• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selection of extracting additives for purification of zinc melts from metal impurities

    2016-02-07 06:43:04.,.
    關(guān)鍵詞:鋅合金弗拉基米爾州立大學(xué)

    ., .

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    Selection of extracting additives for purification of zinc melts from metal impurities

    VladimirA.Kechin,EvgenyS.Prusov

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    This paper proposes the methodology of the selection of extracting additives for purification of zinc melts from metal impurities(for example from iron) by the liquation refining method, introduces the calculations of the effectiveness of zinc melts liquation refining with an assessment of possibility using a formula of extracting periodic process for one stage of extraction, and underscores the investigation into the extracting ability of the chosen additives for purification of zinc melts from iron impurity. The experimental results show that the highest efficiency of the purification of unalloyed zinc from iron impurity was achieved by using silicon as an extraction additive. It was recommended to use aluminum and manganese as extracting additives for zinc alloys refining.

    zinc melts; purification; extracting additives; metal impurities

    0 Introduction

    Zinc is widely used in various industries for casting, wrought and composite alloys production for structural and functional purposes, including tribological, sacrificial, high-damping, biocompatible and other materials[1-4].

    Modern requirements for purifying primary zinc used for alloys production are very high. The main impurities in zinc produced by electrolysis are iron, lead, cadmium, copper, tin and arsenic[5]. Concentrations of these impurities determine the grade of primary zinc per ASTM B6-13 or other standards. The problem of producing zinc with lowered content of iron is especially actual. Due to the low solid solubility in zinc (0.001%) iron impurity forms the brittle intermetallic compounds(FeZn, FeZn3, etc.), which significantly reduce corrosion, mechanical and casting properties of zinc and its alloys[5-8].

    Modern physical and physicochemical methods of refining zinc melts from metallic impurities (Fe, Pb, Cu, etc.) are unproductive and difficult from the point of view of constructive-technological realization[9-18]. The method of liquation refining represents the greatest interest in the production of zinc melts with low content of iron and other metallic impurities and is easily adapted to the conditions of operating industrial enterprises. This method is based on the use of refining additives of various metals, which forms refractory phases in interaction with the impurities[19]. These phases segregate due to the difference of density the newly formed phases and zinc melt. Then, the subsequent separation of these phases can be carried out by standing, centrifugation or filtration of the zinc melts.

    The aim of the present work is to evaluate the effectiveness of liquation refining of zinc melts from impurity elements(for example from iron)by means of additive elements.

    1 Theoretical considerations

    1.1 Selection of refining additives for purification of zinc melts from iron impurity

    Selection of additive elements for producing metal melts with a low content of impurity elements using the liquation refining method is based on an assessment of the nature of the periodic system elements’ interaction with impurity elements and with the basic metal. The possibility of application of various elements as an extractive addition for purifying zinc melts is caused by its solubility in zinc and efficiency of the additive element. Analysis of metal-chemical properties of the elements in their interactions with zinc melts and iron impurity show that they formed various types of bondings[5, 20]. Selection of the elements as potential refining additives is carried out, considering the nature of their interactions with zinc and iron, and the cost and the toxicity. After screening on these attributes from all elements of periodic system, potential additive elements were located, and characteristics of their interactions with zinc and iron have been presented in Table 1.

    Table 1 Characteristics of additive elements interactions with zinc and iron impurity

    Note:PSS—partial solid solution; CC—chemical compound.

    Table 1 shows the possibility of using elements C, Si, S(Group A) as refining additives for unalloyed zinc purification from iron impurity. These elements practically do not interact with zinc and they exhibit low solubility, but they were formed chemical compounds and solid solutions with iron. Elements Al, Mn, Ti(Group B) performing the role of alloying elements and refining additives may be used for the production of zinc alloys.

    Table 2 shows the characteristics of the formed phases in the zinc-iron-additive system for choosing the potential extraction additives in zinc melts by the liquation refining[20, 27].

    Table 2 Characteristics of main phases in the Zn-Fe-X system

    Note:CSS*—complete solid solution.

    As can be seen from Table 2, the additive elementsin the Group A have low solubility in zinc, and the elements in Group B can be dissolved in zinc, forming iron chemical compounds with high-melting (above 1 000 ℃).

    1.2 Theoretical evaluation of the effectiveness of liquation refining zinc from iron impurity

    Generally, the extraction theory[28]has been used to evaluate the effectiveness of zinc purification from metallic impurities by means of additive elements. In trems of the technological processes of zinc melts purification from iron, the formula of periodic process for one stage of extraction has been used to calculate the metallurgical extracting processes by analogy[29]:

    (1)

    whereX0—initial concentration of impurity in the metal(zinc), %(mass fraction, similarly hereinafter);

    X—concentration of impurity after the extraction operation, %;

    K—equilibrium coefficient of distribution of impurity between phases of the segregating system;

    m—mass of solvent(zinc), g;

    Le—mass of extracting additive, g.

    It has been assumed that the system reaches the equilibrium state between liquid and solid phases; however, in real conditions of crystallization and phase separation, the equilibrium is not reached, and experimental value of impurity content after refining must be larger than its calculated value.

    For Zn-Fe-X(whereX= C, Si, S, Al, Mn, Ti) system, calculations of the extraction efficiency of iron impurity from zinc melt have been made. The following input data have been accepted in the calculations: initial concentration of ironX0= 0.015% Fe, base metal massmZn= 100 g, temperature of impurity extraction 500 ℃. Consumption of the extracting additive element has been accepted 10-fold in relation to impurity element concentration(L1= 0.15%). Results of the calculations are presented in Table 3.

    Efficiency of zinc purificationη(%) from iron impurity has been determined by the following equation:

    (2)

    whereFe0andFe1—initial and final concentrations of iron impurity in zinc melts,respectively.

    Table 3 shows that at 10-fold consumption of extracting additive and initial content of iron in zinc of 0.015% additive elements are located in the following series, decreasing their extracting ability:

    Si→S→C→Ti→Al(Mn).

    Estimation of zinc purification efficiency from iron at accepted 10-fold consumption of the extracting additive shows that the elements of Group A provide removing of iron from melt atη= 81.2%-83.3%. Under existing conditions only titanium promotes refining atη= 78.3% from elements of Group B.

    Fig.1 shows the results of calculations of iron content change in zinc melt for various consumption of additive elements in relation to iron content in zinc. It can be seen that if C, Si, S, Ti decrease in the iron content from 0.015% to 0.002%-0.004% at their 10-fold excess, 50-fold excess of aluminum is necessary in order to achieve the similar purification effect at 30-fold excess of manganese. Obviously, the use of aluminum and manganese will be possible for the production of zinc alloys with low content of iron, only in case of their presence in the alloy composition as basic alloying elements.

    Fig. 1 Change of iron content in zinc melt depending on the consumption of extracting additive (L1)

    Fig.2 shows that purification efficiency grows up to 85%-90% with the increase of iron content in initial zinc(0.003%-0.030%) excluding aluminum and manganese, if used, purification in such conditions practically does not take place. It can also be seen, that liquation refining method is not suitable for using technologies of deep purification of unalloyed zinc with initial iron content up to 0.003%. Fig.3 shows a diagram for extracting additive consumption determining at production of zinc melts with iron content to 0.003% from zinc having various purity.

    Fig. 2 Efficiency of zinc purification with different iron content at 10-fold excess of extracting additive

    Fig. 3 Extracting additive consumption (L1) for zinc purification with different iron content

    2 Experimental verification

    2.1 Materials and methods

    Experimental investigations on zinc purification from iron using selected refining additives showed the possibility of iron impurity content decreased in zinc by liquation refining. Melting of zinc of high grade (99.95% Zn) was performed in alundum crucible in an electric resistance furnace. The iron content in zinc melt before refining was 0.014%-0.016%. Carbonyl iron was introduced in zinc at 500 ℃, refining additives Al and S were introduced in melt at 490 ℃, and Ti, Si, Mn and C-at 600 ℃. Purities of all used materials were more than 99.5%. When introducing the additives melt was mixed with graphite rod within 8-10 min. After introducing the additives melt was cooled with a speed of 40-60 ℃/h down to the temperature of zinc crystallization (~420 ℃). Then metal was quickly heated to 480 ℃ and a sample from the middle part of crucible was withdrawn for chemical analysis by means of quartz tube. Chemical composition of samples was carried out byX-ray fluorescence spectrometer ARL Advant’X(Thermo Scientific, USA). Refining additives were entered into the melt to iron impurity in various ratios in the amount from 0.1% to 1.3%.

    2.2 Experimental results of zinc melt purification from iron using additive elements

    Results of experimental investigations of zinc purification from iron impurity using additive elements (Fig.4) show the different refining capacity of the additives.

    Fig. 4 Experimental data on efficiency of zinc purification from iron by extracting additives

    Some discrepancy between the calculated and the experimental data on the efficiency of zinc purification from iron impurity can be explained by some assumptions accepted in calculations (complete interaction of extracting additives with iron impurity, using data of the od equilibrium phase diagrams for selected phases of only one stoichiometric composition, complete removing of reaction products from the melt, etc.), as well as possible losses of extractive additives and their incomplete recovery when introducing into the melt. Fig.4 indicated that only silicon colud be considered as an effective extracting additive in relation to iron in the production of unalloyed zinc. As expected, when aluminum and magnesium were added into zinc melt, they were partially dissolved in zinc and remained in it after purification. At a large consumption of additives their content in zinc reached high values determined by the phase diagrams and nature of interaction with zinc. Obviously, the process of purification of unalloyed zinc from iron using the considered additives will be difficult under the conditions of large-scale production due to the high consumption of additive elements. At the same time, the use of aluminum and magnesium as both alloying and extracting additive elements in the production of zinc alloys allowed to neutralize negative effect of iron owing to the formation of complex products. So, in this case operation of refining was combined with simultaneous alloying of base metal with aluminum or manganese.

    Thus, it has been recommended to use silicon as an extracting additive for the production of unalloyed zinc with lowered iron content and to use aluminum and manganese for the production of zinc alloys.

    3 Conclusions

    The principle of the selection of additive elements for zinc melts purification from iron impurity by using the method of liquation refining has been theoretically investigated. The possibility of using a formula of periodic process of extracting for one stage of extraction and evaluating the effectiveness of liquation refining of zinc melts from iron had been studied. The extracting ability of the chosen additives in zinc melts purification from iron impurity has been established. It had been recommended to use silicon as an extracting additive for refining of unalloyed zinc from iron and to use aluminum and manganese for zinc alloys.

    Acknowledgments:

    This research has been carried out in the framework of the state task of the Ministry of Education and Science of the Russian Federation(Project No.3022).

    [1] BIRCH J. New alloys for zinc casting[J]. Mat Des, 1990, 11(2): 83-87.

    [2] BABIC M, NINKOVIC R. Zn-Al alloys as tribomaterials[J]. Tribol Ind, 2004, 26(1/2): 3-7.

    [3] PRUSOV E S, KOROBKOV M B, KECHIN V A. Current state and perspectives of increasing of tribotechnical characteristics of zinc alloys[J]. Mach Techn Mat, 2014(2): 9-11.

    [4] CHUNG D D L. Materials for vibration damping[J]. J Mat Sci, 2001, 36: 5733-5737.

    [5] KECHIN V A, LUBLINSKI E Y. Zinc alloys (in Russian)[M]. Moscow: Metallurgiya, 1986.

    [6] SOLOZHENKO V L, KECHIN V A. Improving the electrochemical properties of zinc with an elevated content of iron[J]. Prot Met, 2001, 37(3): 286-289.

    [7] PORTER F C. Corrosion resistance of zinc and zinc alloys[M]. New York: Marcel Dekker Inc, 1994.

    [8] ZHANG X G. Corrosion and electrochemistry of zinc[M]. New York: Plenum Press, 1996.

    [9] BRATT G C. Impurity effect in the electrowinning of zinc and cadmium[J]. Electrochem Tech, 1964, 2: 323-326.

    [10] ADHIA J D. Effect and control of impurities in electrolytic zinc production[C]// Proceedings of Symposium on Non-ferrous Metals Technology: III. NML: Jamshedpur, 1969: 1-10.

    [11] FOSNACHT D, O’KEEFE T J. The effects of certain impurities and their interactions on zinc electrowinning[J]. Met Mat Trans B, 1983, 14(4): 645-655.

    [12] MACKINNON D J, BRANNEN J M, FENN P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte[J]. J App Electrochem, 1987, 17(6): 1129-1143.[13] AULT A R, FRAZER E J. Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions[J]. J App Electrochem, 1988, 18: 583-589.

    [14] MURESAN L, MAURIN G, ONICIU L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydromet, 1996, 43(1/3): 345-354.

    [15] CHEN X F. The effects of impurities on the current efficiency in zinc electrowinning(in Chinese)[J]. Hunan Nonferrous Met, 2006, 22(2): 24-26.

    [16] QIU Y, ZHANG C, ZHAO Y. Effect of impurities on zinc electrowinning process in alkaline solution[J]. Nonferrous Met, 2009, 60: 76-79.

    [17] YU X H, XIE G, LI R X, et al. Behavior of arsenic in zinc electrowinning[J]. Trans Nonferrous Met Soc China, 2010, 20: 50-54.[18] WANG L Y, GUI W H, TEO K L, et al. Optimal control problems arising in the zinc sulphate electrolyte purification process[J]. J Global Optim, 2012, 54(2): 307-323.

    [19] SHAN’GIN E A. Development of the crystallization method for removing lead impurity from secondary zinc[J]. Russ J Nonfer Met, 2013, 54(1): 51-55.

    [20] KUBASCHEWSKI O. Iron-binary phase diagrams[M]. Berlin: Springer-Verlag, 1982.

    [21] MURRAY J L. The Ti-Zn (titanium-zinc) system[J]. Bul Alloys Phase Diag, 1984, 5(1): 52-56.

    [22] OKAMOTO H, TANNER L E. The Mn-Zn(manganese-zinc) system[J]. Bul Alloys Phase Diag, 1990, 11(4): 377-384.

    [23] CRANE L W. Melting and solidification of zinc-aluminium alloys[M]. Birmingham: Aston University, 1997.

    [24] FRANKE P, NEUSCHUTZ D. C-Zn (carbon-zinc) [M]// Thermodynamic Properties of Inorganic Materials. Part 5: Binary Systems. [S.l.]: Springer Berlin Heidelberg, 2007.[25] OLESINSKI R W, ABBASCHIAN G J. The Si-Zn(silicon-zinc) system[J]. Bul Alloys Phase Diag, 1985, 6(6): 545-548.

    [26] SHARMA K C, CHANG Y A. The S-Zn(sulfur-zinc) system[J]. Journal of Phase Equilibria, 1996, 17(3): 261-266.

    [27] PERRY D L. Handbook of inorganic compounds[M]. Boca Raton: Florida, 2011.

    [28] VIGNES A. Extractive metallurgy 2: metallurgical reaction processes[M]. [S.l.]: ISTE Ltd and John Wiley & Sons, 2011.[29] POGORELIY A D. Theory of metallurgical processes (in Russian)[M]. Moscow: Metallurgy, 1971.

    (編輯 張迎春 校對(duì) 荀海鑫)

    2016-07-14

    The state task of the Ministry of Education and Science of the Russian Federation (Project No.3022)

    Vladimir A.Kechin(1942-),Male,USSR,Krasnoyarsk,Professor,D.Sc.(Doctor of Technical Sciences),Research field:Metallurgy and Materials Science,E-mail:keclin@vlsu.ru.

    TF813

    2095-7262(2016)06-0653-06

    :A

    金屬雜質(zhì)中純化鋅熔體的提取劑選擇方法

    VladimirA.Kechin,EvgenyS.Prusov

    (弗拉基米爾州立大學(xué), 弗拉基米爾600000, 俄羅斯)

    提出了一種通過(guò)熔析精煉方法從金屬雜質(zhì)(例如鐵)中純化鋅熔體的提取劑選擇方法。采用一個(gè)提取階段的周期性過(guò)程公式計(jì)算鋅熔體精煉的有效性,并研究所選添加劑從鐵雜質(zhì)中提純鋅熔體的提取能力。實(shí)驗(yàn)結(jié)果表明,從鐵雜質(zhì)中純化非合金鋅,可以采用硅作為提取劑,且提取效率最高;精煉鋅合金可以采用鋁和錳作為提取劑。

    熔融鋅; 提純; 提取劑; 金屬雜質(zhì)

    10.3969/j.issn.2095-7262.2016.06.014

    猜你喜歡
    鋅合金弗拉基米爾州立大學(xué)
    俄羅斯弗拉基米爾大公號(hào)核潛艇
    軍事文摘(2022年13期)2022-08-27 01:26:24
    專(zhuān)利名稱(chēng):一種雙重細(xì)化鋅合金中初生相的方法
    美國(guó)費(fèi)里斯州立大學(xué)(FSU)大學(xué)生學(xué)習(xí)動(dòng)力來(lái)源的思考與啟示
    堿性鋅錳電池含鋁鋅合金陽(yáng)極的電化學(xué)行為
    美國(guó)學(xué)前教育教師職前專(zhuān)業(yè)能力培養(yǎng)的特征及啟示——以美國(guó)塞勒姆州立大學(xué)早期兒童教育專(zhuān)業(yè)為例
    聚合物/錫鋅合金復(fù)合材料的密煉混合行為
    信息技術(shù)在美國(guó)大學(xué)物理課程中的應(yīng)用——以美國(guó)俄亥俄州立大學(xué)為例
    物理與工程(2014年4期)2014-02-27 11:23:09
    錫鋅合金鍍層的性能如何及鍍液類(lèi)型有哪些?
    以人為本 服務(wù)為體——俄亥俄州立大學(xué)
    與弗拉基米爾·普京對(duì)話
    男女做爰动态图高潮gif福利片| 亚洲第一欧美日韩一区二区三区| АⅤ资源中文在线天堂| 美女黄网站色视频| 国产爱豆传媒在线观看| 欧美一区二区国产精品久久精品| 嫩草影视91久久| 国产精品亚洲一级av第二区| 窝窝影院91人妻| 小蜜桃在线观看免费完整版高清| 在线国产一区二区在线| 无限看片的www在线观看| 又紧又爽又黄一区二区| 国产精品一区二区三区四区免费观看 | 国产日本99.免费观看| 最后的刺客免费高清国语| 一本一本综合久久| aaaaa片日本免费| 日本在线视频免费播放| 中文资源天堂在线| 亚洲精品在线美女| av天堂中文字幕网| 国产精品一区二区三区四区免费观看 | 少妇的逼水好多| 国产精品野战在线观看| 国产精品野战在线观看| 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 精品人妻1区二区| 一区二区三区高清视频在线| 日韩免费av在线播放| 欧美+亚洲+日韩+国产| 日韩欧美精品v在线| 91麻豆精品激情在线观看国产| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av第一区精品v没综合| 久久亚洲真实| 亚洲成av人片免费观看| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 国产精品嫩草影院av在线观看 | 中文亚洲av片在线观看爽| 午夜免费男女啪啪视频观看 | 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 91久久精品国产一区二区成人 | 免费观看的影片在线观看| 18禁美女被吸乳视频| 亚洲国产欧洲综合997久久,| 精品久久久久久久毛片微露脸| 亚洲,欧美精品.| 亚洲18禁久久av| 国产精品自产拍在线观看55亚洲| 波多野结衣巨乳人妻| 精品无人区乱码1区二区| 欧美xxxx黑人xx丫x性爽| 听说在线观看完整版免费高清| a级毛片a级免费在线| 少妇裸体淫交视频免费看高清| 成年女人永久免费观看视频| 亚洲av成人精品一区久久| 在线播放国产精品三级| e午夜精品久久久久久久| 国产成人啪精品午夜网站| 天堂网av新在线| 国产精品乱码一区二三区的特点| 色哟哟哟哟哟哟| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 美女 人体艺术 gogo| 看黄色毛片网站| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 日韩亚洲欧美综合| 91九色精品人成在线观看| 午夜免费成人在线视频| 亚洲七黄色美女视频| 亚洲欧美精品综合久久99| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品乱码一区二三区的特点| 色综合亚洲欧美另类图片| 69人妻影院| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 高清日韩中文字幕在线| 欧美日韩福利视频一区二区| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 婷婷丁香在线五月| 三级男女做爰猛烈吃奶摸视频| 美女黄网站色视频| 国内精品久久久久久久电影| 国产精品国产高清国产av| 国产主播在线观看一区二区| tocl精华| 国产午夜精品论理片| 亚洲自拍偷在线| 亚洲欧美一区二区三区黑人| 国产 一区 欧美 日韩| 国产午夜福利久久久久久| 十八禁网站免费在线| 成人av在线播放网站| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 99久久综合精品五月天人人| 在线观看美女被高潮喷水网站 | 在线十欧美十亚洲十日本专区| 搡老岳熟女国产| 欧美一区二区精品小视频在线| 午夜a级毛片| 最近最新免费中文字幕在线| 日本一本二区三区精品| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 亚洲最大成人中文| 长腿黑丝高跟| 免费看日本二区| 久久精品国产亚洲av涩爱 | 91久久精品国产一区二区成人 | 少妇丰满av| 性色avwww在线观看| 亚洲在线观看片| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看的高清视频| 内地一区二区视频在线| 日本免费一区二区三区高清不卡| 69人妻影院| 久久伊人香网站| 欧美三级亚洲精品| 在线观看一区二区三区| 91麻豆精品激情在线观看国产| 成人特级黄色片久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 日本黄大片高清| 身体一侧抽搐| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品成人综合色| 国产成人欧美在线观看| 天堂av国产一区二区熟女人妻| 欧美最新免费一区二区三区 | 观看免费一级毛片| 亚洲中文日韩欧美视频| 国产探花极品一区二区| 免费看光身美女| 在线观看av片永久免费下载| 丰满人妻熟妇乱又伦精品不卡| 日日干狠狠操夜夜爽| 母亲3免费完整高清在线观看| 国产视频内射| 成人永久免费在线观看视频| 人人妻,人人澡人人爽秒播| 村上凉子中文字幕在线| 97人妻精品一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 中文在线观看免费www的网站| 久久国产精品人妻蜜桃| 在线观看舔阴道视频| 精品一区二区三区av网在线观看| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 国产99白浆流出| 亚洲国产高清在线一区二区三| 成人三级黄色视频| 美女大奶头视频| АⅤ资源中文在线天堂| а√天堂www在线а√下载| 操出白浆在线播放| 黑人欧美特级aaaaaa片| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女| 国产成人aa在线观看| 99精品在免费线老司机午夜| 色综合婷婷激情| 精品久久久久久成人av| 亚洲精品乱码久久久v下载方式 | 伊人久久大香线蕉亚洲五| 久久精品91蜜桃| 色噜噜av男人的天堂激情| 制服丝袜大香蕉在线| 亚洲国产色片| 国产综合懂色| 国产一级毛片七仙女欲春2| 亚洲美女视频黄频| 久久久久久久精品吃奶| 蜜桃亚洲精品一区二区三区| 国产亚洲精品一区二区www| 亚洲精品亚洲一区二区| 床上黄色一级片| 成人av在线播放网站| 国内精品久久久久精免费| 精品国产超薄肉色丝袜足j| 色综合亚洲欧美另类图片| 久久精品91无色码中文字幕| 亚洲不卡免费看| 一个人看的www免费观看视频| 五月伊人婷婷丁香| 亚洲欧美日韩卡通动漫| 婷婷丁香在线五月| 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| 免费大片18禁| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看 | 十八禁人妻一区二区| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 香蕉av资源在线| 日本免费a在线| 国产精品免费一区二区三区在线| 男女午夜视频在线观看| 天堂√8在线中文| 国产伦人伦偷精品视频| 十八禁人妻一区二区| e午夜精品久久久久久久| 精品久久久久久久久久久久久| 日韩精品中文字幕看吧| 人妻夜夜爽99麻豆av| 男女下面进入的视频免费午夜| 中文字幕熟女人妻在线| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 色吧在线观看| 欧美成人a在线观看| 日本黄色片子视频| 丝袜美腿在线中文| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 国产精品香港三级国产av潘金莲| 女人十人毛片免费观看3o分钟| 国产成人啪精品午夜网站| 欧美日韩综合久久久久久 | 午夜激情福利司机影院| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 亚洲avbb在线观看| 国语自产精品视频在线第100页| 国产高清激情床上av| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| 免费在线观看影片大全网站| 久久久久久国产a免费观看| 国产中年淑女户外野战色| 可以在线观看毛片的网站| 日本黄大片高清| 丰满人妻一区二区三区视频av | a级一级毛片免费在线观看| 精品人妻1区二区| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 在线天堂最新版资源| 长腿黑丝高跟| 国产中年淑女户外野战色| 特级一级黄色大片| 男女下面进入的视频免费午夜| 免费看十八禁软件| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 三级毛片av免费| 搡老熟女国产l中国老女人| 精华霜和精华液先用哪个| 18美女黄网站色大片免费观看| 天堂网av新在线| 国产三级中文精品| 叶爱在线成人免费视频播放| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 久久久久久久久大av| av女优亚洲男人天堂| 国产熟女xx| 在线观看一区二区三区| 青草久久国产| 午夜免费男女啪啪视频观看 | 欧美成人一区二区免费高清观看| 国产高清三级在线| 波多野结衣高清无吗| 亚洲七黄色美女视频| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 国内毛片毛片毛片毛片毛片| 内地一区二区视频在线| 不卡一级毛片| 超碰av人人做人人爽久久 | 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 精品午夜福利视频在线观看一区| 在线a可以看的网站| 国产精品三级大全| 99久国产av精品| 久久香蕉精品热| 变态另类丝袜制服| 成年女人毛片免费观看观看9| av天堂中文字幕网| 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 麻豆成人av在线观看| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| or卡值多少钱| 内地一区二区视频在线| 一区二区三区高清视频在线| 国产伦人伦偷精品视频| 两个人看的免费小视频| 国产精品久久久久久亚洲av鲁大| 岛国在线免费视频观看| 国产色婷婷99| 女人高潮潮喷娇喘18禁视频| 天天躁日日操中文字幕| 国产色婷婷99| www日本黄色视频网| 久久久色成人| 国产成+人综合+亚洲专区| 免费av毛片视频| 51国产日韩欧美| 婷婷亚洲欧美| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 免费观看精品视频网站| 国产一区在线观看成人免费| 亚洲av免费高清在线观看| 亚洲国产日韩欧美精品在线观看 | 两个人看的免费小视频| 午夜福利18| 亚洲成av人片免费观看| 国产探花极品一区二区| 十八禁网站免费在线| 婷婷丁香在线五月| 91久久精品电影网| 免费搜索国产男女视频| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 欧美日韩福利视频一区二区| 国产乱人伦免费视频| 久久久久久国产a免费观看| 亚洲精品乱码久久久v下载方式 | xxxwww97欧美| 亚洲中文字幕日韩| 我要搜黄色片| 一级毛片女人18水好多| www日本黄色视频网| 在线观看免费午夜福利视频| 又黄又爽又免费观看的视频| 国产一区二区激情短视频| 欧美日韩黄片免| 长腿黑丝高跟| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 最近最新中文字幕大全免费视频| 日本一本二区三区精品| 五月伊人婷婷丁香| 成人性生交大片免费视频hd| 色老头精品视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免 | 午夜a级毛片| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| svipshipincom国产片| 日本 av在线| 亚洲男人的天堂狠狠| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 国产久久久一区二区三区| 亚洲人与动物交配视频| 亚洲国产中文字幕在线视频| 夜夜看夜夜爽夜夜摸| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 成人国产综合亚洲| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 日本熟妇午夜| 麻豆国产97在线/欧美| 成人18禁在线播放| 伊人久久大香线蕉亚洲五| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 国产精品,欧美在线| 欧美中文综合在线视频| www.色视频.com| 国产 一区 欧美 日韩| 五月玫瑰六月丁香| 午夜免费男女啪啪视频观看 | 天堂av国产一区二区熟女人妻| 午夜福利免费观看在线| 在线观看舔阴道视频| 一个人免费在线观看电影| 国产毛片a区久久久久| 色播亚洲综合网| 亚洲av二区三区四区| 91在线精品国自产拍蜜月 | 嫩草影院精品99| 国产av一区在线观看免费| 51午夜福利影视在线观看| 制服人妻中文乱码| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 免费观看精品视频网站| 国产精品久久久久久精品电影| 性欧美人与动物交配| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 中文字幕久久专区| 亚洲美女视频黄频| 18禁在线播放成人免费| 国产av一区在线观看免费| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 最近最新中文字幕大全免费视频| 国产亚洲精品综合一区在线观看| 男女床上黄色一级片免费看| 久久草成人影院| 97碰自拍视频| 无人区码免费观看不卡| 两个人的视频大全免费| 欧美成人一区二区免费高清观看| 中文资源天堂在线| 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 此物有八面人人有两片| 亚洲人成电影免费在线| 成人国产综合亚洲| 搡老妇女老女人老熟妇| 少妇的逼水好多| 88av欧美| 九色国产91popny在线| 久久国产乱子伦精品免费另类| 欧美色视频一区免费| 成年版毛片免费区| 天天添夜夜摸| 午夜精品一区二区三区免费看| 婷婷六月久久综合丁香| 成人18禁在线播放| 香蕉av资源在线| 最新美女视频免费是黄的| 久久中文看片网| 国产高清videossex| 色在线成人网| 国产中年淑女户外野战色| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 熟女电影av网| 岛国视频午夜一区免费看| 午夜福利成人在线免费观看| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 日韩成人在线观看一区二区三区| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 婷婷丁香在线五月| 丁香欧美五月| 桃色一区二区三区在线观看| 97碰自拍视频| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 毛片女人毛片| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| 亚洲国产中文字幕在线视频| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 免费看a级黄色片| 免费在线观看亚洲国产| 久久人人精品亚洲av| 亚洲精品456在线播放app | 美女 人体艺术 gogo| 日本免费一区二区三区高清不卡| 在线观看日韩欧美| 国产99白浆流出| 久久久久九九精品影院| 免费av不卡在线播放| 亚洲黑人精品在线| 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 中文字幕av在线有码专区| 噜噜噜噜噜久久久久久91| 91九色精品人成在线观看| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 亚洲av免费在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久久久久久中文| 亚洲av日韩精品久久久久久密| 国产色婷婷99| 亚洲av成人av| 久久伊人香网站| 无遮挡黄片免费观看| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区视频在线观看免费| www国产在线视频色| 一区二区三区高清视频在线| 欧美乱妇无乱码| 三级国产精品欧美在线观看| 老鸭窝网址在线观看| 国产免费男女视频| 成年女人永久免费观看视频| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 最新美女视频免费是黄的| 少妇丰满av| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 国产精华一区二区三区| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 国产亚洲欧美在线一区二区| 国产 一区 欧美 日韩| 国内揄拍国产精品人妻在线| 欧美中文日本在线观看视频| 久久欧美精品欧美久久欧美| av女优亚洲男人天堂| 国产午夜福利久久久久久| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 麻豆一二三区av精品| 中文字幕人妻丝袜一区二区| 欧美国产日韩亚洲一区| av欧美777| 色av中文字幕| 亚洲精品成人久久久久久| 美女高潮的动态| 国产男靠女视频免费网站| 一进一出抽搐动态| ponron亚洲| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 日韩欧美精品免费久久 | 9191精品国产免费久久| 少妇的逼好多水| 免费在线观看日本一区| 亚洲精品美女久久久久99蜜臀| 99久久成人亚洲精品观看| 国产精品av视频在线免费观看| 亚洲avbb在线观看| 一a级毛片在线观看| 国产v大片淫在线免费观看| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 伊人久久大香线蕉亚洲五| 国产真实乱freesex| 在线天堂最新版资源| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华精| av天堂中文字幕网| 日韩欧美精品免费久久 | 成年版毛片免费区| 亚洲精品影视一区二区三区av| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 女同久久另类99精品国产91| 一区二区三区免费毛片| 午夜两性在线视频| 青草久久国产| 免费在线观看影片大全网站| 久久性视频一级片| 国产午夜福利久久久久久| tocl精华| 国产乱人视频| 少妇人妻精品综合一区二区 | 嫩草影院入口| 变态另类成人亚洲欧美熟女| 青草久久国产| 成人av一区二区三区在线看| 成人性生交大片免费视频hd| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 97碰自拍视频| 美女高潮的动态| 欧美在线黄色| 亚洲精品乱码久久久v下载方式 | 国产69精品久久久久777片| 在线视频色国产色| 国产久久久一区二区三区| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 淫秽高清视频在线观看| 欧美绝顶高潮抽搐喷水| 免费看十八禁软件| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区精品|