• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Analysis on Retractable Landing Gear and Design of Ground Test System

    2016-02-09 01:53:01,

    ,

    1.Key Laboratory of Unmanned Aerial Vehicle Technology of Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China 2.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China

    ?

    Performance Analysis on Retractable Landing Gear and Design of Ground Test System

    WangHongxian1,2,NieHong2*

    1.Key Laboratory of Unmanned Aerial Vehicle Technology of Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China 2.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China

    (Received 31 December 2015; revised 11 May 2016; accepted 30 May 2016)

    Landing gears are one of the key components for large or middle unmanned aerial vehicles, and their working performances directly affect flying security and aircraft taking-off and landing performance. Thus, it is meaningful to study the retraction system. Based on CATIA and ADAMS software platforms, a virtual model of landing gear retraction system is built for performance test, and then dynamic simulation is carried out. Afterwards, a test system for landing gear retraction is established, and the test data are compared with the results acquired from dynamics simulation. The main factors which affect the dynamic performance of retractable landing gear are analyzed emphatically. The simulation results show that aerodynamic load has an impact on retraction time, the mass force affects extension process, and the oil hole size of hydraulic actuator has an effect on both retraction time and extension time.

    landing gear; retraction system; dynamic simulation; experiment system

    0 Introduction

    Landing gears have been widely deployed for taking-off and landing on large and medium-sized unmanned aerial vehicles (UAVs). In order to reduce the drag in flight, landing gear is usually designed to be retractable. Retraction system has become crucial in modern research because its working performance directly affects safety and mobility of aircraft. Therefore, simulation of landing gear performance and retractable function test on ground are important means to design a certain type of airplane.

    Although many domestic and foreign scholars have conducted simulation and ground test to analyze landing gear performance, most current studies do not well combined subsystems. Noel[1]introduced a novel dynamic simulation and optimize the retraction performance by using ADAMS and parameters, which decreased the operation time shorter than that the aircraft manufacturing instructions required. The hydraulic system of test car was analyzed and designed according to the test task by Bao Hongzhi[2-3], which realized the automation based on programm-able logic controller(PLC). Considerable studies on hydraulic system and landing gear test have been performed[4-9], but the influence of various factors on the performance was not analyzed, and the practical verification for hydraulic system is still needed[10-12].

    A manned aircraft landing gear is selected as the research object and simulation analysis and experimental verification on the ground are conducted. The manned aircraft landing gear structure, force mode and hydraulic power sources are much similar with those of UAV landing gear. Thus, it can provide a valuable reference for the preceding study of UAV landing gear.

    1 Dynamics Simulation on Landing Gear

    1.1 Retractable principle

    A simplified landing gear retracting mechanism is shown in Fig.1[13], where structure 1 is the main strut, structure 2 the outer cylinder actuator strut, structure 3 the cylinder actuator, and structure 4 the up-lock. In retraction process, hydraulic oil enters the actuating cylinder, which pushes bar 3 out from bar 2. When the main strut rotates up to up-lock and locks up, the landing gear retraction is completed. In extension process, the opposite movement process is conducted.

    Fig.1 Virtual assembly model

    1.2 Retractable load

    On retraction and extension process, the load on retractable mechanism is obtained by equilibrium condition of rotating shaft torque of landing gear from all other loads. These loads include: mass force, aerodynamic drag, inertia force and lock drag, etc.

    1.3 Dynamic model of landing gear retraction

    A simplified model is built by CATIA, and imported into ADAMS with MSC.SimDesigner. Corresponding constraints are added in landing gear linkage component model, including aerodynamic load, friction, locked drag and inertial force. Then the dynamic model is established. Model parameters are obtained through experiment. The virtual model of landing gear is shown in Fig.2.

    Fig.2 Virtual prototype model

    1.4 Load on dynamic model

    Loads, which can strongly influence retractable landing gear are sophisticated and complex. Determining several key large loads for retraction in the process of modeling and simulation is important before focusing on the analysis of the key factors.

    Mass properties of parts defined in SimDesigner will be imported into ADAMS along with model. Then, mass force will be automatically generated in software and the action point is located in centroid, which requires no extra setting. Aerodynamic drag is loaded by the ADAMS/Aircraft function. Then, parameters are set on actuating hydraulic cylinder in ADAMS. At last, submit the rest of the parameters are submitted and dynamic simulation of landing gear is completed (Fig.3).

    Fig.3 Dynamics simulation interface

    1.5 Influences of key parameters

    1.5.1 Influence of aerodynamic drag

    In the process of retraction, aerodynamic load exerts a greater impact on the retraction performance, so in ADAMS, specific functions are applied to conduct the simulations.

    Directions of aerodynamic load plane are opposite. Aerodynamic load impedes and negatively influence retraction process, while benefiting extension process through positive work. As shown in Fig.4, aerodynamic load gradually increases with air speed, which may make the wheels more difficult to rise. With further increase of speed, the landing gear may not reach the designated position.

    Fig.4 Aerodynamic load in different speeds

    1.5.2 Influence of mass force

    The impact of mass force variation is analyzed by changing the value of the gravity acceleration. With the increase of working load, hydraulic actuator load increases, leading the time of retraction process to rise (Fig.5).

    Fig.5 Actuating cylinder pressure variations with time caused by mass force

    1.5.3 Influence of changes of the parameters of actuating cylinder

    Load on actuating cylinder with retraction and extension time is given in Fig 6. The effects are quite obvious even there are only small changes in the parameters of the retraction process. In the design of landing gear, selecting the parameters of throttle valve is extremely important. For example, the special size optimization for the throttle valve when they design the landing gear.

    Fig.6 Actuator load change with time

    The parameters of Case 1 and Case 2 (Fig.7) are respectively shown in Table 1 and Table 2.

    Fig.7 Actuator stroke changes with time

    SituationCoefficientinrodlessCoefficientinrodRetractionmotivation0.10.5Expansionmotivation0.10.9

    Table 2 Main parameters in Case 2

    In the simulation process of analyzing the influence of hydraulic cylinder parameters, when the initial pressure of the hydraulic cylinder changes respectively, the retraction and extension process will become either too fast or too slow, which indicates that the landing gear system is not working properly. Therefore, when designing parameters, we cannot only rely on the existing mature experience, but also need to adjust the simulation test according to the actual working condition.

    2 Design of Retractable Experiment

    2.1 Test principles

    To meet the technical requirement of test and the performance index, a test system of landing gear retraction is developed, including the test bench, the hydraulic system, the control system and the measurement system.

    2.2 Test bench design

    As shown in Fig.8, the test bench is designed according to the requirements of retraction, including the retractable space for landing gear and the magnitude torque. The static strength as well as the stiffness should be checked before test, in order to ensure the accuracy of the test object which usually influenced by the test bench.

    Fig.8 Test bench

    2.3 Hydraulic system design

    According to the function and parameters related, a hydraulic system of ground retraction test was designed in Ref.[14]. The original parameters of the hydraulic system and the main technical indexes are shown in Tables 3, 4.

    Table 3 Parameters of the hydraulic system

    Table 4 Main technical indexes

    According to the test parameters and the main technical indicators, the hydraulic test system is selected to provide the power source for the whole landing gear system. Hydraulic principle diagram and test system are shown in Figs.9, 10.

    Fig.9 Hydraulic principle

    Fig.10 Test system

    2.4 Loading

    During retraction and extension process, loads on landing gear include mass force, aerodynamic drag, inertia force, friction resistance and lock drag, etc.

    Aerodynamic load is the only element should be simulated because the landing gear and lock mechanism are all practically applied to actual aircraft. In experiment, it is acquired by simulating the real-time change of aerodynamic load during retraction and extension process[15].

    A new method to simulate aerodynamics is put forward. In Fig.11,Tis the force in cube,Fthe force in landing gear,θthe angle of landing gear extension and retraction, andAthe initial point of retraction and termination point of extension. Loads are applied differently for extension and retraction. During the application of aerodynamic load, accuracy of amplitude and direction has been secured.

    Fig.11 Aerodynamic loading

    2.5 Control system

    Control software for experiment has been developed to attain the more complex integration and recycle control for various systems. The control cabinet and the control interface are shown in Fig.12.

    Fig.12 Control cabinet and control interface

    2.6 Measuring system

    Strain gauges are pasted on key parts such as actuating cylinder and the upper lock. Displacement sensors have been installed in the strut lug and pressure sensor is applied to measure the tubing pressure of actuating cylinder. The completed test system is capable of measuring key parts, which grants both precision and convenience.

    The measurement items in the test include pressure-time curves of rod cavity and rodless cavity, unlocking and locking pressures. Then pressure-time curves of actuating cylinder into and out of the oil cavity can be calculated, and other key parameters can also be calculated further, for example, locked and unlocked pressures of upper lock.

    3 Result Comparisons and Analysis on Parameter Influences

    3.1 Aerodynamic load outcome

    First, the accuracy of the aerodynamic load simulation should be verified because the aerodynamic load is applied by simulation in test. Measured load and theoretical load curves in retraction and extension process in test are shown in Figs.13, 14.

    Fig.13 Results of simulation aerodynamic load in retraction process

    Fig.14 Simulation results of aerodynamic load in extension process

    According to the comparative analysis between simulation and test, the maximal error in loading simulation is less than 5%, while the average error is about 3%. Then, the further analysis of the test result can be carried on.

    3.2 Comparison of results

    3.2.1 Displacement change of actuator cylinder with time

    Simulation data agree well with experimental results, as is shown in Figs.15, 16. The test result curve is obtained by measuring strain changes during retraction process with the strain displacement sensor, which can convert to the change curve of actuating cylinder with time. In the later stage of retraction process, because the retraction speed of landing gear is too high, the actuating cylinder relief valve starts to work. As a result, there is a certain decline of speed in the later stage of retraction process.

    Fig.16 Displacement change of actuator cylinder with time in extension process

    3.2.2 Actuator load analysis

    As shown in Figs.17, 18, pressure changes in two cavities can be measured by pressure sensor in the process of retraction. Then, the curve of pressure changes during the retraction process can be obtained after the acquisition and processing of data.

    Fig.17 Pressure changes of actuator cylinder with time during retraction process

    Fig.18 Pressure changes of actuator cylinder with time during extension process

    The actuator load has been achieved through converting pressure curves of two cavities, while simulation results have been acquired by using the dynamic simulation software. The comparison results of them are shown in Figs.19, 20.

    Fig.19 Load results comparison of actuator cylinder in retraction process

    Fig.20 Load results comparison of actuator cylinder in extension process

    The results show that the measured curves and simulation curves are in good agreement, and the average error is less than 3%. Meanwhile, it verifies the feasibility of the testing system, and provides support for the theoretical study and experimental design in the future.

    4 Conclusions

    The dynamic model of a landing gear retraction system is established and the dynamics simulation is accomplished. Loads in retraction process are analyzed, especially the performance influence of key factors including aerodynamic drag, mass force, and locking drag. Furthermore, a test system for landing gear retraction is developed. Simulation and experimental results are both acquired. Comparision of the two results shows that:

    (1) Speed has a great influence on the hydraulic load and retraction time, so speed should be as low as possible in retraction and extension process. Mass force affects operating time by changing the actuating cylinder loading. The main parameters of actuator have a greater impact on certain factors, particularly the retraction time, and may even impede retraction function being completely realized.

    (2) The landing gear function of retraction is achieved and the reliability of test system is verified. Simulation results of displacement changes of actuator cylinder with time during retraction and extension processes are in good agreement with those of experimental results. The maximal error in loading simulation is less than 5%. In addition, the actuating cylinder relief valve works, so that there is a certain decline in the later stage of retraction to avoid the speed being too high. Simulation of aerodynamic load on retraction and extension process has a high loading precision. The maximum error is less than 5%.

    (3) Test results agree well with the simulation results. And both results are verificationed. It can provide a reference for the simulation and test system design of retractable landing gears on large or middle unmanned aerial vehicles, especially for those with the similar retractable structure.

    [1] NOEL O. Use of ADAMS in dynamic simulation of Landing gear Retraction and extention[M]. Velizy, France: [s. n.], 2000.

    [2] BAO Hongzhi, LIU Yongguang. Design and research of testing machine of plane′s under carriage open and withdraw hydraulic system[J]. Chinese Hydraulics & Pneumatics, 2002(11):18-20. (in Chinese)

    [3] YONSU NAM S K H. Force control system design for aerodynamic load simulator[J]. Control Engineering Practice, 2002(10): 549-558.

    [4] KRABACHER W E. Aircraft landing gear dynamic present and Future[C]//Proceedings of the SAE Aerospace Atlantic Conference and Exposition. Dayton, OH: [s. n.], 1993:20-23.

    [5] GAO Kun, YANG Baosheng. The debugging and obviating malfunction of test table for some aircraft alighting gear actuating cylinder[J]. Hydraulics Pneumatics & Seals, 2006(5):26-27. (in Chinese)

    [6] LI Chuang, ZHANG Ming, WEI Xiaohui. Design, analysis and experimental validation for hydraulic extension/ retraction system of aircraft landing gears[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014,46(2):225-231. (in Chinese)

    [7] YIN Y, NIE H, WEI X H. Retraction system performance analysis of landing gear with the influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(5):953-960.

    [8] XUE C J, QI W G, NIE H. Test and control system development and application of landing gear drop test rig[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011,28(2):145-151.

    [9] LI B, ZHAO Y Q, ZANG L G,et al. Driving force model for non-pneumatic elastic wheel[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2016,33(2):231-236.

    [10]WEI X H, YIN Q Z, NIE H,et al. Aircraft electric anti-skid braking system based on fuzzy-PID controller with parameter self-adjustment feature[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014,31(1):111-118.

    [11]WEI X H, LIU C L, SONG X C, et al. Drop dynamic analysis of half-axle flexible aircraft landing gear[J]. Journal of Vibroengineering, 2014,16(1):290-298.

    [12]EWERS B, BORDENEUVE-GUIBE J, GARCIA J, et al. Expert supervision of an antiskid control system of a commercial aircraft[C]//Proceedings of the 1996 IEEE International Symposium on Intelligent Control. Washington, USA: IEEE, 1996:420-425.

    [13]Chief Edition Committee of Handbook of aircraft design. Handbook of aircraft design: Vol.14 [M]. Beijing: Aviation Industry Press, 2002. (in Chinese)

    [14]WANG Hongxian. Analysis and test for dynamic performance of landing-gear retraction and extension[D]. Nanjing: Nanjing University of Aeronautics Astronautics, 2010. (in Chinese)

    [15]WANG H X, XUE C J, NIE H. Design and applications of fatigue testing system for landing-gear retraction and extension [J]. Journal of Experimental Mechanics, 2010,25(2): 173-180.

    Mr. Wang Hongxian received B.S. degrees in Nanjing University of Aeronautics and Astronautics in 2010. He majors in retractable landing gear design, CAD / CAE of aircraft structure and system, dynamics of mechanical system, anti-fatigue control technology of mechanical structure.

    Prof. Nie Hong received Ph.D. degrees in Nanjing University of Aeronautics and Astronautics, respectively, in 1990. He is a ″Vision 2010″ Postdoctoral Research Fellow in the Microwave Photonics Research Laboratory, University of Ottawa, Ottawa, ON, Canada. From 2010 to present, he has been with the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), where he is currently a professor and executive director of the Key Laboratory of Radar Imaging and Microwave Photonics (NUAA), Ministry of Education. His research has focused on microwave photonics, which includes Radio over fiber, photonic generation of microwave, mm-wave and THz, photonic processing of microwave signals, photonic microwave measurement and photonic integrated circuits.

    (Executive Editor: Zhang Bei)

    V216.3 Document code:A Article ID:1005-1120(2016)06-0670-08

    *Corresponding author, E-mail address: hnie@nuaa.edu.cn. How to cite this article: Wang Hongxian, Nie Hong. Performance analysis on retractable landing gear and design of ground test system[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(6):670-677. http://dx.doi.org/10.16356/j.1005-1120.2016.06.670

    久久精品aⅴ一区二区三区四区| 又黄又爽又免费观看的视频| 欧美日韩亚洲国产一区二区在线观看| 国产成人欧美在线观看| 国产极品粉嫩免费观看在线| 手机成人av网站| 中文字幕最新亚洲高清| 制服人妻中文乱码| 国产麻豆成人av免费视频| 国产精品久久久久久人妻精品电影| 91成年电影在线观看| 18禁国产床啪视频网站| 亚洲,欧美精品.| 国产免费av片在线观看野外av| 久久精品夜夜夜夜夜久久蜜豆 | 女人被狂操c到高潮| 欧美中文日本在线观看视频| 午夜久久久久精精品| 可以在线观看毛片的网站| 亚洲自偷自拍图片 自拍| 法律面前人人平等表现在哪些方面| 久久九九热精品免费| 别揉我奶头~嗯~啊~动态视频| av中文乱码字幕在线| 亚洲片人在线观看| 亚洲七黄色美女视频| 国内精品久久久久久久电影| 在线观看舔阴道视频| 国产爱豆传媒在线观看 | 欧美成人一区二区免费高清观看 | 女警被强在线播放| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 国产免费av片在线观看野外av| 亚洲成人精品中文字幕电影| 一a级毛片在线观看| 亚洲男人天堂网一区| 叶爱在线成人免费视频播放| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 国产人伦9x9x在线观看| 欧美乱码精品一区二区三区| 亚洲国产高清在线一区二区三 | 亚洲,欧美精品.| 亚洲av日韩精品久久久久久密| 亚洲aⅴ乱码一区二区在线播放 | 久久这里只有精品19| 色av中文字幕| 久久人妻av系列| 亚洲午夜精品一区,二区,三区| 99久久久亚洲精品蜜臀av| 亚洲av成人不卡在线观看播放网| 男人舔女人下体高潮全视频| 欧美激情极品国产一区二区三区| 天天添夜夜摸| 一级作爱视频免费观看| 熟女少妇亚洲综合色aaa.| 午夜日韩欧美国产| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频日本深夜| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 久久久国产欧美日韩av| 午夜a级毛片| 哪里可以看免费的av片| 色综合站精品国产| а√天堂www在线а√下载| 精品欧美国产一区二区三| 黄片大片在线免费观看| 日韩大码丰满熟妇| 给我免费播放毛片高清在线观看| 欧美乱妇无乱码| 99久久综合精品五月天人人| 欧美另类亚洲清纯唯美| 老司机福利观看| 亚洲av中文字字幕乱码综合 | 国产精品久久久人人做人人爽| 女生性感内裤真人,穿戴方法视频| 久久香蕉国产精品| 国产亚洲精品久久久久5区| 精品人妻1区二区| 国产精品免费视频内射| 波多野结衣高清无吗| 欧美日韩黄片免| 国产精品亚洲美女久久久| 久久久久久亚洲精品国产蜜桃av| 国产av又大| 国产亚洲欧美精品永久| 看免费av毛片| 成人国产综合亚洲| 夜夜看夜夜爽夜夜摸| 亚洲 欧美 日韩 在线 免费| 18禁观看日本| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产| 欧美黑人欧美精品刺激| 亚洲无线在线观看| 嫁个100分男人电影在线观看| 精品无人区乱码1区二区| 久久热在线av| www日本在线高清视频| 亚洲中文字幕一区二区三区有码在线看 | 757午夜福利合集在线观看| 亚洲全国av大片| 亚洲 欧美 日韩 在线 免费| 日韩 欧美 亚洲 中文字幕| 久久久久久久久中文| 啦啦啦韩国在线观看视频| 国产又黄又爽又无遮挡在线| 欧洲精品卡2卡3卡4卡5卡区| 正在播放国产对白刺激| 男女那种视频在线观看| 91在线观看av| 麻豆久久精品国产亚洲av| 国产精品综合久久久久久久免费| 国产精品久久久久久精品电影 | cao死你这个sao货| 俄罗斯特黄特色一大片| 国产成人欧美| 国产精品一区二区精品视频观看| 欧美亚洲日本最大视频资源| 国产三级在线视频| 久久天堂一区二区三区四区| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 日韩有码中文字幕| 国产精品久久电影中文字幕| 亚洲精品av麻豆狂野| 精品一区二区三区视频在线观看免费| 99re在线观看精品视频| 亚洲中文av在线| 嫁个100分男人电影在线观看| 国产v大片淫在线免费观看| 亚洲欧美日韩高清在线视频| 免费观看精品视频网站| 无限看片的www在线观看| 欧美 亚洲 国产 日韩一| 亚洲成人久久性| 午夜免费成人在线视频| 在线天堂中文资源库| 1024视频免费在线观看| 久久人妻福利社区极品人妻图片| 欧美色视频一区免费| 亚洲第一电影网av| 国内精品久久久久精免费| 国产黄片美女视频| 亚洲av成人不卡在线观看播放网| 亚洲激情在线av| 欧美激情极品国产一区二区三区| 亚洲五月婷婷丁香| 国产精品久久电影中文字幕| 亚洲国产日韩欧美精品在线观看 | 超碰成人久久| 成人国产一区最新在线观看| 中文字幕人妻丝袜一区二区| 欧美成人一区二区免费高清观看 | 精品国产美女av久久久久小说| 琪琪午夜伦伦电影理论片6080| 最近最新免费中文字幕在线| av视频在线观看入口| 国产日本99.免费观看| 法律面前人人平等表现在哪些方面| 高潮久久久久久久久久久不卡| 黄色毛片三级朝国网站| 亚洲午夜精品一区,二区,三区| 男人舔奶头视频| 亚洲av成人av| 桃色一区二区三区在线观看| 在线观看www视频免费| videosex国产| 日韩欧美国产在线观看| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 亚洲av中文字字幕乱码综合 | 黄色丝袜av网址大全| 国产成人欧美| 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产一区在线观看成人免费| av福利片在线| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| 国产精品 欧美亚洲| 亚洲av中文字字幕乱码综合 | 国产黄a三级三级三级人| 最近最新中文字幕大全免费视频| 香蕉国产在线看| 老司机午夜十八禁免费视频| 狂野欧美激情性xxxx| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 精品久久久久久成人av| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 一区福利在线观看| 69av精品久久久久久| 亚洲一区高清亚洲精品| 国产精品电影一区二区三区| 国产伦在线观看视频一区| 亚洲人成网站在线播放欧美日韩| 男女午夜视频在线观看| 国产高清视频在线播放一区| 色哟哟哟哟哟哟| 免费看a级黄色片| АⅤ资源中文在线天堂| 国产午夜精品久久久久久| 日本五十路高清| 真人做人爱边吃奶动态| 精品国产国语对白av| 夜夜看夜夜爽夜夜摸| 黄色 视频免费看| 午夜福利18| 国产精品日韩av在线免费观看| 91国产中文字幕| 在线播放国产精品三级| 亚洲国产精品合色在线| 神马国产精品三级电影在线观看 | 国产一区在线观看成人免费| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 国产麻豆成人av免费视频| 国产黄片美女视频| 免费观看人在逋| 成人三级做爰电影| 手机成人av网站| 欧美日本亚洲视频在线播放| 国产黄a三级三级三级人| 大型av网站在线播放| 1024手机看黄色片| 最新美女视频免费是黄的| 99国产精品一区二区三区| 国产精品免费视频内射| 不卡一级毛片| 中文字幕精品免费在线观看视频| 女性被躁到高潮视频| 国产高清视频在线播放一区| 国产av一区二区精品久久| 国产私拍福利视频在线观看| 亚洲第一av免费看| 国内揄拍国产精品人妻在线 | 亚洲成人国产一区在线观看| 免费高清在线观看日韩| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 国产单亲对白刺激| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片 | 91九色精品人成在线观看| 熟女电影av网| 国产私拍福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产v大片淫在线免费观看| 757午夜福利合集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| or卡值多少钱| 国产国语露脸激情在线看| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| 淫秽高清视频在线观看| 国产真实乱freesex| 伦理电影免费视频| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 午夜精品久久久久久毛片777| 久久青草综合色| 国产午夜福利久久久久久| 亚洲av成人av| 国产极品粉嫩免费观看在线| 观看免费一级毛片| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 两个人免费观看高清视频| 国产精品av久久久久免费| 18禁黄网站禁片免费观看直播| 91字幕亚洲| av欧美777| 亚洲精品一区av在线观看| 成人三级黄色视频| 最好的美女福利视频网| 午夜福利欧美成人| 丁香欧美五月| 欧美黑人欧美精品刺激| 日韩欧美免费精品| 亚洲成av人片免费观看| 成人国语在线视频| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| xxx96com| 亚洲 欧美 日韩 在线 免费| 91成年电影在线观看| 最近最新中文字幕大全电影3 | 日韩视频一区二区在线观看| 可以在线观看毛片的网站| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 一本大道久久a久久精品| 嫩草影视91久久| 少妇被粗大的猛进出69影院| 欧美性猛交╳xxx乱大交人| 日韩大码丰满熟妇| 国产97色在线日韩免费| 精品一区二区三区av网在线观看| 天天一区二区日本电影三级| 国产爱豆传媒在线观看 | 精品不卡国产一区二区三区| 搡老岳熟女国产| 国产精品九九99| 麻豆av在线久日| 国产麻豆成人av免费视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品乱码一区二三区的特点| 日韩欧美国产一区二区入口| 国产三级黄色录像| 欧美人与性动交α欧美精品济南到| 最新美女视频免费是黄的| 自线自在国产av| 黄色视频,在线免费观看| www国产在线视频色| 99国产精品一区二区三区| 国产av一区二区精品久久| 老鸭窝网址在线观看| 精品久久久久久久久久久久久 | 亚洲成人免费电影在线观看| 19禁男女啪啪无遮挡网站| 久久精品国产99精品国产亚洲性色| 女性被躁到高潮视频| 精品乱码久久久久久99久播| 国产亚洲av嫩草精品影院| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 欧美午夜高清在线| 黄片大片在线免费观看| 成人精品一区二区免费| 中文字幕人成人乱码亚洲影| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 亚洲国产欧美一区二区综合| 人人澡人人妻人| 亚洲国产欧美日韩在线播放| 99在线人妻在线中文字幕| 在线看三级毛片| 在线观看免费视频日本深夜| 久久精品成人免费网站| 国产精品1区2区在线观看.| 亚洲精品中文字幕一二三四区| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 一级毛片精品| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频| 国产三级黄色录像| 国产成人精品久久二区二区免费| 免费高清在线观看日韩| 欧美日本视频| 免费女性裸体啪啪无遮挡网站| 搡老熟女国产l中国老女人| 亚洲人成77777在线视频| 真人做人爱边吃奶动态| 亚洲狠狠婷婷综合久久图片| 9191精品国产免费久久| 国产91精品成人一区二区三区| 在线av久久热| 精品国产超薄肉色丝袜足j| 亚洲av日韩精品久久久久久密| 成熟少妇高潮喷水视频| 欧美日韩黄片免| 免费观看人在逋| 亚洲在线自拍视频| 亚洲第一av免费看| 1024手机看黄色片| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 国产成人影院久久av| 老司机深夜福利视频在线观看| 国产私拍福利视频在线观看| 国产成人av教育| 变态另类成人亚洲欧美熟女| cao死你这个sao货| 亚洲国产精品合色在线| a级毛片在线看网站| 欧美精品亚洲一区二区| 免费看十八禁软件| 国产亚洲精品久久久久久毛片| 免费看十八禁软件| 欧美日韩黄片免| 欧美色视频一区免费| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 欧美中文日本在线观看视频| 99re在线观看精品视频| 国产精品 欧美亚洲| 日韩欧美一区二区三区在线观看| 久久午夜综合久久蜜桃| 波多野结衣高清作品| 我的亚洲天堂| videosex国产| 中文字幕精品免费在线观看视频| 日韩av在线大香蕉| 一二三四在线观看免费中文在| 欧美成人一区二区免费高清观看 | 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 欧美乱色亚洲激情| 一个人观看的视频www高清免费观看 | 国产免费av片在线观看野外av| 免费搜索国产男女视频| 婷婷精品国产亚洲av| 久久久久国内视频| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 男人舔奶头视频| 两人在一起打扑克的视频| 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 99re在线观看精品视频| 天堂影院成人在线观看| 老汉色av国产亚洲站长工具| 在线国产一区二区在线| 亚洲九九香蕉| 日韩国内少妇激情av| 免费搜索国产男女视频| 久久精品91蜜桃| 午夜精品久久久久久毛片777| 欧美+亚洲+日韩+国产| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜 | 午夜福利18| 色综合欧美亚洲国产小说| 婷婷六月久久综合丁香| 久久热在线av| 视频区欧美日本亚洲| 亚洲午夜理论影院| 99国产精品一区二区蜜桃av| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 日本 av在线| 观看免费一级毛片| 视频区欧美日本亚洲| 国产成+人综合+亚洲专区| cao死你这个sao货| 国产午夜福利久久久久久| 亚洲成人久久爱视频| 久久人人精品亚洲av| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 极品教师在线免费播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡| 给我免费播放毛片高清在线观看| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 中文资源天堂在线| 久久香蕉国产精品| 观看免费一级毛片| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 国产精品综合久久久久久久免费| 午夜免费激情av| 变态另类成人亚洲欧美熟女| 99riav亚洲国产免费| 国产高清视频在线播放一区| 欧美中文日本在线观看视频| 久久狼人影院| 美女国产高潮福利片在线看| 国产91精品成人一区二区三区| 亚洲自拍偷在线| 两性夫妻黄色片| 在线观看66精品国产| 无遮挡黄片免费观看| 午夜激情福利司机影院| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片 | 999久久久精品免费观看国产| 女警被强在线播放| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 久久久久久国产a免费观看| 国产免费男女视频| 这个男人来自地球电影免费观看| 99久久久亚洲精品蜜臀av| 十分钟在线观看高清视频www| 国产精品香港三级国产av潘金莲| 人妻丰满熟妇av一区二区三区| 欧美性猛交╳xxx乱大交人| 欧美精品亚洲一区二区| 在线观看免费午夜福利视频| 美女大奶头视频| 校园春色视频在线观看| 日本精品一区二区三区蜜桃| 香蕉久久夜色| a在线观看视频网站| 大型黄色视频在线免费观看| 老司机福利观看| 国产精品二区激情视频| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 午夜福利在线在线| svipshipincom国产片| АⅤ资源中文在线天堂| 欧美国产精品va在线观看不卡| www.www免费av| 国产精品久久久久久亚洲av鲁大| 日韩欧美在线二视频| 亚洲av成人av| 少妇熟女aⅴ在线视频| 桃红色精品国产亚洲av| 国产亚洲精品第一综合不卡| 日本三级黄在线观看| 国产三级黄色录像| 欧美日韩精品网址| 日韩有码中文字幕| 一区福利在线观看| 亚洲av中文字字幕乱码综合 | 亚洲中文字幕一区二区三区有码在线看 | 美女免费视频网站| 欧美一级a爱片免费观看看 | 精品欧美一区二区三区在线| 国产精品二区激情视频| 欧美 亚洲 国产 日韩一| 青草久久国产| 国产成人系列免费观看| 人妻丰满熟妇av一区二区三区| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 欧美色欧美亚洲另类二区| 一进一出好大好爽视频| 中文资源天堂在线| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| xxx96com| 一夜夜www| 丝袜在线中文字幕| 欧美一级毛片孕妇| 啦啦啦 在线观看视频| 亚洲午夜精品一区,二区,三区| 精品熟女少妇八av免费久了| av在线播放免费不卡| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频 | 久久久国产欧美日韩av| 精品久久久久久久久久免费视频| 男女之事视频高清在线观看| 麻豆久久精品国产亚洲av| 成年女人毛片免费观看观看9| 亚洲国产欧洲综合997久久, | 国产精华一区二区三区| 村上凉子中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 两个人视频免费观看高清| 熟女电影av网| 国产成人欧美在线观看| 亚洲国产欧洲综合997久久, | 成年人黄色毛片网站| 搡老岳熟女国产| 日日夜夜操网爽| 色播亚洲综合网| 嫩草影视91久久| 中文在线观看免费www的网站 | 国产成人欧美在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲一区中文字幕在线| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月| 一区二区三区国产精品乱码| 麻豆av在线久日| 国产亚洲精品第一综合不卡| 夜夜躁狠狠躁天天躁| 成人午夜高清在线视频 | 人妻久久中文字幕网| 国产亚洲欧美在线一区二区| 麻豆成人av在线观看| 欧美色欧美亚洲另类二区| 亚洲精品色激情综合| 亚洲va日本ⅴa欧美va伊人久久| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 久久九九热精品免费| 亚洲第一av免费看| 亚洲av中文字字幕乱码综合 | 此物有八面人人有两片| 久久人妻av系列| 色综合站精品国产| 亚洲一区二区三区不卡视频| 午夜福利在线观看吧| 精品久久久久久,| 淫妇啪啪啪对白视频| 免费人成视频x8x8入口观看| 亚洲精品在线观看二区| 黑人欧美特级aaaaaa片| 俄罗斯特黄特色一大片| av免费在线观看网站| 1024手机看黄色片| 丁香欧美五月| 丁香六月欧美| 精品久久久久久久末码|