• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Helix Angle on Stability of Milling Flexible Parts

    2016-02-09 01:54:03,

    , ,

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China

    ?

    Influence of Helix Angle on Stability of Milling Flexible Parts

    MuhammadMasudAkhtar,HuangXiang,ChenWenliang*

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China

    (Received 18 October 2015; revised 20 February 2016; accepted 5 March 2016)

    Geometry of end mill cutters plays a vital role in the stability of the flexible parts milling. The present study considers helix angle and number of flutes. Multi-frequency solution is established to draw stability Lobe diagram(SLD) for different helix angles and number of flutes. SLD for the two cases shows that the greater the value of helix angle, the more stable the milling process will be, and conversely increasing the number of flutes degrades the stability of flexible parts milling. A simple empirical methodology is adopted to employ the inclined plane workpiece geometry offering a gradual increase of the axial depth of cut in the feed direction. Surface roughness is used as a measure of stability. Test results corroborate the model conclusions very well.

    helix angle; flute; end mill cutter; flexible parts milling; stability

    0 Introduction

    High efficiency products in modern industries like aerospace, aircraft and automobile guarantee the needed components with thin sections, which can greatly reduce structural stiffness. However, the machining of these thin sectioned parts presents a very difficult condition to keep stability. With HSM the metal removal rate increased dramatically through a combination of large axial depths of cut and high spindle speeds. One limitation on the allowable axial depth is regenerative chatter. Chatter is the most obscuring phenomenon and considerable research has been documented regarding the prediction, control and elimination of chatter.

    Many out-of-process and in-process techniques have been established to suppress, control and predict chatter. SLD stands at the border between a stable cut (i.e. no chatter) and an unstable cut (i.e. with chatter) in terms of the axial depth-of cut as a function of the spindle speed. Research in the area of chatter dates back to as early as 1906 when Taylor stated that chatter is the ″most obscure and delicate of all problems facing the machinist″[1]. Other pioneering works in the field of chatter vibration are nominated to Tlusty et al.[2], Merritt[3], Sridhar et al.[4]. A study shows that presently Altintas, Budak and Tlusty are the key stakeholders in the business of chatter[5].

    Remarkable contribution in the research of workpiece vibrations in thin walled parts have been made by Budak[6-7], Seguy et al.[8], Thevenot[9], Song et al.[10], Tang and Liu[11],Davies and Balachandran[12], and Adetoro et al.[13]. The influence of mill helix angle on stability was first considered by Zatarain et al.[14]. Later Zatarain et al.[15]analyzed the concept of directional factors for chatter stability in milling including the effect of the helix angle. Shirase and Altintas[16], Budak[17-18], Sims et al.[19], Turner et al.[20], Yusoff et al.[21]demonstrated in their work that with variable pitch and variable helix milling tools the stability of the milling improved by disrupting the regenerative effect.

    In the study addressed here the milling stability of flexible workpiece has been investigated under the influence of helix angle and number of flutes of end mill cutter by considering the improved helix angle model for flexible parts presented by Masud[22]in which very small changes in the initial and final immersion positions of the cutter arc segment were contemplated, to reflect the actual cutting conditions. Multi-frequency solution of the proposed model was obtained. Stability lobe diagram was constructed for variable helix angles and variable number of flutes. An increase in helix angle showed improved stability as compared to low helix angle values. Stability lobe diagram for variable number of flutes showed that the stability of the flexible parts milling increased with fewer number of flutes whereas increasing the number of flutes degraded the stability of flexible parts. A simple empirical methodology employing the inclined plane workpiece geometry was used to validate the model results. The inclined plane workpiece geometry offered the increase of axial depth of cut along the length of cut enabling varying stability condition for one spindle speed. Surface roughness was measured at different points along the cut as a gauge of stability of the cutting process, hence eliminating the need of sophisticated analytical tools and equipment like, impact hammers, piezoelectric transducers, specific software, and sensors for chatter detection.

    1 Chatter Stability Model

    As shown in Fig.1, the milling cutter withNteeths and the workpiece are considered to obtain flexibility in feed (x-direction), normal (y-direction) and spindle (z-direction) directions. φjis the immersion angle of thejth teeth measured from they-direction. Ω (r/s) is the spindle speed. Tangential (dFt,j(φ,z)), radial (dFr,j(φ,z)), and axial (dFa,j(φ,z)) forces acting on a differential flute element with height dz(see Fig. 2) yield as

    (1)

    where φj(z)is the immersion angle at the axial distancez. φj(0)=φ+j·φp, φj(z)=φ+j·φp-kβz,kβ=(2tanβ)/D. β is the helix angle andDthe effective diameter of the cutting tool. The dynamic chip thicknessi

    hj(φ,z)=gi(φ)[(f+Δx+Δu)sinφj(z)+

    (Δy+Δv)cosφj(z)]

    (2)

    where f is the feed per tooth,Δx=x(t)-x(t-T), Δy=y(t)-y(t-T)and Δu=u(t)-u(t-T), Δv=v(t)-v(t-T)are the dynamic displacements of the cutter and workpiece at the previous and the present tooth periods, respectively.

    Fig.1 Dynamic model of milling

    Fig.2 Helical end mill and its thin disk element

    The function gi(φ) is a unit step function to determine whether the tooth is in or out of cut, that is

    (3)

    where φstand φexare the start and the exit immersion angles of the cutter, respectively. The elemental forces in feed (x), normal (y) and axial (z) directions are

    (4)

    Total cutting force produced by the flute is calculated by an integration of the differential cutting forces along the in-cut-portion of the flutejat each plane alongzdirection (5). Three distinct ways of interaction between immersion section of the cutter arc segment and a helical toothjare shown in Fig.3.

    Fig.3 Helical flute-part ace integration zones

    (5)

    AssumingKte=Kre=Kae=0, and neglecting the axial force, the following equations can be obtained

    (6a)

    (6b)

    where ε1=sin2φ1,j-sin2φst, ε2=2φst-2φ1,j,ε3=cos2φ1,j-cos2φst,ε4=sin2φ2,j+sin2(kβα-φ2,j),ε5=cos2φ2,j+cos2(kβa-φ2,j), ε6=sin2φex+sin2(kβa-φ3,j),ε7=2φ3,j-2φex-2kβa,ε8=cos2φex-cos2(kβa-φ3,j),Kt=Ktc,Kr=Krc/Ktc,φi,j=φi+jφp-KβZ.

    The cutting forces contributed by all flutes are calculated and summed to obtain the total instantaneous forces on the cutter at immersionφ

    (7)

    Converting Eq.(7) into matrix form as follow

    (8)

    where

    F=[FxFy]T

    Converting Eq.(6) from time domain to frequency domain

    (9)

    where ″*″ denotes the convolution integral.Δ(ω) = (1-e-iωT)Φ(ω)F(ω) is the displacement/regenerative vector;Φ(ω) is the sum of the ″Frequency Response Function″ (FRF) matrices of the tool/cutter and of the workpiece. The periodic directional matrix can be expanded into Fourier series

    (10a)

    (10b)

    Further multi-frequency solution is established to obtain the limiting depth of cut a as

    (11)

    2 Simulations

    For simulations purpose end mill cutter of 2 flute, 12 mm diameter, 30° helix angle end mill cutter was used. Dynamic parameters of cutter inXandYdirections are shown in Table 1. The workpiece transfer function was identified in the normal direction (Y), in Table 2, as the dynamics in the feed direction (X) can be neglected due to its relative magnitude. The cutting coefficients of Al 7075,Kt= 999.28 MPa,Kr= 426.4 MPa were obtained[23].

    Table 1 Tool dynamic parameters in X and Y directions

    Table 2 Workpiece dynamic parameters in Y direction

    (1) Helix Angle

    Stability Lobe diagram(SLD) drawn for different helix angle is shown in Fig. 4. The simulation of the proposed model shows that helix angle affects the stability of flexible parts milling. An increase in helix angle shows improved stability and vice versa.

    Fig.4 SLD of helix angle

    (2) Number of flutes

    Fig.5 SLD of number of flutes

    SLD drawn for different number of flutes is shown in Fig.5. The simulation shows that increasing the number of flutes degrades the stability of flexible parts milling where as an end mill cutter with fewer flutes improves the stability of the flexible parts milling.

    3 Experimental Verification

    In order to verify the simulation, a simple experimental methodology was adopted. A thin walled Aluminum 7075 workpiece 4 mm thick (Fig.6) of inclined geometry offering a gradual increase of the axial depth of cut in the feed direction was used. Experimental setup is shown as Fig.7.For each case of variable helix angle and number of flutes, two different values of end mill cutter were used. Test for each end mill cutter was performed with three sets of spindle speed, i.e. 2 000, 3 000 and 4 000 r/min on a three axis CNC milling machine. In order to ensure the same stability conditions among each test, following conditions were met:

    ·Workpiece of same geometry was used.

    ·Torque wrench was used to apply the same clamping force on each test piece by clamping vice.

    ·Same tool holder was used and same overhang of the milling cutter was ensured.

    ·To analyze the two different cutters same cutting parameters i.e. spindle speed, feed per revolution and RDOC were ensured.

    Surface roughness of the test specimen was measured as a Gauge to compare the stability of the two different cases. Stylus type surface roughness measuring instrument was used to measure the surface roughness of the test piece at different points along the cut. Large cut-off values i.e. 2.5 mm was employed to identify the chatter marks on the machined surface[24].

    Fig.6 Inclined workpiece

    Fig.7 Experimental setup

    (1) Helix angle

    To verify the effect of helix angle on stability of thin walled workpiece, test were performed with two end mill cutters of dia 12 mm with helix angles 30° and 45°(Fig.8). Tests were performed as listed in Table 3 along with surface roughness measurement made along the length of cut at two points 140 mm and 180 mm. Measurement was taken three times at a point and their mean was obtained. For each test RDOC was 1 mm and feed of 0.15 mm/tooth was used to maintain the constant chip load.

    Table 3 Test parameters Ⅰ

    Fig.8 End mill cutter (helix angle)

    (2) Number of flutes

    In order to verify the effect of number of flutes of end mill cutter on stability of thin walled workpiece, test were performed with two 3-fluted and 4-fluted end mill cutters of dia 12 mm with helix angle 30° (Fig.9). Tests were performed as listed in Table 4 along with surface roughness measurement made along the length of cut at two points 140 mm and 180 mm. Measurement was taken three times at a point and their mean was obtained. For each test RDOC was 1 mm and feed of 0.15 mm/tooth was used to maintain the constant chip load.

    Fig.9 End mill cutter (number of flutes)

    TypeTestSpindlespeed(r·min-1)Feedrate/(mm·min-1)Surfaceroughness/μmPoint1(140mm)Point2(180mm)3-flutedendmill-cutter120009001.82.22300013502.13.53400018002.94.34-flutedendmill-cutter1200012002.312.952300018002.846.163400024004.615.33

    4 Conclusions

    Chatter in machining is the most debilitating problem faced by modern machining industries, and its prediction, elimination and control becomes even more critical when the part to be machined is flexible. The present research presents an important contribution in the stability analysis of flexible parts milling by studying the influence of helix angle and number of flutes of milling cutter after contemplating an improved helix angle model in which very small changes in the initial and final immersion positions of the cutter arc segment are considered. The study concludes that

    (1) A greater value of helix angle of the milling cutter improves the stability of the flexible parts milling and vice versa.

    (2) The smaller the number of flutes, the more stable the milling of flexible parts, will be and vice versa.

    [1] TAYLOR F W. On the art of cutting metals[M]. New York: Transactions of the American Society of Mechanical Engineers, 1907: 31-350.

    [2] TLUSTY J, POLACEK M. The stability of machine tools against self excited vibrations in machining[J]. International Research in Production Engineering—American Society of Mechanical Engineers, 1963, I: 465-474.

    [3] MERRITT H E. Theory of self-excited machine tool chatter[J]. Journal of Engineering for Industry, Transactions of the ASME, 1965, 87(4):447-454.

    [4] SRIDHAR R, HOHN R E, LONG G W. A general formulation of the milling process equation[J]. Journal of Manufacturing Science and Engineering, 1968, 90(2): 317 - 324.

    [5] GUILLEM Q, JOAQUIM C. Chatter in machining processes: A review[J]. International Journal of Machine Tools & Manufacture, 2011, 51(5): 363-376.

    [6] BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling—Part I: General formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 120(1): 22-30.

    [7] BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling—Part Ⅱ: Application of the general formulation to common milling systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 120(1): 31-36.

    [8] SEGUY S, CAMPA F J, LACALLE N L, et al. Toolpath dependent stability lobes for the milling of thin-walled parts[J]. International Journal of Machining and Machinability of Materials, 2008, 4(4): 377-392.

    [9] THEVENOT V, ARNAUD L, DESSEI G, et al. Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin walled structure milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 27(7/8): 638-644.

    [10]SONG Qinghua, WAN Yi, YU Shuiqing, et al. Stability prediction during thinwalled workpiece high-speed milling[J]. Advanced Materials Research, 2009, 69: 428-432.

    [11]TANG Aijun, LIU Zhanqiang. Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(1/2): 33-39.

    [12]DAVIES M A, BALACHANDRAN B. Impact dynamics in milling of thin-walled structures[J]. Nonlinear Dynamics, 2000, 22(4): 375-392.

    [13]ADETORO O B, SIM W M, WEN P H. An improved prediction of stability lobes using nonlinear thin wall dynamics[J]. Journal of Materials Processing Technology, 2010, 210(6/7): 969-979.

    [14]ZATARAIN M, MUNOA J, PEIGNE G, et al. Analysis of the influence of mill helix angle on chatter stability[J]. CIRP Annals—Manufacturing Technology, 2006, 55(1): 365-368.

    [15]ZATARAIN M, BEDIAGA I, MUNOA J, et al. Analysis of directional factors in milling: Importance of multi-frequency calculation and of the inclusion of the effect of the helix angle[J]. International Journal of Machine Tools and Manufacture, 2010, 47(5/6/7/8): 535-542.

    [16]SHIRASE K, ALTINTAS Y. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills[J]. International Journal of Machine Tools and Manufacture, 1996, 36(5): 567-584.

    [17]BUDAK E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: Theory[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125(1): 29-34.

    [18]BUDAK E. An analytical design method for milling cutters with nonconstant pitch to increase stability, part 2: Application[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125(1): 35-38.

    [19]SIMS N D, MANN B, HUYANAN S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools[J]. Journal of Sound and Vibration, 2008, 317(3/4/5): 664-686.

    [20]TURNER S, MERDOL D, ALTINTAS Y, et al. Modelling of the stability of variable helix end mills[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9): 1410-1416.

    [21]YUSOFF A R, TURNER S, TAYLOR C M, et al. The role of tool geometry in process damped milling[J]. International Journal of Advanced Manufacturing Technology, 2010,50(9/10/11/12): 883-895.

    [22]MASUD A M,HUANG X, CHEN W L, et al. Milling dynamics of flexible part with helix angle[J]. Procedia Engineering, 2011, 23: 792-798.

    [23]ALTINTAS Y. Manufacturing automation-metal cutting mechanics, machine tool vibrations and CNC design[M]. Cambridge: Cambridge University Press, 2000: 1-382.

    [24]MCCAULEY C J.Machinery's handbook[M]. 25th ed. New York: Industrial Press Inc, 1996: 1-2800.

    Mr.Muhammad Masud Akhtar is a doctoral candidate in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research has focused on mechanics and dynamics of machining.

    Prof.Huang Xiang has been working in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research is focused on aircraft digital assembly technology and equipment.

    Prof.Chen Wenliang has been working in the College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics. His research is focused on aircraft assembly technology.

    (Executive Editor: Zhang Bei)

    TH161 Document code: A Article ID: 1005-1120(2016)06-0714-07

    *Corresponding author, E-mail address:cwlme@nuaa.edu.cn. How to cite this article: Muhammad Masud Akhtar, Huang Xiang, Chen Wenliang. Influence of helix angle on stability of milling flexible parts[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(6):714-721. http://dx.doi.org/10.16356/j.1005-1120.2016.06.714

    精品久久久久久,| 中文字幕色久视频| 久久中文字幕一级| 在线永久观看黄色视频| 91字幕亚洲| 亚洲专区中文字幕在线| 国产又色又爽无遮挡免费看| 天堂俺去俺来也www色官网| 91在线观看av| 咕卡用的链子| 久久热在线av| 一级毛片精品| 在线观看舔阴道视频| 午夜日韩欧美国产| 黄色丝袜av网址大全| 久久久久精品国产欧美久久久| 免费av中文字幕在线| 伦理电影免费视频| 757午夜福利合集在线观看| 高清在线国产一区| 国产高清国产精品国产三级| 精品午夜福利视频在线观看一区| 日韩一卡2卡3卡4卡2021年| 久久香蕉激情| 黄色a级毛片大全视频| 91精品国产国语对白视频| 美女福利国产在线| 一级毛片精品| 777久久人妻少妇嫩草av网站| 久久婷婷成人综合色麻豆| 老熟女久久久| 另类亚洲欧美激情| 亚洲成人免费电影在线观看| 黄片大片在线免费观看| 嫁个100分男人电影在线观看| 中国美女看黄片| 国产精华一区二区三区| 亚洲一区高清亚洲精品| 大码成人一级视频| 熟女少妇亚洲综合色aaa.| 大码成人一级视频| 黑人猛操日本美女一级片| 91大片在线观看| 国产99久久九九免费精品| 丁香六月欧美| 美女国产高潮福利片在线看| 欧美日韩av久久| 亚洲欧美精品综合一区二区三区| 久热爱精品视频在线9| 黑人巨大精品欧美一区二区蜜桃| 亚洲美女黄片视频| 国产91精品成人一区二区三区| 岛国毛片在线播放| 欧美激情高清一区二区三区| 99国产精品一区二区蜜桃av | 欧美另类亚洲清纯唯美| 国产激情欧美一区二区| 久久国产亚洲av麻豆专区| 无限看片的www在线观看| 成人特级黄色片久久久久久久| 国产日韩欧美亚洲二区| 久久精品熟女亚洲av麻豆精品| 岛国毛片在线播放| 亚洲一区二区三区欧美精品| 久久人妻福利社区极品人妻图片| 性色av乱码一区二区三区2| 亚洲av熟女| 又大又爽又粗| 99香蕉大伊视频| 久久草成人影院| 正在播放国产对白刺激| 一二三四在线观看免费中文在| 下体分泌物呈黄色| 丰满饥渴人妻一区二区三| 老熟女久久久| 精品国产美女av久久久久小说| 人人妻人人澡人人爽人人夜夜| 欧美日韩乱码在线| 超色免费av| 后天国语完整版免费观看| 一进一出抽搐动态| 久久天躁狠狠躁夜夜2o2o| 波多野结衣一区麻豆| 女人被狂操c到高潮| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 欧美+亚洲+日韩+国产| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 欧美精品一区二区免费开放| 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡| 香蕉久久夜色| 999精品在线视频| 黄色女人牲交| 亚洲精品中文字幕一二三四区| 俄罗斯特黄特色一大片| 日韩有码中文字幕| 免费av中文字幕在线| 91九色精品人成在线观看| 亚洲精品中文字幕在线视频| 亚洲精品在线观看二区| 另类亚洲欧美激情| 男女下面插进去视频免费观看| 精品一区二区三区四区五区乱码| 久久热在线av| www日本在线高清视频| 女性被躁到高潮视频| 色老头精品视频在线观看| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 精品视频人人做人人爽| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 欧美成人免费av一区二区三区 | 亚洲第一欧美日韩一区二区三区| 欧美色视频一区免费| 国产亚洲欧美98| 欧美精品av麻豆av| 午夜91福利影院| 亚洲欧美激情在线| 十八禁高潮呻吟视频| 久久天堂一区二区三区四区| 精品免费久久久久久久清纯 | 国产亚洲精品一区二区www | а√天堂www在线а√下载 | 一级黄色大片毛片| 飞空精品影院首页| 国产精品久久久av美女十八| 色94色欧美一区二区| 日韩欧美在线二视频 | av在线播放免费不卡| 国产av一区二区精品久久| 免费高清在线观看日韩| 日韩大码丰满熟妇| 大码成人一级视频| 国产成人免费无遮挡视频| 一本综合久久免费| 国产一区二区三区视频了| 一a级毛片在线观看| 19禁男女啪啪无遮挡网站| 国产一区二区激情短视频| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| 日韩欧美国产一区二区入口| 高清视频免费观看一区二区| 男女下面插进去视频免费观看| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 啦啦啦 在线观看视频| 日本撒尿小便嘘嘘汇集6| 美国免费a级毛片| 日韩精品免费视频一区二区三区| 欧美精品一区二区免费开放| 热re99久久国产66热| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 国产亚洲精品一区二区www | 中文字幕av电影在线播放| 91成人精品电影| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 免费在线观看日本一区| 亚洲在线自拍视频| 欧美乱码精品一区二区三区| 中文字幕制服av| 久久精品熟女亚洲av麻豆精品| 成人亚洲精品一区在线观看| 日韩人妻精品一区2区三区| 操出白浆在线播放| 精品一区二区三区av网在线观看| 国产精品国产高清国产av | 免费在线观看亚洲国产| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| 人人澡人人妻人| 亚洲精品成人av观看孕妇| 久久久国产欧美日韩av| 国产三级黄色录像| 交换朋友夫妻互换小说| 久久久水蜜桃国产精品网| 亚洲欧美一区二区三区黑人| 十分钟在线观看高清视频www| 伦理电影免费视频| 欧美激情高清一区二区三区| 亚洲五月婷婷丁香| bbb黄色大片| 人人澡人人妻人| 国产精品一区二区精品视频观看| 18禁观看日本| 国产午夜精品久久久久久| 一区在线观看完整版| av一本久久久久| 亚洲五月色婷婷综合| 亚洲国产看品久久| 黄色视频,在线免费观看| 一级作爱视频免费观看| 成人18禁在线播放| 久热爱精品视频在线9| 搡老岳熟女国产| 亚洲九九香蕉| 国产精品av久久久久免费| 国产伦人伦偷精品视频| 日本wwww免费看| 人人妻人人添人人爽欧美一区卜| 97人妻天天添夜夜摸| 波多野结衣av一区二区av| 国产又色又爽无遮挡免费看| 中国美女看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品人妻蜜桃| 女性被躁到高潮视频| 12—13女人毛片做爰片一| 18禁国产床啪视频网站| 一级片免费观看大全| av网站在线播放免费| a级毛片黄视频| av在线播放免费不卡| 大型av网站在线播放| 成人国语在线视频| 美国免费a级毛片| 精品电影一区二区在线| 日韩视频一区二区在线观看| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 丝袜美足系列| 亚洲精品国产区一区二| 国产一区二区三区综合在线观看| 亚洲人成电影观看| 五月开心婷婷网| 亚洲精品自拍成人| 极品人妻少妇av视频| 欧美乱码精品一区二区三区| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 亚洲中文日韩欧美视频| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 日日夜夜操网爽| 亚洲全国av大片| 视频区欧美日本亚洲| 一区在线观看完整版| 亚洲精品av麻豆狂野| 免费在线观看影片大全网站| 欧美激情 高清一区二区三区| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 亚洲三区欧美一区| 国产欧美亚洲国产| 精品无人区乱码1区二区| 美女福利国产在线| 日韩制服丝袜自拍偷拍| 国产精品九九99| 亚洲免费av在线视频| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免费看| 中国美女看黄片| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线| 国产精品.久久久| 女人被狂操c到高潮| 手机成人av网站| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 在线观看一区二区三区激情| 中亚洲国语对白在线视频| 我的亚洲天堂| 乱人伦中国视频| 亚洲欧美一区二区三区黑人| 国产高清videossex| 身体一侧抽搐| 人人妻人人澡人人爽人人夜夜| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 久9热在线精品视频| 精品久久久精品久久久| 久久亚洲精品不卡| 一区在线观看完整版| 一本综合久久免费| 国产欧美日韩一区二区三| 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点 | 99香蕉大伊视频| 免费在线观看日本一区| 亚洲 国产 在线| 久久久精品免费免费高清| 亚洲欧美激情综合另类| 丝袜美足系列| 精品人妻1区二区| 国产一区二区激情短视频| 日韩欧美在线二视频 | 午夜福利在线观看吧| 搡老乐熟女国产| 不卡一级毛片| 免费女性裸体啪啪无遮挡网站| 无人区码免费观看不卡| 一边摸一边抽搐一进一出视频| 国产蜜桃级精品一区二区三区 | 久久久久久人人人人人| 日韩熟女老妇一区二区性免费视频| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 日韩免费av在线播放| 国产精品久久久av美女十八| 在线观看日韩欧美| 国产激情欧美一区二区| 乱人伦中国视频| 国产免费现黄频在线看| 国产精品 欧美亚洲| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕| 在线观看舔阴道视频| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 成人永久免费在线观看视频| 国产欧美日韩一区二区三| 免费在线观看亚洲国产| 日本五十路高清| 无人区码免费观看不卡| av线在线观看网站| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| 波多野结衣一区麻豆| 亚洲成人免费电影在线观看| a在线观看视频网站| 一二三四在线观看免费中文在| 99国产精品一区二区蜜桃av | 日韩人妻精品一区2区三区| 亚洲国产精品合色在线| 亚洲黑人精品在线| 成年版毛片免费区| 啪啪无遮挡十八禁网站| 老司机在亚洲福利影院| 电影成人av| 欧美日韩av久久| 国产成人精品无人区| 国产免费男女视频| 最近最新中文字幕大全免费视频| 亚洲一区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | avwww免费| 精品午夜福利视频在线观看一区| 天天影视国产精品| 国产精品免费大片| 日韩欧美一区视频在线观看| 正在播放国产对白刺激| 免费在线观看完整版高清| 欧美精品av麻豆av| 99精品欧美一区二区三区四区| 91大片在线观看| 国产蜜桃级精品一区二区三区 | 国产午夜精品久久久久久| 亚洲精品久久午夜乱码| av有码第一页| 精品卡一卡二卡四卡免费| 国产精品九九99| 久久 成人 亚洲| 大香蕉久久网| 丝袜美足系列| 免费观看人在逋| 高清欧美精品videossex| 国产亚洲精品久久久久5区| 午夜91福利影院| 99精国产麻豆久久婷婷| av不卡在线播放| 久久人妻熟女aⅴ| 国产精品久久久久成人av| 性色av乱码一区二区三区2| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 国产精品亚洲一级av第二区| 欧美精品一区二区免费开放| ponron亚洲| www日本在线高清视频| 天堂中文最新版在线下载| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久久毛片 | 午夜免费成人在线视频| 首页视频小说图片口味搜索| 亚洲第一av免费看| 国内久久婷婷六月综合欲色啪| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 在线观看免费高清a一片| 国产亚洲欧美在线一区二区| 好看av亚洲va欧美ⅴa在| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区 | 黑人猛操日本美女一级片| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 欧美午夜高清在线| 亚洲欧美日韩高清在线视频| 90打野战视频偷拍视频| 老司机深夜福利视频在线观看| videosex国产| 亚洲专区字幕在线| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 一区二区三区精品91| 国产一区二区三区视频了| 中文字幕人妻熟女乱码| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 美女午夜性视频免费| 国产精品 欧美亚洲| 亚洲第一青青草原| 脱女人内裤的视频| 亚洲av电影在线进入| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 亚洲专区国产一区二区| 国产av又大| ponron亚洲| 操美女的视频在线观看| av欧美777| 制服人妻中文乱码| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 午夜福利在线免费观看网站| 老司机亚洲免费影院| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 视频区图区小说| 波多野结衣av一区二区av| 国产激情久久老熟女| 久久精品国产清高在天天线| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 高清欧美精品videossex| 夜夜爽天天搞| 丝袜在线中文字幕| av片东京热男人的天堂| 精品一品国产午夜福利视频| 淫妇啪啪啪对白视频| videosex国产| 岛国在线观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区 | 在线观看66精品国产| 如日韩欧美国产精品一区二区三区| 一进一出抽搐gif免费好疼 | 欧美人与性动交α欧美软件| 1024视频免费在线观看| ponron亚洲| 女人被狂操c到高潮| 人妻 亚洲 视频| 91老司机精品| 极品教师在线免费播放| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 老熟女久久久| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区综合在线观看| 国产在视频线精品| 丝袜人妻中文字幕| 韩国精品一区二区三区| 欧美另类亚洲清纯唯美| 亚洲精品美女久久久久99蜜臀| 精品高清国产在线一区| 天天操日日干夜夜撸| 亚洲成人免费电影在线观看| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 午夜久久久在线观看| 人妻一区二区av| 午夜日韩欧美国产| 亚洲av欧美aⅴ国产| 国产一区二区三区视频了| 色婷婷av一区二区三区视频| 国产免费av片在线观看野外av| 看免费av毛片| 亚洲av第一区精品v没综合| 黑人巨大精品欧美一区二区mp4| 久9热在线精品视频| 久久久国产欧美日韩av| 国产精品一区二区在线不卡| 午夜福利在线免费观看网站| 国产精品99久久99久久久不卡| 男人的好看免费观看在线视频 | 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 麻豆国产av国片精品| 久久国产乱子伦精品免费另类| 午夜成年电影在线免费观看| 大香蕉久久网| 欧美不卡视频在线免费观看 | 国产精品电影一区二区三区 | 亚洲精品在线美女| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 91av网站免费观看| 中文亚洲av片在线观看爽 | 一区二区日韩欧美中文字幕| 欧美最黄视频在线播放免费 | 一区二区三区精品91| 亚洲伊人色综图| 人妻久久中文字幕网| 欧美激情 高清一区二区三区| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 日本精品一区二区三区蜜桃| 亚洲av成人一区二区三| 国产精品 国内视频| 欧美 日韩 精品 国产| 欧美一级毛片孕妇| 91精品三级在线观看| 国产免费男女视频| 午夜精品在线福利| 一级a爱片免费观看的视频| 精品久久久久久久久久免费视频 | a级毛片在线看网站| 18禁观看日本| 国产精品欧美亚洲77777| 女人久久www免费人成看片| 欧美日韩瑟瑟在线播放| 欧美色视频一区免费| 亚洲第一av免费看| 国产99久久九九免费精品| 久久99一区二区三区| 亚洲国产欧美日韩在线播放| 成熟少妇高潮喷水视频| 捣出白浆h1v1| 一本大道久久a久久精品| 两性夫妻黄色片| 国产成人系列免费观看| 高潮久久久久久久久久久不卡| 91av网站免费观看| 亚洲精品中文字幕在线视频| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 免费日韩欧美在线观看| 波多野结衣一区麻豆| 精品国产一区二区三区四区第35| 免费观看精品视频网站| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| av一本久久久久| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费 | 在线观看免费视频网站a站| 国产精品电影一区二区三区 | 超碰97精品在线观看| 精品久久蜜臀av无| 国产欧美亚洲国产| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 国产不卡av网站在线观看| 一本综合久久免费| 男人操女人黄网站| av欧美777| 亚洲国产欧美网| 这个男人来自地球电影免费观看| 精品亚洲成国产av| xxxhd国产人妻xxx| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 91大片在线观看| 性色av乱码一区二区三区2| 12—13女人毛片做爰片一| 国产男女内射视频| 91成年电影在线观看| 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区三| 成人永久免费在线观看视频| 69精品国产乱码久久久| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 久久精品亚洲av国产电影网| 日韩 欧美 亚洲 中文字幕| 精品高清国产在线一区| 大香蕉久久成人网| 亚洲国产看品久久| 亚洲国产欧美网| 欧美精品一区二区免费开放| 久久久国产欧美日韩av| 精品国内亚洲2022精品成人 | 国产成+人综合+亚洲专区| 后天国语完整版免费观看| 日韩欧美一区视频在线观看| 欧美乱码精品一区二区三区| 波多野结衣一区麻豆| 久久精品国产亚洲av香蕉五月 | 又大又爽又粗| 国产精品久久久av美女十八| 国产成人免费无遮挡视频| 亚洲人成电影观看| 巨乳人妻的诱惑在线观看| 中文字幕高清在线视频| 中文欧美无线码| 国产不卡一卡二| 亚洲午夜理论影院| 欧美色视频一区免费| 另类亚洲欧美激情|