区三区蜜桃| 精品国产美女av久久久久小说| 丰满的人妻完整版| 精品国产美女av久久久久小说| 欧美成人午夜精品| 国产精品一区二区免费欧美| 日本三级黄在线观看| 一级毛片高清免费大全| 精品欧美一区二区三区在线| 在线看三级毛片| 国产在线精品亚洲第一网站| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 国产精品九九99| 免费看十八禁软件| 国产激情久久老熟女| 一本大道久久a久久精品| 12—13女人毛片做爰片一| 午夜福利一区二区在线看| 淫秽高清视频在线观看| 国产一区二区在线av高清观看| 别揉我奶头~嗯~啊~动态视频| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区三区| 欧美日本亚洲视频在线播放| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 黄色片一级片一级黄色片| 国产激情偷乱视频一区二区| 自线自在国产av| 岛国视频午夜一区免费看| 日韩高清综合在线| 高清在线国产一区| 精品不卡国产一区二区三区| 国产精品免费一区二区三区在线| 日韩高清综合在线| xxxwww97欧美| 国产高清videossex| 美国免费a级毛片| 成人国产一区最新在线观看| 日本 av在线| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 麻豆成人av在线观看| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 欧美亚洲日本最大视频资源| 欧美黑人巨大hd| 日日摸夜夜添夜夜添小说| 99re在线观看精品视频| 好男人在线观看高清免费视频 | 长腿黑丝高跟| 久久伊人香网站| 亚洲全国av大片| 精品久久久久久久末码| 国产亚洲精品一区二区www| 久久精品国产清高在天天线| 精品久久蜜臀av无| 91字幕亚洲| 午夜福利在线观看吧| 久久 成人 亚洲| 男女下面进入的视频免费午夜 | 亚洲五月色婷婷综合| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 黄片小视频在线播放| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 免费看十八禁软件| 女性被躁到高潮视频| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美精品永久| 免费在线观看影片大全网站| 视频在线观看一区二区三区| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 国产久久久一区二区三区| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 日韩欧美免费精品| 国产精品野战在线观看| 国产精品二区激情视频| 一本精品99久久精品77| 欧美黑人精品巨大| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 在线国产一区二区在线| 久久精品影院6| 国产精品 欧美亚洲| 欧美日本亚洲视频在线播放| 久久久精品国产亚洲av高清涩受| 午夜视频精品福利| 久久午夜亚洲精品久久| 国语自产精品视频在线第100页| 亚洲无线在线观看| 午夜免费鲁丝| 宅男免费午夜| 国产久久久一区二区三区| 人人妻人人澡欧美一区二区| 欧美人与性动交α欧美精品济南到| 国语自产精品视频在线第100页| 天天添夜夜摸| 在线国产一区二区在线| av有码第一页| 人妻丰满熟妇av一区二区三区| 草草在线视频免费看| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 成人午夜高清在线视频 | 欧美zozozo另类| 精品高清国产在线一区| 亚洲精品美女久久av网站| 国产av一区在线观看免费| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 嫁个100分男人电影在线观看| 天天一区二区日本电影三级| 黄频高清免费视频| 国产成+人综合+亚洲专区| 哪里可以看免费的av片| 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 亚洲欧美精品综合久久99| 婷婷精品国产亚洲av在线| 午夜精品在线福利| 在线观看www视频免费| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 丁香六月欧美| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 很黄的视频免费| 身体一侧抽搐| 1024手机看黄色片| 亚洲 欧美 日韩 在线 免费| 免费看十八禁软件| 精品不卡国产一区二区三区| 免费看十八禁软件| 国产亚洲av高清不卡| 亚洲黑人精品在线| 老司机在亚洲福利影院| 99国产精品一区二区蜜桃av| 婷婷亚洲欧美| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| or卡值多少钱| 国产亚洲精品av在线| 亚洲中文av在线| 人妻丰满熟妇av一区二区三区| 亚洲激情在线av| 亚洲国产精品久久男人天堂| 午夜福利一区二区在线看| 色av中文字幕| 亚洲片人在线观看| 日本三级黄在线观看| 国产一区在线观看成人免费| 成年免费大片在线观看| 免费看a级黄色片| 三级毛片av免费| 午夜视频精品福利| 女警被强在线播放| 波多野结衣高清无吗| 国产一区二区激情短视频| 高清在线国产一区| 1024香蕉在线观看| 日本一本二区三区精品| 国产精品一区二区三区四区久久 | 亚洲中文字幕一区二区三区有码在线看 | 欧美激情高清一区二区三区| 国产真人三级小视频在线观看| 18禁裸乳无遮挡免费网站照片 | 成人永久免费在线观看视频| 亚洲,欧美精品.| 亚洲成国产人片在线观看| 天天一区二区日本电影三级| 国产午夜精品久久久久久| 久久伊人香网站| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 午夜两性在线视频| 欧美日韩乱码在线| 成人一区二区视频在线观看| avwww免费| 久99久视频精品免费| 欧美 亚洲 国产 日韩一| 宅男免费午夜| 欧美色欧美亚洲另类二区| 欧美精品亚洲一区二区| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 一本大道久久a久久精品| 久热这里只有精品99| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 哪里可以看免费的av片| 精品日产1卡2卡| 熟女电影av网| videosex国产| 亚洲avbb在线观看| 一区二区三区高清视频在线| 亚洲精品粉嫩美女一区| 国产视频内射| 黑人巨大精品欧美一区二区mp4| 黄色视频不卡| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| av在线天堂中文字幕| 久久精品国产综合久久久| av有码第一页| 亚洲一区二区三区不卡视频| 亚洲av第一区精品v没综合| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 亚洲欧洲精品一区二区精品久久久| 国内少妇人妻偷人精品xxx网站 | 久久久久久久久中文| 一区福利在线观看| 欧美色视频一区免费| 欧美不卡视频在线免费观看 | 欧美一级毛片孕妇| 身体一侧抽搐| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 伊人久久大香线蕉亚洲五| 1024视频免费在线观看| 亚洲自偷自拍图片 自拍| 99热只有精品国产| 精品欧美一区二区三区在线| 色婷婷久久久亚洲欧美| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片 | 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 99国产综合亚洲精品| 国产精品 欧美亚洲| 97人妻精品一区二区三区麻豆 | 91麻豆av在线| 国产男靠女视频免费网站| 很黄的视频免费| 老司机靠b影院| 两性夫妻黄色片| 色老头精品视频在线观看| 亚洲成av片中文字幕在线观看| 亚洲avbb在线观看| 精品久久久久久,| 久久午夜亚洲精品久久| 欧美性长视频在线观看| 久久久久久久午夜电影| 怎么达到女性高潮| 91麻豆精品激情在线观看国产| 色av中文字幕| 久久国产精品男人的天堂亚洲| 在线观看日韩欧美| 女同久久另类99精品国产91| 国产成人精品久久二区二区91| 欧美不卡视频在线免费观看 | 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 18禁美女被吸乳视频| 欧美日本视频| 天天添夜夜摸| 精品国产国语对白av| 一个人免费在线观看的高清视频| 国产激情久久老熟女| 亚洲真实伦在线观看| 日本撒尿小便嘘嘘汇集6| 一区二区三区激情视频| 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| 亚洲专区字幕在线| 88av欧美| 精品一区二区三区av网在线观看| 久久久久久久久久黄片| 成人国语在线视频| 999久久久精品免费观看国产| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看 | 色老头精品视频在线观看| 波多野结衣高清作品| 麻豆一二三区av精品| av在线天堂中文字幕| 亚洲午夜精品一区,二区,三区| 一夜夜www| 女同久久另类99精品国产91| 真人一进一出gif抽搐免费| 天天躁夜夜躁狠狠躁躁| 国产区一区二久久| 久久精品aⅴ一区二区三区四区| 日本三级黄在线观看| 亚洲av成人av| 搞女人的毛片| www.www免费av| 亚洲全国av大片| 亚洲成国产人片在线观看| 他把我摸到了高潮在线观看| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 欧美乱码精品一区二区三区| 1024视频免费在线观看| 国产精品综合久久久久久久免费| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品电影 | 美女高潮到喷水免费观看| 国产精品亚洲美女久久久| 夜夜爽天天搞| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 18禁黄网站禁片免费观看直播| 精品第一国产精品| 国产精品精品国产色婷婷| 精品福利观看| 国产极品粉嫩免费观看在线| 日韩成人在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 天堂动漫精品| 久久久久免费精品人妻一区二区 | 欧美国产精品va在线观看不卡| 亚洲精品久久国产高清桃花| 黄色 视频免费看| 久久精品国产99精品国产亚洲性色| 婷婷六月久久综合丁香| 免费在线观看日本一区| 狠狠狠狠99中文字幕| 午夜两性在线视频| av片东京热男人的天堂| av欧美777| 最新美女视频免费是黄的| 亚洲狠狠婷婷综合久久图片| 久热爱精品视频在线9| 久久香蕉激情| 波多野结衣av一区二区av| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 岛国在线观看网站| 麻豆成人午夜福利视频| 久久久国产欧美日韩av| 国产又黄又爽又无遮挡在线| 久久久精品欧美日韩精品| 精品福利观看| 三级毛片av免费| av欧美777| 可以在线观看毛片的网站| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 99久久无色码亚洲精品果冻| 午夜激情av网站| 99久久无色码亚洲精品果冻| av片东京热男人的天堂| 久久午夜综合久久蜜桃| 亚洲精品色激情综合| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 亚洲国产日韩欧美精品在线观看 | 热99re8久久精品国产| 男人舔女人的私密视频| 亚洲精品久久国产高清桃花| 亚洲五月色婷婷综合| www.www免费av| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 午夜福利在线在线| 老司机福利观看| 欧美午夜高清在线| 国产成人av激情在线播放| 免费高清视频大片| 男男h啪啪无遮挡| 香蕉丝袜av| 成人一区二区视频在线观看| av欧美777| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影 | 日韩欧美 国产精品| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 国产av在哪里看| 首页视频小说图片口味搜索| 亚洲国产看品久久| 色尼玛亚洲综合影院| 99热只有精品国产| 中文字幕av电影在线播放| 国产午夜精品久久久久久| 久久精品亚洲精品国产色婷小说| 免费看美女性在线毛片视频| 中文字幕精品免费在线观看视频| 51午夜福利影视在线观看| 最近最新中文字幕大全电影3 | 久久性视频一级片| 少妇粗大呻吟视频| 国产国语露脸激情在线看| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 首页视频小说图片口味搜索| 欧美在线黄色| 黄色丝袜av网址大全| 日韩欧美三级三区| 人妻丰满熟妇av一区二区三区| 国产一区二区在线av高清观看| 亚洲av成人一区二区三| а√天堂www在线а√下载| 国产精品99久久99久久久不卡| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 国产精品久久视频播放| 999久久久精品免费观看国产| 久久九九热精品免费| 99久久久亚洲精品蜜臀av| 亚洲欧美激情综合另类| av欧美777| 国产成人av激情在线播放| a级毛片a级免费在线| 国语自产精品视频在线第100页| 在线看三级毛片| 免费高清视频大片| 国产乱人伦免费视频| e午夜精品久久久久久久| 亚洲久久久国产精品| 国产熟女xx| 男人的好看免费观看在线视频 | 美女大奶头视频| svipshipincom国产片| 久久99热这里只有精品18| 国内精品久久久久精免费| 国产av不卡久久| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清 | 久久久久久久久中文| 欧美日韩亚洲综合一区二区三区_| 国产熟女xx|