• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Parameter Analyses on Rotor Airloads with New Type Blade-Tip Based on CFD/CSD Coupling Method

    2016-02-09 01:53:14,,

    , ,

    National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China

    ?

    Structural Parameter Analyses on Rotor Airloads with New Type Blade-Tip Based on CFD/CSD Coupling Method

    WangJunyi,ZhaoQijun*,MaLi

    National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China

    (Received 15 October 2015; revised 17 March 2016; accepted 5 April 2016)

    For accurate aeroelastic analysis, the unsteady rotor flowfield is solved by computational fluid dynamics (CFD) module based on RANS/Euler equations and moving-embedded grid system, while computational structural dynamics (CSD) module is introduced to handle blade flexibility. In CFD module, dual time-stepping algorithm is employed in temporal discretization, Jameson two-order central difference (JST) scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect. The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory. Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency. A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure. The CFD and the CSD modules are verified seperately. Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition. The calculated results agree well with test data. Finally, effects of torsional stiffness properties on airloads of rotors with different tip swept angles (from 10° forward to 30° backward) are investigated. The results are evaluated through pressure distribution and airloads variation, and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.

    rotor; airloads; structural parameter; computational fluid dynamics (CFD); computational structural dynamics (CSD); loose coupling method

    0 Introduction

    In order to obtain accurate rotor airloads, the unsteady, three-dimensional flowfield details around the rotor are required[1], but the lifting line aerodynamic method used in the computational structure dynamics (CSD) module lacks accuracy compared to high-fidelity computational fluid dynamics (CFD) method; rotor blades are highly flexible; and structural deformations have significant influences on rotor aerodynamic characteristics. Therefore, CFD and CSD codes mutually depend on each other in rotor unsteady airloads prediction. Furthermore, advanced blade-tip shapes, such as swept and anhedral, are widely employed in modern helicopter rotor design to acquire better aerodynamic performance[2]. This unconventional rotor blade design increases the difficulty in aerodynamic characteristic analyses and enables CFD/CSD coupling strategy to be a necessary tool for high-fidelity airloads prediction as well as dynamics analysis.

    Furthermore, the elastic deformations of rotor in forward flight can be modified through varying structural property distribution in spanwise direction. Through such a parametric investigation on these properties, the relationship between structural properties and aeroelastic loads can be understood and the preferred structural property configuration may be obtained for better dynamics characteristics.

    In 1986, Tung and Caradonna et al.[3]carried out CFD/CSD coupling for the first time and coupled the transonic small-disturbance code with comprehensive code CAMRAD to analyze lifting rotor in forward flight. In 2006, Potsdam et al.[4]studied the UH-60A airloads under different conditions using loosely coupled OVERFLOW-D and CAMRAD II and obtained better results over the lifting line aerodynamics used in CSD. Nygaard et al.[5]coupled OVERFLOW-2 with RCAS to investigate the parameter sensitivity of loose coupling in calculating unsteady airloads of rotor in forward flight, and then studied rotor unsteady airloads in the transient maneuver flight using tight coupling. In 2011, Yeo et al.[6]analyzed the aeroelastic stability of ADM rotor by adopting tight CFD/CSD coupling strategy, and the OVERFLOW-2/RCAS coupling method captured better key features in the damping trends of rotor. In 2011, Ahmad et al.[7]coupled OVERFLOW and CAMRAD-II to conduct flowfield simulation with high-fidelity and investigated the effect of coupling parameters such as iteration number and azimuth step size.

    The parametric investigations of structural properties using CFD/CSD coupling method are not widely published, especially for rotors with advanced blade-tip shape. The subject of this paper is to investigate the UH-60A rotor flowfield in high speed forward flight using CFD/CSD loose coupling and carry out parametric study on both geometric and structural properties. Firstly, both CFD and CSD modules are verified through computing Helishape 7A rotor, Caradonna-Tung rotor and UH-60A rotor blade. Then the unsteady airloads and pressure distributions of UH-60A rotor are calculated and compared with available experimental data. Thereafter, parametric investigations on rotors with different blade-tip swept angles are conducted. Finally, parametric investigations on structural stiffness are accomplished by varying the structural properties of rotor blades with different tip swept angles.

    1 Numerical Methodologies

    1.1 CFD method

    In the present work, C-H body-fitting blade grid is used in spatial discretization, as shown in Fig.1. The grid point number is 149×84×31 (chordwise, spanwise, and normal) to capture the viscous flow in the vicinity of blade region.

    Fig.1 C-H body-fitting blade grid

    Thereafter, the Cartesian background grid is generated around blade grid and extended into farfield. The dimension is 164×142×121 so that the overall grid number is about 5 million since 4 blade grids are used. The ″Top-Map″ hole cutting method is adopted to determine the spatial relationship between the body-fitting deformable grid and the Cartesian background grid, and the moving-embedded grid system is shown in Fig.2 with the donor elements searched by adopting ″Inverse Map″ method.

    Fig.2 Moving-embedded grid of helicopter rotor

    The blade deformation is carried out based on the algebraic method. The six degrees of freedom motion of rotor blade are defined by three translations and three rotation deflections of blade quarter line, while the airfoil cross sections maintain the original shape. As inheriting the algebraic nature of the C-H blade grid, this method of grid deformation is efficient with good quality.

    The flowfield solver is developed based on RANS and Euler equations for blade body-fitting grids and Cartesian background grid, respectively. The RANS governing equations in conservative form are[8]

    (1)

    whereWis the conservative variables,Fcthe convective flux andFvthe viscous flux. The equations are calculated using JST scheme in spatial discretization. Dual time-stepping algorithm is adopted to simulate the unsteady flowfield, and 4-stage Runge-Kutta scheme is employed. The viscous region around the rotor is calculated by using B-L turbulence model. The farfield boundary condition is determined according to Riemann invariant while the inner boundary is no-slip condition for RANS equations. Euler equations are only used in background region to compromise between accuracy and efficiency.

    1.2 CSD method

    The CSD module is developed based on Hamilton′s variational principle[9]

    (2)

    Fig.3 DOFs of beam element

    In order to improve the accuracy of dynamics prediction for rotors with advanced blade tips, multiple beam elements are used for blade-tip modeling[10]. The modified tip beam element could be expressed as

    (3)

    The discrete equations of motion (Eq.4) for each element are assembled to form the blade equations of motion. These equations are then solved by using Newmark-Beta method to obtain the blade structural deflection affected by aerodynamic forces, which can either come from lifting-line theory or computational fluid dynamics solver

    (4)

    where [Mi],[Ci], [Ki],Fiare the element mass, the damping, the stiffness matrix and the force vector, respectively.

    When lifting-line theory is used to carry out aeroelastic analysis, both linear inflow model and quasi-static aerodynamic model are activated.

    1.3 Coupling strategy

    After the CFD and the CSD modules are established, coupling strategy is required to transfer rotor flowfield and blade structure information between the two modules. In this paper, loose coupling (LC) is carried out in rotor airloads prediction according to level steady flight conditions[11], and the flowchart of LC is shown in Fig.4. Firstly, the moving-embedded grid system is introduced. Then, initial blade deflections are calculated by using the CSD module combining with lifting-line aerodynamics. Thereafter, loose coupling is carried out, starting from the CFD module to obtain the flowfield distribution and aerodynamic loads of deformed rotor blades. When the airloads over a revolution are computed, the information is transferred to the CSD module to update the deformation for the next revolution.

    Fig.4 Flowchart of CFD/CSD loose coupling strategy

    2 Modular Validation

    Two modules adopted in CFD/CSD coupling are required to be verified through isolated calculation. In the present work, Helishape 7A and Caradonna-Tung rotor is taken as numerical example to validate the CFD module, while UH-60A blade is employed in CSD validation.

    2.1 CFD module

    In order to eliminate the effect of blade elasticity, rigid rotor is required to validate the CFD module. Helishape 7A rotor in hover[12]and Caradonna-Tung rotor in forward flight[13]are relatively rigid, and the computed pressure distributions at different spanwise positions and azimuth angles are shown in Fig.5, wherer/Ris the position of airfoil section,Cpthe pressure coefficient andφthe azimuthal angle . The calculated pressure coefficient distributions agree well with the experimental data, which proves the effectiveness of the CFD module developed in both hover and forward flight condition.

    Fig.5 Pressure distribution of Helishape 7A and Caradonna-Tung rotor

    2.2 CSD module

    The CSD module is validated through analyzing the natural frequency of UH-60A rotor[14], as shown in Table 1. The reference results are calculated using UMARC software[15], and the discrepancies between the calculated and the reference results are minor, which indicates that the present CSD module can accurately represent the actual structural characteristics and could be used in CFD/CSD coupling analysis.

    Table 1 Comparison of UH-60A natural frequency

    Fig.6 shows the comparison of resonance diagram between calculated results with UMARC software calculations[16], Good agreement could be found and only minor difference exists in the low speed range.

    F,LandTare the flap ,the lag and the torsion frequency, respectively, andΩ/Ω0is the rotor speed .

    Fig.6 Resonance diagram of UH-60A rotor blade

    3 CFD/CSD Coupling Results

    3.1 Baseline UH-60A rotor

    In the present work, UH-60A rotor in high speed forward flight is chosen to be the baseline analysis scenario, where the advance ratio is 0.368 and blade-tip Mach number is 0.642 (Case 8534). Firstly, the airloads of UH-60A rotor blade at different spanwise positions in a revolution is computed using CFD/CSD coupling method and the calculated normal forces are shown in Fig.7. The magnitude and the phase of the calcu-lated loads M2Cn agree well with the test data[17], and the perturbation of the airloads in a revolution is also captured well.

    Fig.7 Normal force coefficient distributions of UH-60A rotor blade

    In Fig.8, the calculated pressure coefficient distributions of UH-60A rotor in C8534 are compared with experimental data[18]. Both the magnitude and the position of shock wave agree well, which indicates the effectiveness of the present CFD/CSD analysis in the unsteady flowfield of elastic rotor.

    Fig.8 Pressure coefficient distributions of UH-60A rotor blade

    3.2 Structural properties

    To investigate the aerodynamic characteristics of rotor with different structural properties, the torsional stiffness of UH-60A rotor blades are varied from 160% to 40% of the original value, and it is assumed that no structural instability will emerge in this range. In the present analysis, TP60 means torsional stiffness plus 60% while TM60 means minus 60%. For different tip swept angles, SFT1 means swept forward tip of 10° and SBT0, SBT1, SBT2 and SBT3 represent swept backward tip of 0°, 10°, 20° and 30°, respectively. Elastic rotor blades with different tip swept angle are investigated for better understanding on combined effects of blade tip and structural parameters.

    Firstly, normal force variations in a revolution are compared for blades with different swept angles and structural stiffness (Fig.9). The original lines represent airloads calculated based on the original UH-60A rotor sectional properties. For different tip swept angles, the differences in normal forces appear in the advancing side and only minor discrepancies are found on the retreating side. This might be caused by the strong shock in the advancing side, especially between 60° to 120° azimuth angle, and softer blade will generate more severe lift peak as the result of larger structural deflection affected by the aerodynamic forces. This trend increases with the increase of tip swept angle, which may be caused by the increased distance of aerodynamic forces center from the feathering line.

    Then, the pressure coefficient distributions are compared for rotor blades with different structural stiffness, as shown in Fig.10. It could be seen from the comparisons that blade with smaller torsional stiffness would generate smaller lift due to the pressure differences on blade surface, which indicates the reduced structural properties may benefit the reasonable pressure distribution at the advancing side.

    Fig.9 Normal force coefficient distributions of UH-60A blade at 0.865R with different torsional stiffness

    Fig.10 Pressure coefficient distributions of UH-60A rotor blade at 0.865R and 90° azimuth angle

    The calculated pressure distributions on the upper surface of blade with different structural properties are shown in Fig.11. The top blade has the largest torsional stiffness while blade with the least stiffness is at the bottom, and the properties of the seven blades from top to bottom are TP60, TP30, TP15, original, TM15, TM30 and TM60, respectively. The legend on the right hand side is also pressure in Pascal. It can be seen from these figures that reduced structural stiffness could significantly decimate the strength of shock waves as the result of magnified torsional deformation. Forward swept tip could reduce the pressure gradient in vicinity of blade tip while relatively strong shock is observed at the corner, which is similar to the rigid rotor case. Backward swept tip could also reduce the considerable pressure gradient at the advancing side, and this effect will be magnified with larger tip swept angle. Softer blade could moderate the pressure distribution on blades with different swept angles.

    Fig.11 Pressure distributions of UH-60A rotor blade at tip region with different structural stiffness

    4 Conclusions

    A RANS/Euler CFD solver has been loosely coupled with a CSD solver based on moderate deformation beam theory. The unsteady flowfield and aerodynamic airloads of UH-60A rotor are simulated by using the developed method. Parametric investigations on the effects of structural properties with variations of tip swept angle are carried out. The following conclusions are obtained:

    (1) The CFD/CSD coupling method established in the present work is able to simulate the unsteady flowfield and aerodynamic airloads as well as the natural frequency of rotor with advanced blade-tip shape and different structural stiffness in forward flight.

    (2) Reduced structural stiffness could significantly decimate the strength of shock waves and moderate the pressure distribution on blades with different swept angles.

    (3) Better aerodynamics characteristics could be obtained through varying geometric and structural properties, which could be beneficial to further investigation of aerodynamic optimization using CFD/CSD method.

    [1] DATTA A, CHOPRA I. Prediction of the UH-60A main rotor structural loads using computational fluid dynamics/comprehensive analysis coupling[J]. Journal of the American Helicopter Society, 2008,53 (4): 351-365.

    [2] BROCKLEHURST A, BARAKOS G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences, 2013,56(3):35-74.

    [3] TUNG C, CARADONNA F X, JOHNSON W. The prediction of transonic flows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986, 32(3):4-9.

    [4] POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742.

    [5] NYGAARD T A, SABERI H, ORMISTON R A, et al. CFD and CSD coupling algorithms and fluid structure interface for rotorcraft aeromechanics in steady and transient flight condition[C]// American Helicopter Society 62nd Annual Forum Proceedings. Phoenix, AZ: [s.n.], 2006:1772.

    [6] YEO H, POTSDAM M, ORMISTON R A. Rotor aeroelastic stability analysis using coupled computational fluid dynamics/computational structure dynamics[J]. Journal of the American Helicopter Society, 2011,56(4):1-16.

    [7] AHMAD J U. CHADERJIAN N M. High-order accurate CFD/CSB simulation of the uh-60 rotor in forward flight [C]// 29th AIAA Applied Aerodynamics Conference Proceedings, Honolulu, HI: AIAA, 2011.

    [8] BLAZEK J. Computational fluid dynamics: Principles and applications[M]. Second Edition. New York: Elsevier Ltd, 2005.

    [9] YUAN K A, FRIEDMANN P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips[R]. NASA CR-4665, 1995.

    [10]PANDA B. Assembly of moderate-rotation finite elements used in helicopter rotor dynamics[J]. Journal of the American Helicopter Society, 1987,32(4):63-69.

    [11]JOHNSON W. Milestones in rotorcraft aeromechanics Alexander A. Nikolsky honorary lecture[J]. Journal of the American Helicopter Society, 2011,56(3):1-24.

    [12]HOPKINS A S, ORMISTON R A. An examination of selected problems in rotor blade structural mechanics and dynamics[J]. Journal of the American Helicopter Society, 2006,51(1):104-119.

    [13]CARADONNA F X, LAUB G H, TUNG C. An experimental investigation of the parallel blade-vortex interactional[R]. NASA TM-86005, 1984.

    [14]DAVIS S J. Predesign study for a modern 4-bladed rotor for the RSRA[R]. NASA CR 166155, 1981.

    [15]ABHISHEK A, DATTA A, CHOPRA I. Prediction of UH-60A structural loads using multibody analysis and swashplate dynamics[J]. Journal of Aircraft, 2009,46(2):474-490.

    [16]DATTA A, SITARAMAN J, CHOPRA I, et al. CFD/CSD prediction of rotor vibratory loads in high-speed flight[J]. Journal of Aircraft, 2006,43(6):1698-1709.

    [17]SITARAMAN J, BAEDER J, CHOPRA I. Validation of UH-60A rotor blade aerodynamic characteristics using CFD[C]//American Helicopter Society 59th Annual Forum Proceedings. Phoenix, AZ:[s.n.], 2003:1452-1468.

    [18]LORBER P F. Aerodynamic results of a pressure-instrumented model rotor test at the DNW [J]. Journal of the American Helicopter Society, 1991,36(4):66-76.

    Mr. Wang Junyi is a postgraduate student in Nanjing University of Aeronautics and Astronautics (NUAA).His research has focused on helicopter aerodynamics and rotor CFD/CSD coupling method.

    Prof. Zhao Qijun is a professor and Ph.D. advisor at the College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, where he received his Ph.D. degree in aircraft design. His main research interests are helicopter CFD, helicopter aerodynamics, aerodynamic shape design of toor blade, active flow control of rotor, and rotor aeroacoustics.

    Mr. Ma Li is a doctor candidate at NUAA. His research has focused on helicopter aerodynamics and rotor CFD/CSD coupling method.

    (Executive Editor: Zhang Bei)

    V211.47 Document code:A Article ID:1005-1120(2016)06-0678-09

    *Corresponding author, E-mail address: zhaoqijun@nuaa.edu.cn. How to cite this article: Wang Junyi, Zhao Qijun, Ma Li. Structural parameter analyses on rotor airloads with new type blade-tip based on CFD/CSD coupling method[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(6):678-686. http://dx.doi.org/10.16356/j.1005-1120.2016.06.678

    欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 黄片无遮挡物在线观看| 成人高潮视频无遮挡免费网站| 国产美女午夜福利| 精品久久国产蜜桃| 91久久精品电影网| 国产激情偷乱视频一区二区| 一级黄片播放器| 国国产精品蜜臀av免费| 日韩人妻高清精品专区| 精品久久久久久久人妻蜜臀av| 蜜桃亚洲精品一区二区三区| 视频中文字幕在线观看| 亚洲欧洲国产日韩| 国产高潮美女av| 搞女人的毛片| 中文字幕亚洲精品专区| 国产精华一区二区三区| 一边亲一边摸免费视频| 午夜福利在线在线| 国产伦在线观看视频一区| 精品国产露脸久久av麻豆 | 国产白丝娇喘喷水9色精品| 国产高清三级在线| 亚洲欧美一区二区三区国产| 超碰av人人做人人爽久久| 精品国产三级普通话版| 国产免费福利视频在线观看| 国产激情偷乱视频一区二区| 女人被狂操c到高潮| videossex国产| 麻豆国产97在线/欧美| 国产极品天堂在线| 九草在线视频观看| 又黄又爽又刺激的免费视频.| 国产中年淑女户外野战色| av在线播放精品| 99久久精品热视频| 91久久精品电影网| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品专区久久| 国语自产精品视频在线第100页| 欧美一级a爱片免费观看看| 久久久久性生活片| 好男人视频免费观看在线| 国产成人福利小说| 五月伊人婷婷丁香| 国产熟女欧美一区二区| 麻豆一二三区av精品| 女的被弄到高潮叫床怎么办| 亚洲av免费高清在线观看| 我要看日韩黄色一级片| 亚洲av成人精品一二三区| 午夜福利在线观看免费完整高清在| 国产又黄又爽又无遮挡在线| 三级毛片av免费| 天天躁日日操中文字幕| 亚洲av免费在线观看| 亚洲自拍偷在线| 免费观看在线日韩| 伦精品一区二区三区| 国产 一区 欧美 日韩| 国产视频内射| 国语对白做爰xxxⅹ性视频网站| 亚洲最大成人av| 亚洲综合色惰| 免费看a级黄色片| 国产熟女欧美一区二区| 国产伦一二天堂av在线观看| 久久人妻av系列| 国产亚洲一区二区精品| 免费观看的影片在线观看| 色哟哟·www| 黄色日韩在线| 欧美xxxx性猛交bbbb| 久久精品夜夜夜夜夜久久蜜豆| 夜夜爽夜夜爽视频| 免费看av在线观看网站| 有码 亚洲区| 精品欧美国产一区二区三| 少妇丰满av| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 国产精品熟女久久久久浪| 日本与韩国留学比较| 国产乱人偷精品视频| 丰满乱子伦码专区| .国产精品久久| 久久久久性生活片| 黑人高潮一二区| 国产高清不卡午夜福利| 欧美日本视频| 天堂网av新在线| 国产精品久久电影中文字幕| 精品人妻熟女av久视频| 欧美成人一区二区免费高清观看| 亚洲av电影在线观看一区二区三区 | 秋霞伦理黄片| 国产精品永久免费网站| 青春草国产在线视频| 午夜精品在线福利| 99久国产av精品国产电影| 麻豆国产97在线/欧美| 草草在线视频免费看| 日韩av在线免费看完整版不卡| 黄色日韩在线| kizo精华| 亚洲在线观看片| 国产精品久久久久久久久免| 成人性生交大片免费视频hd| 卡戴珊不雅视频在线播放| 国产精品爽爽va在线观看网站| 精品久久国产蜜桃| 亚洲aⅴ乱码一区二区在线播放| 色播亚洲综合网| 精品久久久久久久久亚洲| 国产精品一及| 少妇裸体淫交视频免费看高清| 嫩草影院入口| 成人二区视频| 午夜免费男女啪啪视频观看| 看免费成人av毛片| 日韩精品青青久久久久久| 国内揄拍国产精品人妻在线| 99九九线精品视频在线观看视频| 久久久色成人| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 最近中文字幕2019免费版| 汤姆久久久久久久影院中文字幕 | 中文在线观看免费www的网站| 国产日韩欧美在线精品| АⅤ资源中文在线天堂| 搡女人真爽免费视频火全软件| 国产av在哪里看| 欧美一区二区精品小视频在线| 欧美最新免费一区二区三区| 日韩国内少妇激情av| 国产激情偷乱视频一区二区| 国产成人精品一,二区| 九九爱精品视频在线观看| 成人鲁丝片一二三区免费| 人妻少妇偷人精品九色| 男插女下体视频免费在线播放| 久久韩国三级中文字幕| 一级毛片久久久久久久久女| 丰满乱子伦码专区| 国产高清视频在线观看网站| 色综合亚洲欧美另类图片| 成人三级黄色视频| 亚洲精品久久久久久婷婷小说 | 日韩一本色道免费dvd| 两个人的视频大全免费| 九九在线视频观看精品| 日本熟妇午夜| 欧美高清成人免费视频www| 成人综合一区亚洲| 成年av动漫网址| 成人鲁丝片一二三区免费| 亚洲国产精品成人久久小说| 性色avwww在线观看| 男女视频在线观看网站免费| 视频中文字幕在线观看| 中国国产av一级| 一个人观看的视频www高清免费观看| 少妇猛男粗大的猛烈进出视频 | 一级毛片电影观看 | 日韩,欧美,国产一区二区三区 | 又粗又硬又长又爽又黄的视频| 菩萨蛮人人尽说江南好唐韦庄 | 中文字幕熟女人妻在线| 国产一区二区在线av高清观看| 亚州av有码| 亚州av有码| 国产成年人精品一区二区| 亚洲怡红院男人天堂| 国产精品av视频在线免费观看| 在线观看一区二区三区| 午夜a级毛片| 久久精品久久久久久噜噜老黄 | 欧美色视频一区免费| 日韩亚洲欧美综合| 亚洲最大成人手机在线| 国产精华一区二区三区| 免费观看的影片在线观看| 男人的好看免费观看在线视频| 国产在视频线精品| 禁无遮挡网站| 在现免费观看毛片| 成人av在线播放网站| 麻豆成人午夜福利视频| 亚洲熟妇中文字幕五十中出| 在线免费观看的www视频| 久久99热这里只有精品18| 精品久久久久久电影网 | 女人被狂操c到高潮| 蜜桃亚洲精品一区二区三区| 久热久热在线精品观看| 亚洲av不卡在线观看| 女的被弄到高潮叫床怎么办| 精品99又大又爽又粗少妇毛片| 九九爱精品视频在线观看| 日本三级黄在线观看| 麻豆精品久久久久久蜜桃| 一夜夜www| 国内揄拍国产精品人妻在线| 波野结衣二区三区在线| 国产又黄又爽又无遮挡在线| 国产精品嫩草影院av在线观看| 国产高清视频在线观看网站| 久久热精品热| 欧美人与善性xxx| 蜜桃久久精品国产亚洲av| 国产在视频线精品| 国产精品三级大全| 国产三级在线视频| 黄色一级大片看看| 最近最新中文字幕大全电影3| 亚洲国产精品成人久久小说| 听说在线观看完整版免费高清| 少妇丰满av| 国产三级在线视频| 日韩精品有码人妻一区| 色吧在线观看| 国产一区二区在线av高清观看| 淫秽高清视频在线观看| 一夜夜www| 日韩高清综合在线| 成人av在线播放网站| 色视频www国产| 久热久热在线精品观看| 中文字幕人妻熟人妻熟丝袜美| 联通29元200g的流量卡| 欧美高清成人免费视频www| 人妻制服诱惑在线中文字幕| 插逼视频在线观看| 男女啪啪激烈高潮av片| 成人三级黄色视频| 日日撸夜夜添| 色综合站精品国产| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 美女cb高潮喷水在线观看| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 老师上课跳d突然被开到最大视频| 精品国内亚洲2022精品成人| 91狼人影院| 国产精品1区2区在线观看.| 午夜福利网站1000一区二区三区| 国产亚洲5aaaaa淫片| 久久亚洲精品不卡| 少妇的逼好多水| 亚洲av一区综合| 亚洲五月天丁香| 人妻少妇偷人精品九色| 国产v大片淫在线免费观看| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网 | 亚洲18禁久久av| 91久久精品国产一区二区三区| 你懂的网址亚洲精品在线观看 | 国产精品一区二区性色av| 欧美激情国产日韩精品一区| 天堂影院成人在线观看| 一级黄片播放器| 一区二区三区免费毛片| 久久久精品94久久精品| 亚洲av福利一区| 精品免费久久久久久久清纯| 性插视频无遮挡在线免费观看| 欧美色视频一区免费| 一级av片app| 国产探花在线观看一区二区| 伦理电影大哥的女人| 国产爱豆传媒在线观看| 久久婷婷人人爽人人干人人爱| 欧美一区二区国产精品久久精品| 一级二级三级毛片免费看| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 久久久国产成人精品二区| 直男gayav资源| 午夜免费男女啪啪视频观看| 99久久九九国产精品国产免费| 91久久精品电影网| 亚洲成人中文字幕在线播放| 欧美激情在线99| 欧美高清性xxxxhd video| 如何舔出高潮| 精品人妻一区二区三区麻豆| 美女被艹到高潮喷水动态| 国产探花极品一区二区| 国产成人精品久久久久久| 少妇人妻一区二区三区视频| 亚州av有码| 日本av手机在线免费观看| 男人的好看免费观看在线视频| 韩国高清视频一区二区三区| 真实男女啪啪啪动态图| 欧美激情国产日韩精品一区| 国产成人午夜福利电影在线观看| 99久久九九国产精品国产免费| 男的添女的下面高潮视频| 亚洲av成人精品一二三区| 男女国产视频网站| 最后的刺客免费高清国语| 麻豆av噜噜一区二区三区| 十八禁国产超污无遮挡网站| 内射极品少妇av片p| 1000部很黄的大片| 亚洲美女视频黄频| 一级二级三级毛片免费看| 日本欧美国产在线视频| 久热久热在线精品观看| 国产欧美日韩精品一区二区| h日本视频在线播放| 久久99精品国语久久久| av又黄又爽大尺度在线免费看 | 久久久国产成人免费| 99热这里只有精品一区| 亚洲国产日韩欧美精品在线观看| 高清午夜精品一区二区三区| 村上凉子中文字幕在线| 一边亲一边摸免费视频| av国产久精品久网站免费入址| 51国产日韩欧美| 真实男女啪啪啪动态图| 九草在线视频观看| 日韩av不卡免费在线播放| 美女黄网站色视频| 丝袜美腿在线中文| 麻豆av噜噜一区二区三区| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 久久精品综合一区二区三区| 国语对白做爰xxxⅹ性视频网站| 婷婷色av中文字幕| 久久久欧美国产精品| 精品一区二区三区人妻视频| 搡女人真爽免费视频火全软件| 久久综合国产亚洲精品| 午夜爱爱视频在线播放| 国产在视频线在精品| 国产毛片a区久久久久| 只有这里有精品99| 亚洲国产欧美人成| 久久国内精品自在自线图片| 别揉我奶头 嗯啊视频| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 少妇猛男粗大的猛烈进出视频 | 久久久久久九九精品二区国产| 国产成人免费观看mmmm| 91久久精品国产一区二区成人| 韩国高清视频一区二区三区| 免费一级毛片在线播放高清视频| 人体艺术视频欧美日本| 最新中文字幕久久久久| 搡老妇女老女人老熟妇| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 日本黄色视频三级网站网址| 成人特级av手机在线观看| 亚洲精品456在线播放app| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品 | 国产一区有黄有色的免费视频 | 国产伦精品一区二区三区四那| 欧美日韩在线观看h| 国产亚洲精品av在线| 亚洲av.av天堂| 国产视频内射| 国产av码专区亚洲av| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 神马国产精品三级电影在线观看| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 在线观看av片永久免费下载| 日韩强制内射视频| 18禁动态无遮挡网站| 日韩欧美 国产精品| 一二三四中文在线观看免费高清| 夜夜爽夜夜爽视频| 男女下面进入的视频免费午夜| 91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| a级毛色黄片| 中文资源天堂在线| 日韩欧美精品v在线| 久久综合国产亚洲精品| 麻豆av噜噜一区二区三区| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩在线中文字幕| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| 秋霞伦理黄片| 亚洲激情五月婷婷啪啪| 成人特级av手机在线观看| 免费黄色在线免费观看| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 99热这里只有是精品50| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 免费大片18禁| 国产精品伦人一区二区| 天天一区二区日本电影三级| 成人三级黄色视频| 亚洲av熟女| 99久久成人亚洲精品观看| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 久久久久九九精品影院| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| or卡值多少钱| 91精品国产九色| 亚洲成色77777| 爱豆传媒免费全集在线观看| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 91精品伊人久久大香线蕉| 午夜免费激情av| 国产久久久一区二区三区| 日韩人妻高清精品专区| 欧美成人a在线观看| 99久久精品一区二区三区| 99久久中文字幕三级久久日本| 久久草成人影院| 欧美又色又爽又黄视频| 最近视频中文字幕2019在线8| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 搡女人真爽免费视频火全软件| 国产精品美女特级片免费视频播放器| 小说图片视频综合网站| 一区二区三区四区激情视频| 国产探花极品一区二区| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 久久人人爽人人爽人人片va| 老师上课跳d突然被开到最大视频| 美女大奶头视频| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 久久久久久大精品| 欧美丝袜亚洲另类| 国产高清三级在线| 老司机影院毛片| 亚洲综合色惰| 视频中文字幕在线观看| 少妇猛男粗大的猛烈进出视频 | 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 久久久久九九精品影院| 性色avwww在线观看| 少妇人妻精品综合一区二区| 免费在线观看成人毛片| 亚洲最大成人中文| 国产伦一二天堂av在线观看| av.在线天堂| 午夜a级毛片| av视频在线观看入口| 麻豆成人午夜福利视频| 亚洲经典国产精华液单| 亚洲国产精品sss在线观看| 亚洲欧美成人综合另类久久久 | 欧美精品一区二区大全| 天堂√8在线中文| 99久久成人亚洲精品观看| 亚洲自拍偷在线| 国产精品一二三区在线看| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 视频中文字幕在线观看| 99久久成人亚洲精品观看| 久久这里只有精品中国| 51国产日韩欧美| 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 韩国高清视频一区二区三区| 日日啪夜夜撸| 亚洲最大成人手机在线| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 亚洲精品,欧美精品| 深爱激情五月婷婷| 欧美性感艳星| 国产综合懂色| av在线蜜桃| 国产美女午夜福利| 精品人妻偷拍中文字幕| 日韩中字成人| 99在线视频只有这里精品首页| 99久久成人亚洲精品观看| 五月伊人婷婷丁香| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 亚洲av成人精品一二三区| 亚洲av成人av| 精品久久久久久久久久久久久| 两个人的视频大全免费| 婷婷色麻豆天堂久久 | 亚洲精品aⅴ在线观看| 久久6这里有精品| 特大巨黑吊av在线直播| 在线观看一区二区三区| 国产成人91sexporn| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 亚洲va在线va天堂va国产| 插逼视频在线观看| 性插视频无遮挡在线免费观看| 伦理电影大哥的女人| 高清日韩中文字幕在线| 色尼玛亚洲综合影院| 欧美日韩综合久久久久久| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| 国产色婷婷99| 亚洲中文字幕一区二区三区有码在线看| 国产视频首页在线观看| 日韩视频在线欧美| 一区二区三区高清视频在线| 毛片女人毛片| 国产精品麻豆人妻色哟哟久久 | 伦理电影大哥的女人| 亚洲经典国产精华液单| 精品人妻视频免费看| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 又粗又爽又猛毛片免费看| 欧美激情久久久久久爽电影| 国内精品美女久久久久久| 波多野结衣巨乳人妻| 亚洲人成网站高清观看| 91精品一卡2卡3卡4卡| 天天一区二区日本电影三级| 午夜福利在线在线| 国产午夜精品论理片| 国产av码专区亚洲av| 免费av毛片视频| av在线蜜桃| 亚洲最大成人av| 久久99热6这里只有精品| 国产老妇伦熟女老妇高清| 精品免费久久久久久久清纯| 中文字幕免费在线视频6| 天堂av国产一区二区熟女人妻| 国产乱人视频| 欧美性猛交╳xxx乱大交人| 色5月婷婷丁香| av播播在线观看一区| 嘟嘟电影网在线观看| 国产精品一区二区三区四区免费观看| 丝袜美腿在线中文| 国产高清不卡午夜福利| 女人十人毛片免费观看3o分钟| 日本免费在线观看一区| 2021少妇久久久久久久久久久| 女人久久www免费人成看片 | 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| a级毛色黄片| 午夜日本视频在线| 午夜老司机福利剧场| 国语自产精品视频在线第100页| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| 亚洲图色成人| 亚洲欧美精品专区久久| 亚洲av不卡在线观看| av播播在线观看一区| 精品99又大又爽又粗少妇毛片| 哪个播放器可以免费观看大片| 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| 极品教师在线视频| 中文欧美无线码| 国产久久久一区二区三区| 精品国产三级普通话版| 99热这里只有是精品50| 波野结衣二区三区在线| 久久久色成人| 精品不卡国产一区二区三区| av女优亚洲男人天堂| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 水蜜桃什么品种好| 尾随美女入室| 国产精品女同一区二区软件| 小蜜桃在线观看免费完整版高清| 免费观看人在逋| 国产一区有黄有色的免费视频 | 亚洲欧美清纯卡通| 日韩精品有码人妻一区| 人妻系列 视频| 一区二区三区高清视频在线|