• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selection of extracting additives for purification of zinc melts from metal impurities

    2016-02-07 06:43:04.,.
    關(guān)鍵詞:鋅合金弗拉基米爾州立大學(xué)

    ., .

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    Selection of extracting additives for purification of zinc melts from metal impurities

    VladimirA.Kechin,EvgenyS.Prusov

    (Vladimir State University named after Alexander & Nikolay Stoletovs, Vladimir 600000, Russia)

    This paper proposes the methodology of the selection of extracting additives for purification of zinc melts from metal impurities(for example from iron) by the liquation refining method, introduces the calculations of the effectiveness of zinc melts liquation refining with an assessment of possibility using a formula of extracting periodic process for one stage of extraction, and underscores the investigation into the extracting ability of the chosen additives for purification of zinc melts from iron impurity. The experimental results show that the highest efficiency of the purification of unalloyed zinc from iron impurity was achieved by using silicon as an extraction additive. It was recommended to use aluminum and manganese as extracting additives for zinc alloys refining.

    zinc melts; purification; extracting additives; metal impurities

    0 Introduction

    Zinc is widely used in various industries for casting, wrought and composite alloys production for structural and functional purposes, including tribological, sacrificial, high-damping, biocompatible and other materials[1-4].

    Modern requirements for purifying primary zinc used for alloys production are very high. The main impurities in zinc produced by electrolysis are iron, lead, cadmium, copper, tin and arsenic[5]. Concentrations of these impurities determine the grade of primary zinc per ASTM B6-13 or other standards. The problem of producing zinc with lowered content of iron is especially actual. Due to the low solid solubility in zinc (0.001%) iron impurity forms the brittle intermetallic compounds(FeZn, FeZn3, etc.), which significantly reduce corrosion, mechanical and casting properties of zinc and its alloys[5-8].

    Modern physical and physicochemical methods of refining zinc melts from metallic impurities (Fe, Pb, Cu, etc.) are unproductive and difficult from the point of view of constructive-technological realization[9-18]. The method of liquation refining represents the greatest interest in the production of zinc melts with low content of iron and other metallic impurities and is easily adapted to the conditions of operating industrial enterprises. This method is based on the use of refining additives of various metals, which forms refractory phases in interaction with the impurities[19]. These phases segregate due to the difference of density the newly formed phases and zinc melt. Then, the subsequent separation of these phases can be carried out by standing, centrifugation or filtration of the zinc melts.

    The aim of the present work is to evaluate the effectiveness of liquation refining of zinc melts from impurity elements(for example from iron)by means of additive elements.

    1 Theoretical considerations

    1.1 Selection of refining additives for purification of zinc melts from iron impurity

    Selection of additive elements for producing metal melts with a low content of impurity elements using the liquation refining method is based on an assessment of the nature of the periodic system elements’ interaction with impurity elements and with the basic metal. The possibility of application of various elements as an extractive addition for purifying zinc melts is caused by its solubility in zinc and efficiency of the additive element. Analysis of metal-chemical properties of the elements in their interactions with zinc melts and iron impurity show that they formed various types of bondings[5, 20]. Selection of the elements as potential refining additives is carried out, considering the nature of their interactions with zinc and iron, and the cost and the toxicity. After screening on these attributes from all elements of periodic system, potential additive elements were located, and characteristics of their interactions with zinc and iron have been presented in Table 1.

    Table 1 Characteristics of additive elements interactions with zinc and iron impurity

    Note:PSS—partial solid solution; CC—chemical compound.

    Table 1 shows the possibility of using elements C, Si, S(Group A) as refining additives for unalloyed zinc purification from iron impurity. These elements practically do not interact with zinc and they exhibit low solubility, but they were formed chemical compounds and solid solutions with iron. Elements Al, Mn, Ti(Group B) performing the role of alloying elements and refining additives may be used for the production of zinc alloys.

    Table 2 shows the characteristics of the formed phases in the zinc-iron-additive system for choosing the potential extraction additives in zinc melts by the liquation refining[20, 27].

    Table 2 Characteristics of main phases in the Zn-Fe-X system

    Note:CSS*—complete solid solution.

    As can be seen from Table 2, the additive elementsin the Group A have low solubility in zinc, and the elements in Group B can be dissolved in zinc, forming iron chemical compounds with high-melting (above 1 000 ℃).

    1.2 Theoretical evaluation of the effectiveness of liquation refining zinc from iron impurity

    Generally, the extraction theory[28]has been used to evaluate the effectiveness of zinc purification from metallic impurities by means of additive elements. In trems of the technological processes of zinc melts purification from iron, the formula of periodic process for one stage of extraction has been used to calculate the metallurgical extracting processes by analogy[29]:

    (1)

    whereX0—initial concentration of impurity in the metal(zinc), %(mass fraction, similarly hereinafter);

    X—concentration of impurity after the extraction operation, %;

    K—equilibrium coefficient of distribution of impurity between phases of the segregating system;

    m—mass of solvent(zinc), g;

    Le—mass of extracting additive, g.

    It has been assumed that the system reaches the equilibrium state between liquid and solid phases; however, in real conditions of crystallization and phase separation, the equilibrium is not reached, and experimental value of impurity content after refining must be larger than its calculated value.

    For Zn-Fe-X(whereX= C, Si, S, Al, Mn, Ti) system, calculations of the extraction efficiency of iron impurity from zinc melt have been made. The following input data have been accepted in the calculations: initial concentration of ironX0= 0.015% Fe, base metal massmZn= 100 g, temperature of impurity extraction 500 ℃. Consumption of the extracting additive element has been accepted 10-fold in relation to impurity element concentration(L1= 0.15%). Results of the calculations are presented in Table 3.

    Efficiency of zinc purificationη(%) from iron impurity has been determined by the following equation:

    (2)

    whereFe0andFe1—initial and final concentrations of iron impurity in zinc melts,respectively.

    Table 3 shows that at 10-fold consumption of extracting additive and initial content of iron in zinc of 0.015% additive elements are located in the following series, decreasing their extracting ability:

    Si→S→C→Ti→Al(Mn).

    Estimation of zinc purification efficiency from iron at accepted 10-fold consumption of the extracting additive shows that the elements of Group A provide removing of iron from melt atη= 81.2%-83.3%. Under existing conditions only titanium promotes refining atη= 78.3% from elements of Group B.

    Fig.1 shows the results of calculations of iron content change in zinc melt for various consumption of additive elements in relation to iron content in zinc. It can be seen that if C, Si, S, Ti decrease in the iron content from 0.015% to 0.002%-0.004% at their 10-fold excess, 50-fold excess of aluminum is necessary in order to achieve the similar purification effect at 30-fold excess of manganese. Obviously, the use of aluminum and manganese will be possible for the production of zinc alloys with low content of iron, only in case of their presence in the alloy composition as basic alloying elements.

    Fig. 1 Change of iron content in zinc melt depending on the consumption of extracting additive (L1)

    Fig.2 shows that purification efficiency grows up to 85%-90% with the increase of iron content in initial zinc(0.003%-0.030%) excluding aluminum and manganese, if used, purification in such conditions practically does not take place. It can also be seen, that liquation refining method is not suitable for using technologies of deep purification of unalloyed zinc with initial iron content up to 0.003%. Fig.3 shows a diagram for extracting additive consumption determining at production of zinc melts with iron content to 0.003% from zinc having various purity.

    Fig. 2 Efficiency of zinc purification with different iron content at 10-fold excess of extracting additive

    Fig. 3 Extracting additive consumption (L1) for zinc purification with different iron content

    2 Experimental verification

    2.1 Materials and methods

    Experimental investigations on zinc purification from iron using selected refining additives showed the possibility of iron impurity content decreased in zinc by liquation refining. Melting of zinc of high grade (99.95% Zn) was performed in alundum crucible in an electric resistance furnace. The iron content in zinc melt before refining was 0.014%-0.016%. Carbonyl iron was introduced in zinc at 500 ℃, refining additives Al and S were introduced in melt at 490 ℃, and Ti, Si, Mn and C-at 600 ℃. Purities of all used materials were more than 99.5%. When introducing the additives melt was mixed with graphite rod within 8-10 min. After introducing the additives melt was cooled with a speed of 40-60 ℃/h down to the temperature of zinc crystallization (~420 ℃). Then metal was quickly heated to 480 ℃ and a sample from the middle part of crucible was withdrawn for chemical analysis by means of quartz tube. Chemical composition of samples was carried out byX-ray fluorescence spectrometer ARL Advant’X(Thermo Scientific, USA). Refining additives were entered into the melt to iron impurity in various ratios in the amount from 0.1% to 1.3%.

    2.2 Experimental results of zinc melt purification from iron using additive elements

    Results of experimental investigations of zinc purification from iron impurity using additive elements (Fig.4) show the different refining capacity of the additives.

    Fig. 4 Experimental data on efficiency of zinc purification from iron by extracting additives

    Some discrepancy between the calculated and the experimental data on the efficiency of zinc purification from iron impurity can be explained by some assumptions accepted in calculations (complete interaction of extracting additives with iron impurity, using data of the od equilibrium phase diagrams for selected phases of only one stoichiometric composition, complete removing of reaction products from the melt, etc.), as well as possible losses of extractive additives and their incomplete recovery when introducing into the melt. Fig.4 indicated that only silicon colud be considered as an effective extracting additive in relation to iron in the production of unalloyed zinc. As expected, when aluminum and magnesium were added into zinc melt, they were partially dissolved in zinc and remained in it after purification. At a large consumption of additives their content in zinc reached high values determined by the phase diagrams and nature of interaction with zinc. Obviously, the process of purification of unalloyed zinc from iron using the considered additives will be difficult under the conditions of large-scale production due to the high consumption of additive elements. At the same time, the use of aluminum and magnesium as both alloying and extracting additive elements in the production of zinc alloys allowed to neutralize negative effect of iron owing to the formation of complex products. So, in this case operation of refining was combined with simultaneous alloying of base metal with aluminum or manganese.

    Thus, it has been recommended to use silicon as an extracting additive for the production of unalloyed zinc with lowered iron content and to use aluminum and manganese for the production of zinc alloys.

    3 Conclusions

    The principle of the selection of additive elements for zinc melts purification from iron impurity by using the method of liquation refining has been theoretically investigated. The possibility of using a formula of periodic process of extracting for one stage of extraction and evaluating the effectiveness of liquation refining of zinc melts from iron had been studied. The extracting ability of the chosen additives in zinc melts purification from iron impurity has been established. It had been recommended to use silicon as an extracting additive for refining of unalloyed zinc from iron and to use aluminum and manganese for zinc alloys.

    Acknowledgments:

    This research has been carried out in the framework of the state task of the Ministry of Education and Science of the Russian Federation(Project No.3022).

    [1] BIRCH J. New alloys for zinc casting[J]. Mat Des, 1990, 11(2): 83-87.

    [2] BABIC M, NINKOVIC R. Zn-Al alloys as tribomaterials[J]. Tribol Ind, 2004, 26(1/2): 3-7.

    [3] PRUSOV E S, KOROBKOV M B, KECHIN V A. Current state and perspectives of increasing of tribotechnical characteristics of zinc alloys[J]. Mach Techn Mat, 2014(2): 9-11.

    [4] CHUNG D D L. Materials for vibration damping[J]. J Mat Sci, 2001, 36: 5733-5737.

    [5] KECHIN V A, LUBLINSKI E Y. Zinc alloys (in Russian)[M]. Moscow: Metallurgiya, 1986.

    [6] SOLOZHENKO V L, KECHIN V A. Improving the electrochemical properties of zinc with an elevated content of iron[J]. Prot Met, 2001, 37(3): 286-289.

    [7] PORTER F C. Corrosion resistance of zinc and zinc alloys[M]. New York: Marcel Dekker Inc, 1994.

    [8] ZHANG X G. Corrosion and electrochemistry of zinc[M]. New York: Plenum Press, 1996.

    [9] BRATT G C. Impurity effect in the electrowinning of zinc and cadmium[J]. Electrochem Tech, 1964, 2: 323-326.

    [10] ADHIA J D. Effect and control of impurities in electrolytic zinc production[C]// Proceedings of Symposium on Non-ferrous Metals Technology: III. NML: Jamshedpur, 1969: 1-10.

    [11] FOSNACHT D, O’KEEFE T J. The effects of certain impurities and their interactions on zinc electrowinning[J]. Met Mat Trans B, 1983, 14(4): 645-655.

    [12] MACKINNON D J, BRANNEN J M, FENN P L. Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte[J]. J App Electrochem, 1987, 17(6): 1129-1143.[13] AULT A R, FRAZER E J. Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions[J]. J App Electrochem, 1988, 18: 583-589.

    [14] MURESAN L, MAURIN G, ONICIU L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydromet, 1996, 43(1/3): 345-354.

    [15] CHEN X F. The effects of impurities on the current efficiency in zinc electrowinning(in Chinese)[J]. Hunan Nonferrous Met, 2006, 22(2): 24-26.

    [16] QIU Y, ZHANG C, ZHAO Y. Effect of impurities on zinc electrowinning process in alkaline solution[J]. Nonferrous Met, 2009, 60: 76-79.

    [17] YU X H, XIE G, LI R X, et al. Behavior of arsenic in zinc electrowinning[J]. Trans Nonferrous Met Soc China, 2010, 20: 50-54.[18] WANG L Y, GUI W H, TEO K L, et al. Optimal control problems arising in the zinc sulphate electrolyte purification process[J]. J Global Optim, 2012, 54(2): 307-323.

    [19] SHAN’GIN E A. Development of the crystallization method for removing lead impurity from secondary zinc[J]. Russ J Nonfer Met, 2013, 54(1): 51-55.

    [20] KUBASCHEWSKI O. Iron-binary phase diagrams[M]. Berlin: Springer-Verlag, 1982.

    [21] MURRAY J L. The Ti-Zn (titanium-zinc) system[J]. Bul Alloys Phase Diag, 1984, 5(1): 52-56.

    [22] OKAMOTO H, TANNER L E. The Mn-Zn(manganese-zinc) system[J]. Bul Alloys Phase Diag, 1990, 11(4): 377-384.

    [23] CRANE L W. Melting and solidification of zinc-aluminium alloys[M]. Birmingham: Aston University, 1997.

    [24] FRANKE P, NEUSCHUTZ D. C-Zn (carbon-zinc) [M]// Thermodynamic Properties of Inorganic Materials. Part 5: Binary Systems. [S.l.]: Springer Berlin Heidelberg, 2007.[25] OLESINSKI R W, ABBASCHIAN G J. The Si-Zn(silicon-zinc) system[J]. Bul Alloys Phase Diag, 1985, 6(6): 545-548.

    [26] SHARMA K C, CHANG Y A. The S-Zn(sulfur-zinc) system[J]. Journal of Phase Equilibria, 1996, 17(3): 261-266.

    [27] PERRY D L. Handbook of inorganic compounds[M]. Boca Raton: Florida, 2011.

    [28] VIGNES A. Extractive metallurgy 2: metallurgical reaction processes[M]. [S.l.]: ISTE Ltd and John Wiley & Sons, 2011.[29] POGORELIY A D. Theory of metallurgical processes (in Russian)[M]. Moscow: Metallurgy, 1971.

    (編輯 張迎春 校對(duì) 荀海鑫)

    2016-07-14

    The state task of the Ministry of Education and Science of the Russian Federation (Project No.3022)

    Vladimir A.Kechin(1942-),Male,USSR,Krasnoyarsk,Professor,D.Sc.(Doctor of Technical Sciences),Research field:Metallurgy and Materials Science,E-mail:keclin@vlsu.ru.

    TF813

    2095-7262(2016)06-0653-06

    :A

    金屬雜質(zhì)中純化鋅熔體的提取劑選擇方法

    VladimirA.Kechin,EvgenyS.Prusov

    (弗拉基米爾州立大學(xué), 弗拉基米爾600000, 俄羅斯)

    提出了一種通過(guò)熔析精煉方法從金屬雜質(zhì)(例如鐵)中純化鋅熔體的提取劑選擇方法。采用一個(gè)提取階段的周期性過(guò)程公式計(jì)算鋅熔體精煉的有效性,并研究所選添加劑從鐵雜質(zhì)中提純鋅熔體的提取能力。實(shí)驗(yàn)結(jié)果表明,從鐵雜質(zhì)中純化非合金鋅,可以采用硅作為提取劑,且提取效率最高;精煉鋅合金可以采用鋁和錳作為提取劑。

    熔融鋅; 提純; 提取劑; 金屬雜質(zhì)

    10.3969/j.issn.2095-7262.2016.06.014

    猜你喜歡
    鋅合金弗拉基米爾州立大學(xué)
    俄羅斯弗拉基米爾大公號(hào)核潛艇
    軍事文摘(2022年13期)2022-08-27 01:26:24
    專(zhuān)利名稱(chēng):一種雙重細(xì)化鋅合金中初生相的方法
    美國(guó)費(fèi)里斯州立大學(xué)(FSU)大學(xué)生學(xué)習(xí)動(dòng)力來(lái)源的思考與啟示
    堿性鋅錳電池含鋁鋅合金陽(yáng)極的電化學(xué)行為
    美國(guó)學(xué)前教育教師職前專(zhuān)業(yè)能力培養(yǎng)的特征及啟示——以美國(guó)塞勒姆州立大學(xué)早期兒童教育專(zhuān)業(yè)為例
    聚合物/錫鋅合金復(fù)合材料的密煉混合行為
    信息技術(shù)在美國(guó)大學(xué)物理課程中的應(yīng)用——以美國(guó)俄亥俄州立大學(xué)為例
    物理與工程(2014年4期)2014-02-27 11:23:09
    錫鋅合金鍍層的性能如何及鍍液類(lèi)型有哪些?
    以人為本 服務(wù)為體——俄亥俄州立大學(xué)
    與弗拉基米爾·普京對(duì)話
    91久久精品国产一区二区成人| 久久精品人妻少妇| 一个人看的www免费观看视频| 一本综合久久免费| 国产在线男女| 精品久久久久久久久久免费视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲不卡免费看| 欧美另类亚洲清纯唯美| 欧美黄色淫秽网站| 欧美xxxx性猛交bbbb| 简卡轻食公司| 能在线免费观看的黄片| 国产成人aa在线观看| 国产亚洲欧美98| 女人被狂操c到高潮| 欧美黄色淫秽网站| 亚洲不卡免费看| 国产在线精品亚洲第一网站| 亚洲欧美日韩高清在线视频| 怎么达到女性高潮| 成人欧美大片| 国产精品人妻久久久久久| 久久久久免费精品人妻一区二区| 一个人看视频在线观看www免费| 少妇熟女aⅴ在线视频| 欧美绝顶高潮抽搐喷水| 久久久久国产精品人妻aⅴ院| 日本成人三级电影网站| 免费av不卡在线播放| 亚洲欧美日韩东京热| 网址你懂的国产日韩在线| 麻豆成人av在线观看| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 亚洲av第一区精品v没综合| 亚洲av第一区精品v没综合| 亚洲aⅴ乱码一区二区在线播放| 毛片一级片免费看久久久久 | 精华霜和精华液先用哪个| 精品久久久久久,| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影| 97超视频在线观看视频| 久久精品国产清高在天天线| 国产精品av视频在线免费观看| 欧美午夜高清在线| 国产成人福利小说| 琪琪午夜伦伦电影理论片6080| 欧美一区二区亚洲| 一区二区三区四区激情视频 | 国产真实乱freesex| 最近在线观看免费完整版| 亚洲国产色片| 99久久精品国产亚洲精品| 午夜福利成人在线免费观看| 国产大屁股一区二区在线视频| 99热这里只有是精品50| 国产色婷婷99| 亚洲av中文字字幕乱码综合| 国产探花极品一区二区| 中文字幕av在线有码专区| 成人永久免费在线观看视频| 国产精品乱码一区二三区的特点| 变态另类成人亚洲欧美熟女| 日本黄大片高清| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 我的女老师完整版在线观看| 国产av不卡久久| 深爱激情五月婷婷| 岛国在线免费视频观看| 日韩高清综合在线| 亚洲国产色片| 久久久国产成人精品二区| www.熟女人妻精品国产| 99热这里只有是精品50| 窝窝影院91人妻| 熟妇人妻久久中文字幕3abv| 女同久久另类99精品国产91| 一区二区三区高清视频在线| 久久国产乱子伦精品免费另类| 色综合亚洲欧美另类图片| 色哟哟·www| 我要搜黄色片| 欧美成人一区二区免费高清观看| 国产成人aa在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人亚洲精品av一区二区| 国产大屁股一区二区在线视频| 成人一区二区视频在线观看| 亚洲一区二区三区不卡视频| .国产精品久久| 99久久久亚洲精品蜜臀av| 日韩精品青青久久久久久| 日本五十路高清| 亚洲国产精品999在线| avwww免费| 国产精品一及| 欧美精品国产亚洲| 国产一区二区激情短视频| 18禁在线播放成人免费| 亚洲欧美日韩卡通动漫| 中国美女看黄片| 国产亚洲av嫩草精品影院| 麻豆国产av国片精品| 无人区码免费观看不卡| 国产亚洲欧美98| 精品久久久久久成人av| 国产aⅴ精品一区二区三区波| 天堂网av新在线| 久久久久免费精品人妻一区二区| 亚洲欧美日韩东京热| 麻豆成人av在线观看| 日韩欧美 国产精品| 午夜福利18| 久久精品夜夜夜夜夜久久蜜豆| 男女床上黄色一级片免费看| 免费大片18禁| 国模一区二区三区四区视频| 欧美乱妇无乱码| 国产美女午夜福利| 色视频www国产| av黄色大香蕉| 国产色婷婷99| 老司机深夜福利视频在线观看| 免费无遮挡裸体视频| 不卡一级毛片| 五月伊人婷婷丁香| 日本精品一区二区三区蜜桃| 亚洲最大成人av| 一个人观看的视频www高清免费观看| 精品欧美国产一区二区三| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 搡老熟女国产l中国老女人| 一级黄色大片毛片| 自拍偷自拍亚洲精品老妇| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 黄色一级大片看看| 人人妻,人人澡人人爽秒播| 丰满的人妻完整版| 俄罗斯特黄特色一大片| 美女cb高潮喷水在线观看| 国产成人欧美在线观看| 久久人妻av系列| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 亚洲精品在线观看二区| 亚洲av免费在线观看| 精品免费久久久久久久清纯| 久久久色成人| 精品久久久久久成人av| 搡老熟女国产l中国老女人| 亚洲中文字幕一区二区三区有码在线看| 免费在线观看影片大全网站| 国产探花极品一区二区| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 欧美在线黄色| 嫩草影视91久久| 欧美日韩综合久久久久久 | 国产精华一区二区三区| 1024手机看黄色片| 久久伊人香网站| 色5月婷婷丁香| 大型黄色视频在线免费观看| 亚洲综合色惰| av在线天堂中文字幕| 男人的好看免费观看在线视频| 亚洲精品456在线播放app | 国产av麻豆久久久久久久| .国产精品久久| 国产一区二区在线观看日韩| 国产成人福利小说| 99riav亚洲国产免费| 老司机午夜福利在线观看视频| 国产精品人妻久久久久久| 99久久久亚洲精品蜜臀av| 国产免费av片在线观看野外av| 亚洲欧美日韩卡通动漫| 午夜福利成人在线免费观看| 特级一级黄色大片| 亚洲 国产 在线| 丰满的人妻完整版| 嫩草影院精品99| 成人性生交大片免费视频hd| 精品久久久久久久久久久久久| 日本熟妇午夜| 亚洲 国产 在线| 久久人人爽人人爽人人片va | 欧美日韩亚洲国产一区二区在线观看| 99精品在免费线老司机午夜| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| 露出奶头的视频| 国产精品嫩草影院av在线观看 | 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 欧美乱色亚洲激情| 日本五十路高清| 丰满乱子伦码专区| 真人一进一出gif抽搐免费| www.熟女人妻精品国产| 人妻制服诱惑在线中文字幕| 免费看a级黄色片| 久久久久久国产a免费观看| 午夜老司机福利剧场| 成人亚洲精品av一区二区| 欧美乱色亚洲激情| av中文乱码字幕在线| 久久久久久久午夜电影| 亚洲最大成人手机在线| 久久伊人香网站| 国产精品国产高清国产av| 婷婷精品国产亚洲av在线| 88av欧美| 亚洲精品久久国产高清桃花| 91麻豆av在线| 99国产精品一区二区三区| 人妻夜夜爽99麻豆av| 999久久久精品免费观看国产| 国产一级毛片七仙女欲春2| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 久久精品国产99精品国产亚洲性色| 午夜视频国产福利| 悠悠久久av| 色吧在线观看| 亚洲黑人精品在线| 美女高潮的动态| 午夜日韩欧美国产| 国产精品一区二区性色av| 免费电影在线观看免费观看| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 午夜免费男女啪啪视频观看 | 日本撒尿小便嘘嘘汇集6| 美女被艹到高潮喷水动态| 亚洲专区中文字幕在线| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 韩国av一区二区三区四区| 午夜福利18| 一区福利在线观看| 欧美在线黄色| 国产亚洲av嫩草精品影院| 99热这里只有是精品50| 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 日本在线视频免费播放| 久久精品91蜜桃| 色哟哟·www| www.www免费av| 99精品在免费线老司机午夜| 又粗又爽又猛毛片免费看| 日本 欧美在线| 国产精品亚洲av一区麻豆| 搞女人的毛片| 亚洲乱码一区二区免费版| 女人十人毛片免费观看3o分钟| www.熟女人妻精品国产| 亚洲第一区二区三区不卡| 国产精品乱码一区二三区的特点| 免费无遮挡裸体视频| 午夜a级毛片| 一边摸一边抽搐一进一小说| 丰满人妻熟妇乱又伦精品不卡| 国产大屁股一区二区在线视频| 亚洲一区二区三区不卡视频| 自拍偷自拍亚洲精品老妇| 性色av乱码一区二区三区2| 国产v大片淫在线免费观看| 婷婷精品国产亚洲av| 一进一出好大好爽视频| 精品久久久久久久末码| 亚洲第一电影网av| 白带黄色成豆腐渣| 亚洲av.av天堂| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 欧美日韩黄片免| 欧美精品国产亚洲| 亚洲最大成人手机在线| 窝窝影院91人妻| 国产精品影院久久| 舔av片在线| 一级av片app| 婷婷亚洲欧美| 国产主播在线观看一区二区| or卡值多少钱| 性欧美人与动物交配| 99久久九九国产精品国产免费| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 精品人妻熟女av久视频| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 亚洲av熟女| 亚洲精品乱码久久久v下载方式| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 又粗又爽又猛毛片免费看| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 中文字幕久久专区| 亚洲精品亚洲一区二区| 极品教师在线免费播放| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 精品一区二区免费观看| 久久久国产成人免费| 中文字幕av在线有码专区| 一a级毛片在线观看| 亚洲欧美清纯卡通| 国产精品野战在线观看| 日韩成人在线观看一区二区三区| 亚洲av第一区精品v没综合| 99热这里只有精品一区| 国产精品久久久久久久电影| 国产一区二区亚洲精品在线观看| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 我的女老师完整版在线观看| 99精品久久久久人妻精品| 欧美+日韩+精品| 国产伦精品一区二区三区视频9| 国产成人影院久久av| 天堂av国产一区二区熟女人妻| 一级a爱片免费观看的视频| 最近最新免费中文字幕在线| 中文字幕久久专区| 亚洲自拍偷在线| 一区二区三区免费毛片| 可以在线观看毛片的网站| 久久人人精品亚洲av| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 美女大奶头视频| 一区二区三区免费毛片| 国产精品一区二区免费欧美| 神马国产精品三级电影在线观看| 成人午夜高清在线视频| 天堂影院成人在线观看| 中文字幕av成人在线电影| а√天堂www在线а√下载| 老女人水多毛片| 欧美又色又爽又黄视频| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 欧美一区二区精品小视频在线| 欧美性感艳星| 国产精品永久免费网站| 99久久久亚洲精品蜜臀av| 国产精品女同一区二区软件 | 成年免费大片在线观看| 一个人看的www免费观看视频| 亚洲av成人av| 如何舔出高潮| 国产视频一区二区在线看| 综合色av麻豆| 亚洲不卡免费看| 男人舔奶头视频| www.www免费av| 国产精品人妻久久久久久| 午夜a级毛片| 国产真实乱freesex| 天天一区二区日本电影三级| 亚洲,欧美精品.| 亚洲精品456在线播放app | 12—13女人毛片做爰片一| 亚洲七黄色美女视频| av在线老鸭窝| 久久国产乱子伦精品免费另类| 俺也久久电影网| 国产亚洲精品综合一区在线观看| avwww免费| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 亚洲中文字幕日韩| 噜噜噜噜噜久久久久久91| 国产av一区在线观看免费| 亚洲av成人不卡在线观看播放网| 日韩av在线大香蕉| 成人欧美大片| 日韩中字成人| 久久久国产成人免费| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 久久精品国产99精品国产亚洲性色| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 精品久久久久久,| 欧美乱妇无乱码| 国产精品不卡视频一区二区 | 国内久久婷婷六月综合欲色啪| 此物有八面人人有两片| 性色av乱码一区二区三区2| 午夜精品一区二区三区免费看| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线| 国产精品国产高清国产av| 精品人妻偷拍中文字幕| 亚洲黑人精品在线| 麻豆一二三区av精品| 欧美午夜高清在线| 国产亚洲欧美98| 国产一区二区三区视频了| 日本a在线网址| 丁香六月欧美| 午夜福利在线在线| 日韩av在线大香蕉| 真人做人爱边吃奶动态| 精品人妻视频免费看| 一本一本综合久久| 国产黄片美女视频| 亚洲无线在线观看| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 午夜激情欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 乱人视频在线观看| 午夜久久久久精精品| 无遮挡黄片免费观看| av女优亚洲男人天堂| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 国产色婷婷99| 最新中文字幕久久久久| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 一区二区三区四区激情视频 | 天天一区二区日本电影三级| 亚洲av美国av| 99热这里只有精品一区| 日韩欧美国产一区二区入口| 日韩亚洲欧美综合| .国产精品久久| 免费大片18禁| 天堂av国产一区二区熟女人妻| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 精品一区二区三区人妻视频| 国产精品久久久久久人妻精品电影| 韩国av一区二区三区四区| 亚洲熟妇中文字幕五十中出| 99久久成人亚洲精品观看| 中出人妻视频一区二区| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 一个人免费在线观看电影| 亚洲av中文字字幕乱码综合| 国产成年人精品一区二区| 亚洲不卡免费看| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 免费在线观看影片大全网站| a在线观看视频网站| .国产精品久久| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 亚洲18禁久久av| 国产在视频线在精品| 草草在线视频免费看| 亚洲欧美精品综合久久99| 亚洲精品一区av在线观看| 精品人妻熟女av久视频| 999久久久精品免费观看国产| 性色avwww在线观看| 亚洲av二区三区四区| 欧美激情在线99| 欧美精品啪啪一区二区三区| 欧美性猛交黑人性爽| 成人一区二区视频在线观看| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 午夜激情福利司机影院| 色哟哟哟哟哟哟| 亚洲精华国产精华精| 网址你懂的国产日韩在线| 亚洲av熟女| 日本熟妇午夜| 一级毛片久久久久久久久女| 18+在线观看网站| 欧美性猛交黑人性爽| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 婷婷精品国产亚洲av在线| 在线免费观看不下载黄p国产 | 成人毛片a级毛片在线播放| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看.| 亚洲五月天丁香| 欧美不卡视频在线免费观看| 69av精品久久久久久| 亚洲国产精品合色在线| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 免费观看人在逋| 久久久久免费精品人妻一区二区| 露出奶头的视频| 99久久99久久久精品蜜桃| 舔av片在线| 国产精品不卡视频一区二区 | 小蜜桃在线观看免费完整版高清| 男女床上黄色一级片免费看| 成人美女网站在线观看视频| 五月玫瑰六月丁香| 成人美女网站在线观看视频| www.999成人在线观看| 天堂网av新在线| 深夜精品福利| 国产精品一区二区免费欧美| 美女高潮喷水抽搐中文字幕| 真实男女啪啪啪动态图| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 亚洲综合色惰| 精品人妻一区二区三区麻豆 | 欧美中文日本在线观看视频| 亚洲自拍偷在线| 亚洲精品456在线播放app | 男女做爰动态图高潮gif福利片| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 黄色女人牲交| 午夜久久久久精精品| 美女黄网站色视频| 亚洲在线自拍视频| 国产av不卡久久| 看片在线看免费视频| 欧美性猛交黑人性爽| 91狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 美女黄网站色视频| 免费人成在线观看视频色| 国产精品爽爽va在线观看网站| 在线播放无遮挡| 一夜夜www| 伦理电影大哥的女人| 亚洲精品久久国产高清桃花| 黄色日韩在线| 久久精品影院6| 怎么达到女性高潮| 亚洲av美国av| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 国产精品久久久久久人妻精品电影| 在线a可以看的网站| 午夜福利视频1000在线观看| 悠悠久久av| 欧美黑人巨大hd| 九九在线视频观看精品| 欧美成狂野欧美在线观看| 1000部很黄的大片| 三级毛片av免费| 久久国产乱子伦精品免费另类| 色av中文字幕| 精品乱码久久久久久99久播| 啦啦啦观看免费观看视频高清| 女生性感内裤真人,穿戴方法视频| 国产精品不卡视频一区二区 | 91狼人影院| 亚洲黑人精品在线| 午夜两性在线视频| 精品欧美国产一区二区三| 日韩人妻高清精品专区| 免费在线观看成人毛片| 国产真实伦视频高清在线观看 | 国内久久婷婷六月综合欲色啪| 日本精品一区二区三区蜜桃| 人人妻人人看人人澡| 天美传媒精品一区二区| 黄色日韩在线| 国产精品嫩草影院av在线观看 | 黄色配什么色好看| 日韩欧美精品免费久久 | 国产成人影院久久av| 老熟妇仑乱视频hdxx| 97超级碰碰碰精品色视频在线观看| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆 | 99热这里只有精品一区| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 一夜夜www| 亚洲中文字幕日韩| bbb黄色大片|