• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Helix Angle on Stability of Milling Flexible Parts

    2016-02-09 01:54:03,,

    , ,

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China

    ?

    Influence of Helix Angle on Stability of Milling Flexible Parts

    MuhammadMasudAkhtar,HuangXiang,ChenWenliang*

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China

    (Received 18 October 2015; revised 20 February 2016; accepted 5 March 2016)

    Geometry of end mill cutters plays a vital role in the stability of the flexible parts milling. The present study considers helix angle and number of flutes. Multi-frequency solution is established to draw stability Lobe diagram(SLD) for different helix angles and number of flutes. SLD for the two cases shows that the greater the value of helix angle, the more stable the milling process will be, and conversely increasing the number of flutes degrades the stability of flexible parts milling. A simple empirical methodology is adopted to employ the inclined plane workpiece geometry offering a gradual increase of the axial depth of cut in the feed direction. Surface roughness is used as a measure of stability. Test results corroborate the model conclusions very well.

    helix angle; flute; end mill cutter; flexible parts milling; stability

    0 Introduction

    High efficiency products in modern industries like aerospace, aircraft and automobile guarantee the needed components with thin sections, which can greatly reduce structural stiffness. However, the machining of these thin sectioned parts presents a very difficult condition to keep stability. With HSM the metal removal rate increased dramatically through a combination of large axial depths of cut and high spindle speeds. One limitation on the allowable axial depth is regenerative chatter. Chatter is the most obscuring phenomenon and considerable research has been documented regarding the prediction, control and elimination of chatter.

    Many out-of-process and in-process techniques have been established to suppress, control and predict chatter. SLD stands at the border between a stable cut (i.e. no chatter) and an unstable cut (i.e. with chatter) in terms of the axial depth-of cut as a function of the spindle speed. Research in the area of chatter dates back to as early as 1906 when Taylor stated that chatter is the ″most obscure and delicate of all problems facing the machinist″[1]. Other pioneering works in the field of chatter vibration are nominated to Tlusty et al.[2], Merritt[3], Sridhar et al.[4]. A study shows that presently Altintas, Budak and Tlusty are the key stakeholders in the business of chatter[5].

    Remarkable contribution in the research of workpiece vibrations in thin walled parts have been made by Budak[6-7], Seguy et al.[8], Thevenot[9], Song et al.[10], Tang and Liu[11],Davies and Balachandran[12], and Adetoro et al.[13]. The influence of mill helix angle on stability was first considered by Zatarain et al.[14]. Later Zatarain et al.[15]analyzed the concept of directional factors for chatter stability in milling including the effect of the helix angle. Shirase and Altintas[16], Budak[17-18], Sims et al.[19], Turner et al.[20], Yusoff et al.[21]demonstrated in their work that with variable pitch and variable helix milling tools the stability of the milling improved by disrupting the regenerative effect.

    In the study addressed here the milling stability of flexible workpiece has been investigated under the influence of helix angle and number of flutes of end mill cutter by considering the improved helix angle model for flexible parts presented by Masud[22]in which very small changes in the initial and final immersion positions of the cutter arc segment were contemplated, to reflect the actual cutting conditions. Multi-frequency solution of the proposed model was obtained. Stability lobe diagram was constructed for variable helix angles and variable number of flutes. An increase in helix angle showed improved stability as compared to low helix angle values. Stability lobe diagram for variable number of flutes showed that the stability of the flexible parts milling increased with fewer number of flutes whereas increasing the number of flutes degraded the stability of flexible parts. A simple empirical methodology employing the inclined plane workpiece geometry was used to validate the model results. The inclined plane workpiece geometry offered the increase of axial depth of cut along the length of cut enabling varying stability condition for one spindle speed. Surface roughness was measured at different points along the cut as a gauge of stability of the cutting process, hence eliminating the need of sophisticated analytical tools and equipment like, impact hammers, piezoelectric transducers, specific software, and sensors for chatter detection.

    1 Chatter Stability Model

    As shown in Fig.1, the milling cutter withNteeths and the workpiece are considered to obtain flexibility in feed (x-direction), normal (y-direction) and spindle (z-direction) directions. φjis the immersion angle of thejth teeth measured from they-direction. Ω (r/s) is the spindle speed. Tangential (dFt,j(φ,z)), radial (dFr,j(φ,z)), and axial (dFa,j(φ,z)) forces acting on a differential flute element with height dz(see Fig. 2) yield as

    (1)

    where φj(z)is the immersion angle at the axial distancez. φj(0)=φ+j·φp, φj(z)=φ+j·φp-kβz,kβ=(2tanβ)/D. β is the helix angle andDthe effective diameter of the cutting tool. The dynamic chip thicknessi

    hj(φ,z)=gi(φ)[(f+Δx+Δu)sinφj(z)+

    (Δy+Δv)cosφj(z)]

    (2)

    where f is the feed per tooth,Δx=x(t)-x(t-T), Δy=y(t)-y(t-T)and Δu=u(t)-u(t-T), Δv=v(t)-v(t-T)are the dynamic displacements of the cutter and workpiece at the previous and the present tooth periods, respectively.

    Fig.1 Dynamic model of milling

    Fig.2 Helical end mill and its thin disk element

    The function gi(φ) is a unit step function to determine whether the tooth is in or out of cut, that is

    (3)

    where φstand φexare the start and the exit immersion angles of the cutter, respectively. The elemental forces in feed (x), normal (y) and axial (z) directions are

    (4)

    Total cutting force produced by the flute is calculated by an integration of the differential cutting forces along the in-cut-portion of the flutejat each plane alongzdirection (5). Three distinct ways of interaction between immersion section of the cutter arc segment and a helical toothjare shown in Fig.3.

    Fig.3 Helical flute-part ace integration zones

    (5)

    AssumingKte=Kre=Kae=0, and neglecting the axial force, the following equations can be obtained

    (6a)

    (6b)

    where ε1=sin2φ1,j-sin2φst, ε2=2φst-2φ1,j,ε3=cos2φ1,j-cos2φst,ε4=sin2φ2,j+sin2(kβα-φ2,j),ε5=cos2φ2,j+cos2(kβa-φ2,j), ε6=sin2φex+sin2(kβa-φ3,j),ε7=2φ3,j-2φex-2kβa,ε8=cos2φex-cos2(kβa-φ3,j),Kt=Ktc,Kr=Krc/Ktc,φi,j=φi+jφp-KβZ.

    The cutting forces contributed by all flutes are calculated and summed to obtain the total instantaneous forces on the cutter at immersionφ

    (7)

    Converting Eq.(7) into matrix form as follow

    (8)

    where

    F=[FxFy]T

    Converting Eq.(6) from time domain to frequency domain

    (9)

    where ″*″ denotes the convolution integral.Δ(ω) = (1-e-iωT)Φ(ω)F(ω) is the displacement/regenerative vector;Φ(ω) is the sum of the ″Frequency Response Function″ (FRF) matrices of the tool/cutter and of the workpiece. The periodic directional matrix can be expanded into Fourier series

    (10a)

    (10b)

    Further multi-frequency solution is established to obtain the limiting depth of cut a as

    (11)

    2 Simulations

    For simulations purpose end mill cutter of 2 flute, 12 mm diameter, 30° helix angle end mill cutter was used. Dynamic parameters of cutter inXandYdirections are shown in Table 1. The workpiece transfer function was identified in the normal direction (Y), in Table 2, as the dynamics in the feed direction (X) can be neglected due to its relative magnitude. The cutting coefficients of Al 7075,Kt= 999.28 MPa,Kr= 426.4 MPa were obtained[23].

    Table 1 Tool dynamic parameters in X and Y directions

    Table 2 Workpiece dynamic parameters in Y direction

    (1) Helix Angle

    Stability Lobe diagram(SLD) drawn for different helix angle is shown in Fig. 4. The simulation of the proposed model shows that helix angle affects the stability of flexible parts milling. An increase in helix angle shows improved stability and vice versa.

    Fig.4 SLD of helix angle

    (2) Number of flutes

    Fig.5 SLD of number of flutes

    SLD drawn for different number of flutes is shown in Fig.5. The simulation shows that increasing the number of flutes degrades the stability of flexible parts milling where as an end mill cutter with fewer flutes improves the stability of the flexible parts milling.

    3 Experimental Verification

    In order to verify the simulation, a simple experimental methodology was adopted. A thin walled Aluminum 7075 workpiece 4 mm thick (Fig.6) of inclined geometry offering a gradual increase of the axial depth of cut in the feed direction was used. Experimental setup is shown as Fig.7.For each case of variable helix angle and number of flutes, two different values of end mill cutter were used. Test for each end mill cutter was performed with three sets of spindle speed, i.e. 2 000, 3 000 and 4 000 r/min on a three axis CNC milling machine. In order to ensure the same stability conditions among each test, following conditions were met:

    ·Workpiece of same geometry was used.

    ·Torque wrench was used to apply the same clamping force on each test piece by clamping vice.

    ·Same tool holder was used and same overhang of the milling cutter was ensured.

    ·To analyze the two different cutters same cutting parameters i.e. spindle speed, feed per revolution and RDOC were ensured.

    Surface roughness of the test specimen was measured as a Gauge to compare the stability of the two different cases. Stylus type surface roughness measuring instrument was used to measure the surface roughness of the test piece at different points along the cut. Large cut-off values i.e. 2.5 mm was employed to identify the chatter marks on the machined surface[24].

    Fig.6 Inclined workpiece

    Fig.7 Experimental setup

    (1) Helix angle

    To verify the effect of helix angle on stability of thin walled workpiece, test were performed with two end mill cutters of dia 12 mm with helix angles 30° and 45°(Fig.8). Tests were performed as listed in Table 3 along with surface roughness measurement made along the length of cut at two points 140 mm and 180 mm. Measurement was taken three times at a point and their mean was obtained. For each test RDOC was 1 mm and feed of 0.15 mm/tooth was used to maintain the constant chip load.

    Table 3 Test parameters Ⅰ

    Fig.8 End mill cutter (helix angle)

    (2) Number of flutes

    In order to verify the effect of number of flutes of end mill cutter on stability of thin walled workpiece, test were performed with two 3-fluted and 4-fluted end mill cutters of dia 12 mm with helix angle 30° (Fig.9). Tests were performed as listed in Table 4 along with surface roughness measurement made along the length of cut at two points 140 mm and 180 mm. Measurement was taken three times at a point and their mean was obtained. For each test RDOC was 1 mm and feed of 0.15 mm/tooth was used to maintain the constant chip load.

    Fig.9 End mill cutter (number of flutes)

    TypeTestSpindlespeed(r·min-1)Feedrate/(mm·min-1)Surfaceroughness/μmPoint1(140mm)Point2(180mm)3-flutedendmill-cutter120009001.82.22300013502.13.53400018002.94.34-flutedendmill-cutter1200012002.312.952300018002.846.163400024004.615.33

    4 Conclusions

    Chatter in machining is the most debilitating problem faced by modern machining industries, and its prediction, elimination and control becomes even more critical when the part to be machined is flexible. The present research presents an important contribution in the stability analysis of flexible parts milling by studying the influence of helix angle and number of flutes of milling cutter after contemplating an improved helix angle model in which very small changes in the initial and final immersion positions of the cutter arc segment are considered. The study concludes that

    (1) A greater value of helix angle of the milling cutter improves the stability of the flexible parts milling and vice versa.

    (2) The smaller the number of flutes, the more stable the milling of flexible parts, will be and vice versa.

    [1] TAYLOR F W. On the art of cutting metals[M]. New York: Transactions of the American Society of Mechanical Engineers, 1907: 31-350.

    [2] TLUSTY J, POLACEK M. The stability of machine tools against self excited vibrations in machining[J]. International Research in Production Engineering—American Society of Mechanical Engineers, 1963, I: 465-474.

    [3] MERRITT H E. Theory of self-excited machine tool chatter[J]. Journal of Engineering for Industry, Transactions of the ASME, 1965, 87(4):447-454.

    [4] SRIDHAR R, HOHN R E, LONG G W. A general formulation of the milling process equation[J]. Journal of Manufacturing Science and Engineering, 1968, 90(2): 317 - 324.

    [5] GUILLEM Q, JOAQUIM C. Chatter in machining processes: A review[J]. International Journal of Machine Tools & Manufacture, 2011, 51(5): 363-376.

    [6] BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling—Part I: General formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 120(1): 22-30.

    [7] BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling—Part Ⅱ: Application of the general formulation to common milling systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 120(1): 31-36.

    [8] SEGUY S, CAMPA F J, LACALLE N L, et al. Toolpath dependent stability lobes for the milling of thin-walled parts[J]. International Journal of Machining and Machinability of Materials, 2008, 4(4): 377-392.

    [9] THEVENOT V, ARNAUD L, DESSEI G, et al. Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin walled structure milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 27(7/8): 638-644.

    [10]SONG Qinghua, WAN Yi, YU Shuiqing, et al. Stability prediction during thinwalled workpiece high-speed milling[J]. Advanced Materials Research, 2009, 69: 428-432.

    [11]TANG Aijun, LIU Zhanqiang. Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(1/2): 33-39.

    [12]DAVIES M A, BALACHANDRAN B. Impact dynamics in milling of thin-walled structures[J]. Nonlinear Dynamics, 2000, 22(4): 375-392.

    [13]ADETORO O B, SIM W M, WEN P H. An improved prediction of stability lobes using nonlinear thin wall dynamics[J]. Journal of Materials Processing Technology, 2010, 210(6/7): 969-979.

    [14]ZATARAIN M, MUNOA J, PEIGNE G, et al. Analysis of the influence of mill helix angle on chatter stability[J]. CIRP Annals—Manufacturing Technology, 2006, 55(1): 365-368.

    [15]ZATARAIN M, BEDIAGA I, MUNOA J, et al. Analysis of directional factors in milling: Importance of multi-frequency calculation and of the inclusion of the effect of the helix angle[J]. International Journal of Machine Tools and Manufacture, 2010, 47(5/6/7/8): 535-542.

    [16]SHIRASE K, ALTINTAS Y. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills[J]. International Journal of Machine Tools and Manufacture, 1996, 36(5): 567-584.

    [17]BUDAK E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: Theory[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125(1): 29-34.

    [18]BUDAK E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part 2: Application[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125(1): 35-38.

    [19]SIMS N D, MANN B, HUYANAN S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools[J]. Journal of Sound and Vibration, 2008, 317(3/4/5): 664-686.

    [20]TURNER S, MERDOL D, ALTINTAS Y, et al. Modelling of the stability of variable helix end mills[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9): 1410-1416.

    [21]YUSOFF A R, TURNER S, TAYLOR C M, et al. The role of tool geometry in process damped milling[J]. International Journal of Advanced Manufacturing Technology, 2010,50(9/10/11/12): 883-895.

    [22]MASUD A M,HUANG X, CHEN W L, et al. Milling dynamics of flexible part with helix angle[J]. Procedia Engineering, 2011, 23: 792-798.

    [23]ALTINTAS Y. Manufacturing automation-metal cutting mechanics, machine tool vibrations and CNC design[M]. Cambridge: Cambridge University Press, 2000: 1-382.

    [24]MCCAULEY C J.Machinery's handbook[M]. 25th ed. New York: Industrial Press Inc, 1996: 1-2800.

    Mr.Muhammad Masud Akhtar is a doctoral candidate in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research has focused on mechanics and dynamics of machining.

    Prof.Huang Xiang has been working in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research is focused on aircraft digital assembly technology and equipment.

    Prof.Chen Wenliang has been working in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research is focused on aircraft assembly technology.

    (Executive Editor: Zhang Bei)

    TH161 Document code: A Article ID: 1005-1120(2016)06-0714-07

    *Corresponding author, E-mail address:cwlme@nuaa.edu.cn. How to cite this article: Muhammad Masud Akhtar, Huang Xiang, Chen Wenliang. Influence of helix angle on stability of milling flexible parts[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(6):714-721. http://dx.doi.org/10.16356/j.1005-1120.2016.06.714

    免费观看的影片在线观看| 国产高清国产精品国产三级 | 日韩人妻高清精品专区| 五月玫瑰六月丁香| 日日摸夜夜添夜夜爱| 最近的中文字幕免费完整| 久久久久久久亚洲中文字幕| 成人午夜精彩视频在线观看| 国产亚洲精品久久久com| 免费看光身美女| 又爽又黄a免费视频| 久热久热在线精品观看| 国产精品一二三区在线看| 午夜激情欧美在线| 免费在线观看成人毛片| 国产中年淑女户外野战色| 中文乱码字字幕精品一区二区三区 | 在线天堂最新版资源| 日本-黄色视频高清免费观看| www.av在线官网国产| 99视频精品全部免费 在线| 熟女电影av网| 爱豆传媒免费全集在线观看| 久久午夜福利片| 免费看av在线观看网站| 看黄色毛片网站| 你懂的网址亚洲精品在线观看| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 三级毛片av免费| 如何舔出高潮| 免费无遮挡裸体视频| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 免费在线观看成人毛片| 国产一区二区三区综合在线观看 | 国内精品美女久久久久久| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| av黄色大香蕉| 亚洲电影在线观看av| 男人舔女人下体高潮全视频| 能在线免费看毛片的网站| 色尼玛亚洲综合影院| 三级经典国产精品| 亚洲精品乱久久久久久| 日韩亚洲欧美综合| 亚洲av中文字字幕乱码综合| 深夜a级毛片| 国产精品女同一区二区软件| 久久久久久久大尺度免费视频| 免费看光身美女| av国产免费在线观看| 日本免费a在线| 男人狂女人下面高潮的视频| 成人高潮视频无遮挡免费网站| 街头女战士在线观看网站| 中国国产av一级| 一级黄片播放器| 免费看不卡的av| 国产黄色免费在线视频| 91在线精品国自产拍蜜月| 极品教师在线视频| 久久久久国产网址| 一级毛片 在线播放| 午夜免费激情av| 乱码一卡2卡4卡精品| 大陆偷拍与自拍| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 成人毛片60女人毛片免费| 国产av不卡久久| 水蜜桃什么品种好| 不卡视频在线观看欧美| 美女国产视频在线观看| 免费观看的影片在线观看| 天堂网av新在线| 亚洲精品aⅴ在线观看| 2018国产大陆天天弄谢| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 日本色播在线视频| 国产高清不卡午夜福利| 美女国产视频在线观看| 国产在视频线精品| 啦啦啦韩国在线观看视频| 91久久精品电影网| 69人妻影院| 成年av动漫网址| 色网站视频免费| 国产精品一及| 中文乱码字字幕精品一区二区三区 | 国产精品无大码| 嫩草影院新地址| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 国产欧美另类精品又又久久亚洲欧美| 在线免费观看不下载黄p国产| 中文字幕av在线有码专区| 久久久午夜欧美精品| 国产av不卡久久| 国产av国产精品国产| 国产精品嫩草影院av在线观看| 国产黄色视频一区二区在线观看| 国产伦在线观看视频一区| 美女主播在线视频| 国产精品久久久久久精品电影| 高清日韩中文字幕在线| 99久国产av精品| 精品国内亚洲2022精品成人| 亚洲欧美日韩东京热| 国产一区有黄有色的免费视频 | 国产又色又爽无遮挡免| 免费av观看视频| 午夜福利网站1000一区二区三区| 亚洲怡红院男人天堂| 69人妻影院| 成人无遮挡网站| 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 亚洲av中文字字幕乱码综合| 色网站视频免费| 全区人妻精品视频| 欧美激情国产日韩精品一区| 九九在线视频观看精品| 久久这里只有精品中国| 爱豆传媒免费全集在线观看| 国产成人福利小说| 午夜福利视频1000在线观看| 亚洲av在线观看美女高潮| 欧美日本视频| 亚洲精品亚洲一区二区| 精品久久国产蜜桃| 五月天丁香电影| 又黄又爽又刺激的免费视频.| 人妻一区二区av| 久久久亚洲精品成人影院| 七月丁香在线播放| 嫩草影院入口| 干丝袜人妻中文字幕| 国产探花在线观看一区二区| av福利片在线观看| 91狼人影院| 中文天堂在线官网| 精品一区二区免费观看| 少妇裸体淫交视频免费看高清| 能在线免费观看的黄片| 国产一区有黄有色的免费视频 | 人人妻人人澡欧美一区二区| 又粗又硬又长又爽又黄的视频| 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 亚洲综合精品二区| 国产伦理片在线播放av一区| 久久这里只有精品中国| 97精品久久久久久久久久精品| 夜夜爽夜夜爽视频| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 91精品一卡2卡3卡4卡| 在线观看一区二区三区| 午夜激情欧美在线| 色综合色国产| 亚洲最大成人av| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 91在线精品国自产拍蜜月| 十八禁国产超污无遮挡网站| 日本与韩国留学比较| 在线观看免费高清a一片| 天堂网av新在线| 亚洲欧美精品专区久久| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 久久久久久久久大av| 国产美女午夜福利| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 国产永久视频网站| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 国产 亚洲一区二区三区 | 国语对白做爰xxxⅹ性视频网站| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 禁无遮挡网站| www.av在线官网国产| 亚洲一级一片aⅴ在线观看| 韩国av在线不卡| 老司机影院毛片| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 我的老师免费观看完整版| 久久综合国产亚洲精品| 可以在线观看毛片的网站| 免费观看a级毛片全部| 春色校园在线视频观看| 少妇高潮的动态图| 激情 狠狠 欧美| 熟妇人妻不卡中文字幕| 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 色综合亚洲欧美另类图片| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看 | 熟女电影av网| 丝袜美腿在线中文| 亚洲精品一二三| 国产精品久久久久久精品电影| 久久人人爽人人片av| 欧美日韩国产mv在线观看视频 | 老师上课跳d突然被开到最大视频| 男女边摸边吃奶| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 天堂√8在线中文| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 亚洲精品影视一区二区三区av| 日韩视频在线欧美| www.色视频.com| 亚洲精品第二区| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 丝袜喷水一区| 热99在线观看视频| 久久久久性生活片| 午夜福利网站1000一区二区三区| 插阴视频在线观看视频| 国产成人一区二区在线| 夫妻午夜视频| 欧美97在线视频| 久久精品国产自在天天线| 国产成人aa在线观看| 波野结衣二区三区在线| 日本免费a在线| 日韩电影二区| 国产一区亚洲一区在线观看| av线在线观看网站| 精品久久久久久久久亚洲| 亚洲成人久久爱视频| .国产精品久久| 国产高清国产精品国产三级 | 欧美成人午夜免费资源| 我的老师免费观看完整版| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| freevideosex欧美| 亚洲四区av| a级一级毛片免费在线观看| 久久热精品热| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 久久99精品国语久久久| 能在线免费观看的黄片| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| 联通29元200g的流量卡| 最近最新中文字幕免费大全7| 又爽又黄无遮挡网站| 亚洲精品aⅴ在线观看| 精品久久久久久久末码| 免费大片黄手机在线观看| av一本久久久久| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 婷婷色综合www| 国产探花极品一区二区| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 久久99热这里只有精品18| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 国产精品1区2区在线观看.| 一级毛片久久久久久久久女| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 亚洲天堂国产精品一区在线| 久久精品夜夜夜夜夜久久蜜豆| 一级黄片播放器| 人妻夜夜爽99麻豆av| 在线观看免费高清a一片| 国产午夜精品论理片| 亚洲国产欧美人成| 啦啦啦韩国在线观看视频| 亚洲av.av天堂| 极品教师在线视频| 日本色播在线视频| a级毛色黄片| av网站免费在线观看视频 | 天天一区二区日本电影三级| 欧美一区二区亚洲| 国产精品人妻久久久久久| 亚洲18禁久久av| 国产乱人偷精品视频| 亚洲精品日韩av片在线观看| 婷婷色av中文字幕| 永久免费av网站大全| 国语对白做爰xxxⅹ性视频网站| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 一级片'在线观看视频| 国产在视频线在精品| 亚洲精品成人久久久久久| 日韩一区二区三区影片| 男女边摸边吃奶| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 欧美成人a在线观看| 看免费成人av毛片| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 淫秽高清视频在线观看| 日韩在线高清观看一区二区三区| 久久久精品欧美日韩精品| 免费观看精品视频网站| 床上黄色一级片| 国产精品麻豆人妻色哟哟久久 | 少妇的逼水好多| 日韩av免费高清视频| 国产 一区 欧美 日韩| 精品久久久久久电影网| 久久精品国产鲁丝片午夜精品| eeuss影院久久| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 一区二区三区免费毛片| 精品国产露脸久久av麻豆 | 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| 久久这里有精品视频免费| 亚洲熟妇中文字幕五十中出| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 国产成人a区在线观看| 日日撸夜夜添| 国产一区有黄有色的免费视频 | 中文字幕制服av| 哪个播放器可以免费观看大片| 麻豆av噜噜一区二区三区| ponron亚洲| 在现免费观看毛片| 久久鲁丝午夜福利片| 精品午夜福利在线看| 老女人水多毛片| 免费av毛片视频| 久久久久久久久久久丰满| 亚洲美女视频黄频| 中文乱码字字幕精品一区二区三区 | 99久久中文字幕三级久久日本| 久久99热6这里只有精品| 国产老妇女一区| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 久久6这里有精品| 国产探花极品一区二区| 欧美zozozo另类| 尾随美女入室| 国产一区亚洲一区在线观看| 精品欧美国产一区二区三| 嫩草影院入口| av黄色大香蕉| 黄片无遮挡物在线观看| 最近手机中文字幕大全| kizo精华| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 性插视频无遮挡在线免费观看| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| av在线观看视频网站免费| 1000部很黄的大片| 春色校园在线视频观看| 秋霞伦理黄片| 亚洲综合色惰| 亚洲精品第二区| 大陆偷拍与自拍| 在线观看美女被高潮喷水网站| 国产精品嫩草影院av在线观看| 成人美女网站在线观看视频| 亚洲精品,欧美精品| 能在线免费观看的黄片| 欧美三级亚洲精品| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 国产男女超爽视频在线观看| 男女国产视频网站| 18禁动态无遮挡网站| 国产永久视频网站| 亚洲最大成人av| 成人午夜精彩视频在线观看| 国产精品人妻久久久影院| 国产久久久一区二区三区| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 国产欧美另类精品又又久久亚洲欧美| 麻豆精品久久久久久蜜桃| 亚洲在久久综合| 七月丁香在线播放| 在线免费观看不下载黄p国产| 黄色一级大片看看| 国产精品人妻久久久影院| 亚洲精品第二区| 国产精品1区2区在线观看.| 成人漫画全彩无遮挡| 成人一区二区视频在线观看| 热99在线观看视频| 欧美丝袜亚洲另类| 插逼视频在线观看| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 女人久久www免费人成看片| 国产高潮美女av| 69av精品久久久久久| 人人妻人人看人人澡| 亚洲自偷自拍三级| 国产91av在线免费观看| 国产黄频视频在线观看| 麻豆成人午夜福利视频| 国产高清不卡午夜福利| 午夜亚洲福利在线播放| 成人午夜精彩视频在线观看| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 少妇人妻一区二区三区视频| 国产黄色视频一区二区在线观看| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 免费av观看视频| 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 少妇熟女欧美另类| 看非洲黑人一级黄片| 日韩欧美国产在线观看| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 午夜福利高清视频| 免费看av在线观看网站| 国产精品久久久久久精品电影| 国产免费又黄又爽又色| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 久久久久九九精品影院| 成人无遮挡网站| 亚洲国产日韩欧美精品在线观看| 丰满乱子伦码专区| 午夜免费观看性视频| 又粗又硬又长又爽又黄的视频| 国产综合懂色| 免费av毛片视频| 亚洲美女搞黄在线观看| 久久久久精品久久久久真实原创| 晚上一个人看的免费电影| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| 精品人妻偷拍中文字幕| 久久久色成人| 亚洲欧美一区二区三区黑人 | 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 两个人视频免费观看高清| 国产有黄有色有爽视频| 麻豆乱淫一区二区| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 免费大片18禁| 在线天堂最新版资源| 亚洲精品第二区| 久久精品久久久久久噜噜老黄| 国产在视频线在精品| 一级毛片电影观看| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 国产精品福利在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 十八禁网站网址无遮挡 | 日产精品乱码卡一卡2卡三| 丝瓜视频免费看黄片| 亚洲内射少妇av| 日韩国内少妇激情av| 最近手机中文字幕大全| 亚洲精品,欧美精品| 伊人久久国产一区二区| 亚洲精品国产成人久久av| 成年版毛片免费区| 成人av在线播放网站| 亚洲熟女精品中文字幕| 一级爰片在线观看| 国产综合精华液| 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 天堂av国产一区二区熟女人妻| 国精品久久久久久国模美| 我的老师免费观看完整版| 国产单亲对白刺激| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 国产乱人偷精品视频| 国产精品爽爽va在线观看网站| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 97超碰精品成人国产| 精品久久久久久久末码| 午夜福利在线在线| 老师上课跳d突然被开到最大视频| 搡老乐熟女国产| 国产精品一区二区在线观看99 | 午夜福利在线观看免费完整高清在| 国产精品一二三区在线看| 国产精品一及| 麻豆成人av视频| 毛片女人毛片| 国产真实伦视频高清在线观看| 最近最新中文字幕大全电影3| 99九九线精品视频在线观看视频| 欧美丝袜亚洲另类| 久久久久久伊人网av| 97超碰精品成人国产| 一级毛片我不卡| 只有这里有精品99| 在线观看人妻少妇| 日本免费a在线| 欧美xxⅹ黑人| 中文字幕制服av| 国国产精品蜜臀av免费| 国产男女超爽视频在线观看| 人妻系列 视频| 在线免费观看的www视频| 伦精品一区二区三区| 日本欧美国产在线视频| eeuss影院久久| a级一级毛片免费在线观看| 亚洲精品影视一区二区三区av| 亚洲精品日韩在线中文字幕| 乱码一卡2卡4卡精品| 观看美女的网站| 亚洲精品aⅴ在线观看| 蜜桃久久精品国产亚洲av| 精品一区在线观看国产| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 久久久久久久久久黄片| 久久久久国产网址| 三级毛片av免费| 高清日韩中文字幕在线| 99re6热这里在线精品视频| 国产老妇伦熟女老妇高清| 最新中文字幕久久久久| 国产精品人妻久久久久久| 春色校园在线视频观看| 婷婷色综合大香蕉| 国产在线男女| 亚洲欧美清纯卡通| av国产免费在线观看| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 日产精品乱码卡一卡2卡三| 久久久久久久亚洲中文字幕| 三级毛片av免费| 亚洲一级一片aⅴ在线观看| 亚洲最大成人中文| 18禁在线无遮挡免费观看视频| 看免费成人av毛片| 男插女下体视频免费在线播放| 男女边摸边吃奶| 五月天丁香电影| 国产淫语在线视频| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 91久久精品电影网| 国产一级毛片在线| 亚洲av免费在线观看| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 午夜福利在线观看免费完整高清在| 99热6这里只有精品| 亚洲成人中文字幕在线播放| 99久久人妻综合| 国产男人的电影天堂91| 亚洲av中文字字幕乱码综合| 国产黄片视频在线免费观看| av.在线天堂| 日本黄色片子视频| 亚洲av.av天堂| 国产精品人妻久久久久久| 久久韩国三级中文字幕| 亚洲欧美一区二区三区黑人 | 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 午夜爱爱视频在线播放|