• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advanced Treatment Planning in Cancer Thermal Therapies

    2016-02-07 03:24:10TheodorosSAMARASEsraNEUFELDNielsKUSTER
    中國醫(yī)療設備 2016年4期

    Theodoros SAMARAS,Esra NEUFELD,Niels KUSTER

    1.Aristotle University of Thessaloniki,Greece;2.IT'IS Foundation,Zeughausstrasse 43,8004 Zurich,Switzerland;3.ZMT,Zurich MedTech AG,Switzerland;4.Swiss Federal Institute of Technology (ETH),R?mistrasse 101,8092 Zurich,Switzerland

    Advanced Treatment Planning in Cancer Thermal Therapies

    Theodoros SAMARAS1,Esra NEUFELD2,3,Niels KUSTER2,4

    1.Aristotle University of Thessaloniki,Greece;2.IT'IS Foundation,Zeughausstrasse 43,8004 Zurich,Switzerland;3.ZMT,Zurich MedTech AG,Switzerland;4.Swiss Federal Institute of Technology (ETH),R?mistrasse 101,8092 Zurich,Switzerland

    CEM43 thermal dose is a very common concept in thermal oncology.Thermal dose is the maximum amount of energy that can be transmitted during hyperthermia therapy conducted on temperature-sensitive tissue.Thermal dose is also the maximum value of local energy accumulation in human bodies,which can lead to tissue injury and pain.Thermal dose can also decrease the fnishing temperature and reduce the energy to the tolerable range.There are two functions of the individualized hyperthermia treatment plan: it determines the setting and location that can realize the best tumor hyperthermia therapy;at the same time,it can decrease the effect of hyperthermia therapy on healthy tissues.There are four steps in the treatment plan of hyperthermia therapy for tumors: the frst step is to establish a three dimensional human body model and its corresponding an atomical structure that can be used in numerical algorithmviamedical imaging resources;the second step is to determine the volume of the electromagnetic energy accumulation.Based on the peculiarity of frequency and materials,even full-wave electromagnetic wave or quasi-static technique can be used to determine the tissue distribution.Evaluation of the therapy can be conducted based on thermal dose and the corresponding tissue damage model;the third step is to use Arrhenius model to provide direct evaluation of tissues in the thermal ablation zone,solidifcation zone,as well as the necrotic area;the last step is the optimization of the treatment plan.

    cancer;thermal therapy/hyperthermia therapy;treatment plan;radiofrequency

    0 INTRODUCTION

    Thermal therapies in cancer treatment are used either alone or in conjunction with radiotherapy and chemotherapy,in order to enhance their effcacy.In the former case,the change in tissue temperature is large enough to directly kill the cells (target temperatures of <-40℃ for cryoablationand >50℃for thermal ablation).In the latter case,temperature rise is mild (between 3 ℃ and 8 ℃) and this treatment modality is known as hyperthermia.Hyperthermia enhances the cytotoxic effects of chemo- and radiotherapy through several biological mechanisms[1-2].Depending on the heated body area,hyperthermia can be local,regional or whole-body.However,here we only discuss locoregional hyperthermia applied to deep or superfcial tissues.

    There are many physical mechanisms that allow deposition of energy at the site of the tumor,leading to local temperature increase.Such mechanisms include warm or hot water flow in tubes,infrared (IR) radiation,the implantation of magnetic microspheres of nanoparticles,the conduction of radiofrequency (RF) currents and the absorption of light,microwaves (MW) or ultrasound radiation.The emphasis in this article will be on electrothermal applications.

    1 THE NEED FOR TREATMENT PLANNING

    1.1 Deep and superfcial hyperthermia

    It has been shown in many studies that treatment outcome is correlated positively to treatment quality characterized by the achieved temperature rise for the desired time within the entire target volume[3-8].Moreover,it is known that in clinical practice "hot-spots" in sensitive tissues are the limiting factor for the maximum power that can be delivered in a treatment session.These "hot-spots" are local maxima in the deposited energy insidethe patient’s body,which result in undesirable tissue damage or pain and compromise either the final temperature that can be reached or the duration that a specifc power level can be tolerated.Therefore,individualized treatment planning in hyperthermia has a dual role: it determines the applicator settings and positioning to accomplish optimal heating of the tumor,while minimizing effects on healthy tissue,following the "tissue sparing" paradigm in radiotherapy[9].At the same time,it can provide to the clinician or technician alternative treatmentplans during the therapeutic session,readily available to be delivered by the applicators,so that patient discomfort does not put treatment objectives at risk.The benefits of personalized treatment planning include alsobetter coverage of the tumor either with very simple methods[10]or by more complicated power steering techniques available for phased arrays[11-12].

    1.2 RF and MW ablation

    The aims of treatment planning in thermal ablation are different from hyperthermia.The volume affected by the electromagnetic field in this case is limited.However,side-effects from healthy tissue heating remain a problem,perhaps more important than for hyperthermia,due to the high temperatures reached during ablation.Blood vessel destruction,resulting in internal bleeding,and organ perforation are the most serious complications for this treatment[13-14],which limit the final temperature rise.In thermal ablation,blood vessel proximity to the treated tumor does not only carry the risk of bleeding or blood clotting;it also reduces the efficacy of treatment with the "heat-sink" effect,especially in RF ablation,since in MW ablation blood vessels act more as heat conduits to neighboring healthy tissue.The "heat-sink" effect describes the ability of fowing blood to remove from the treatment area large quantities of the deposited heat,thus inhibiting the development of therapeutic temperatures throughout the tumor volume and resulting in its non-uniform heating.Therefore,it is important to determine temperature rise distribution in the target area prior to treatment and optimize the positioning and excitation settings of the interstitial applicator.

    2 TREATMENT PLANNING WORKFLOW

    2.1 Outline

    Treatment planning in cancer thermal therapies is a fourstep process (Figure 1).The first step is the creation from medical imaging data of the personalized computational 3D model with the realistic anatomy that will be used in the numerical solvers.The calculation of the temperature in the model requires another two steps.Initially,the electromagnetic problem is solved to calculate the distribution of energy dissipated in the tissues.In the next step the energy deposited is considered as a heat source (thermal load) and the temperature rise is evaluated using,e.g.,a bioheat transfer equation,so that thermal effects in the tissue can be assessed using the appropriate physiological model.Finally,if the applicator employed allows for energy steering inside the body,the treatment plan can be optimized,by choosing the distribution of either deposited electromagnetic energy or temperature,which is expected to maximize the therapeutic outcome.

    Figure 1 The process of treatment planning in thermal therapy of cancer.

    Treatment planning in thermal therapies for cancer is much more demanding and complex compared with radiotherapy treatment planning.It entails state-of-the-art software implementing the latest numerical techniques,and may even require high performance computing platforms compared to RT.Due to the strongly inhomogeneous nature of the human body and the impact of physiological factors,such as blood perfusion and thermoregulation,high-quality treatment planning is a demanding task,nevertheless,attainable with present computational means.

    One positive side effect of the effort to introduce treatment planning in the clinics has been the generation of tools that can assist in the development of novel applicators[15-16]and the production of guidelines[17]to promote treatment quality.

    2.2 Model segmentation

    Model segmentation is the process of identifying three dimensional regions of tissues from medical imaging data (e.g.,MRI,CT).By assigning physical properties to these regions,it is possible to generate computable models that can be used by physics solvers to calculate electromagnetic absorption and temperature distributions.The model detailed nessnecessary for thermal therapy treatment planning depends on the application,although it is normally higher than for radiotherapy.Deep hyperthermia treatment planning is performed for larger body volumes than superficial hyperthermia and thermal ablation.It also requires a better description of organs and their surfaces,since material interfaces have an impact in the resulting electromagnetic field distributions.Consequently,it is required that more tissues are distinguished in the model,than for radiotherapy.On the other hand,it should always be checked beforehand how big a model should be in the case ofsuperfcial hyperthermia or thermal ablation,so that evaluated physical quantities are not contaminated by boundary effects.In particular,for thermal ablation,it may be necessary to employ specialized algorithms for obtaining vasculature in the proximity of the treatment area,as it may affect treatment effcacy.

    Segmentation is a time-consuming task for hyperthermia compared to radiotherapy,as explained above.Therefore,the software used must facilitate the rapid generation of anatomical models by offering a wide range of both automatic and interactive segmentation algorithms.Manual interaction is necessary in situations of low-quality images,as well as disease,which differentiates the picture in the image from anatomical atlases.However,the variation in hyperthermia treatment planning quality might be small between the two approaches[18].Moreover,it is necessary that segmented images can beconverted into highquality surface-based body models[19]without self-intersections and holes,suitable for mesh creation and simulation.

    Tissue properties are assigned to organs in a homogeneous fashion,although in reality they can vary spatially.There is certainly a big variation of dielectric properties among the population (depending on age,sex,or pathology) and their values have been obtained usuallyex vivo,but,fortunately,the infuence of this variation on the calculation of the electromagnetically deposited power is less than 10% for high frequencies (hyperthermia and microwave ablation).In RF ablation the contrast electrical conductivity contrast between tumor and healthy tissue may be more critical[10-22].Currently,there are online databases[23]that include electrical,as well as mechanical and physiological tissues properties,although in some case the literature is scarce and the values are based on studies with small samples.

    When the generation of individual patient models is not necessary,e.g.,for mechanism investigations,applicator development,or when it is considered suffcient to personalize tumor location and shape but not anatomy,highly-detailed computational body models[24]are available and can be used instead.

    2.3 Power absorption calculation

    In the next step of treatment planning electromagnetic energy deposition is determined.Depending on the frequency and the material properties,either full-wave electromagneticor quasistatic[25-27]techniques can be used to determine the field distribution in the tissues.In hyperthermic oncology and MW ablation it is most often the former,while RF ablation modeling typically benefits from the latter.Nonlinear solvers may be necessary for thermal ablation,where temperature rise is large and changes the dielectric properties of tissues,e.g.,due to coagulation or tissue water evaporation.The accurate implementation of the partial differential equation (PDE) solvers has to be verifed against reference solutions,before the software can be used for treatment planning.

    Since in clinical practice it may be necessary to use more than one applicator elements to increase effectiveness,it is important that treatment planning software supports simultaneous setup of multi-antenna simulations and flexible coherent and incoherent field combining[28].It is quite often that antenna coupling and loading effects are overseen in treatment plans,carrying over miscalculations of optimal excitation parameters to the clinical setting.Applicator models are equally signifcant with patient models for accurate treatment planning.They have to be validated in terms of the predicted electric fields or the induced temperature rise,e.g.,in fat or cylindrical experimental phantoms orex vivoand the corresponding uncertainties have to be assessed,especially for quantitative predictions.Validation measurements should use phantoms containing well-characterised tissue-simulating materials and calibrated equipment,such as fibre-optic temperature sensors,or electric field sensors[29-31].Parameters that need consideration during validation include amplitude and phase changes of a single or multiple applicators.

    2.4 Temperature rise evaluation and thermal dosimetry

    Computational simulation of the interactions between electromagnetic fields and human tissues has reached a high level of accuracy in recent years,mainly due to the progress made in assessing the safe use of wireless telecommunication devices.On the other hand,temperature prediction still includes large uncertainties,because of large variations in the values of tissue thermal properties between patients,within the patient,or the tissue itself.Furthermore,important thermal parameters of tissues are strongly affected bytemperature (mainly through thermoregulation) leading to a highly nonlinear problem.

    A review of the models of heat transfer in blood perfused tissues is given in Arkinet al[32].For RF ablation techniques,it may be necessary to include the discrete vasculature[33],although the respective information is not always available from medical imaging.An alternative model to simulate directional heat flow is the use of tensorial effective conductivity[34].Although the directional effect of blood fow for vessels with diameters exceeding 0.2 mm can be signifcant,most treatment planning software,especially for hyperthermia,uses the Pennes Bioheat Transfer Equation (PBHE)[35]which models perfused tissues as a media continuum with an isotropic heat sink.

    The use of the PBHE results in reasonable estimates of temperature rise even for large computational models.Nevertheless,the final temperature distribution is sensitive to thermal parameters for which there is scarce data in the literature,in particular about their change under heat stress.Therefore,it is always necessary to perform an uncertainty analysis.The Monte-Carlo technique is a typical approach for such an analysis,due to the strong correlation between thermal parameters.The IT’IS database[23]can be used to derive the reference values of thermal properties for the sensitivity study.

    Recently,the PBHE equation has been extended to accommodate the effect of systemic thermoregulation on local blood perfusion and,consequently,local temperature rise[36].Moreover,other physical mechanisms which are important in the heat balance in thermal ablation,like phase transition,have been included in the PBHE[37].

    The distribution of temperature rise does not directly reveal tissue damage.This can be assessed through thermal dose,which can be evaluated with the appropriate tissue damage model.The Arrhenius model directly assesses tissue damage in coagulation and necrosis zones in ablation therapies.In hyperthermic oncology,use of the CEM43 thermal dose concept is common.The CEM43 thermal dose expresses the thermal history of a tissue location in terms of minutes of heating at 43 ℃ that would result in an equivalent thermal effect.It offers the advantage of not depending on tissue specific material parameters,and that CEM43 thresholds for thermal damage have been experimentally determined for a wide range of tissues and biological effects.Correlations between CEM43 and treatment outcome have been established clinically[38].

    2.5 Treatment optimization

    Treatment optimization in current clinical applications of thermal therapies is often performed by optimizing the energy deposition distribution,although the actual temperature or thermal dose level achieved in the tumor volume determine treatment quality.For phased array applicators,such as in deep hyperthermia treatments or ablation treatment with multiple catheters,the phases and amplitudes of the individual antennas canbe optimizedto achieve optimal tumor coverage,while avoiding exposure of sensitive tissues.Optimization is currently moving towards the utilization of either pre-computed information to enable real-time changes during the treatment[39]or multi-goal optimization to determine a large number of Pareto-optimal excitation settings[40].

    Modeling can also be used to optimize the impact of treatment parameters other than applicator amplitude and phase.In superfcial hyperthermia,for example,the temperature of the water-bolus can be adjusted for each individual to optimally heat or cool the surface.

    3 ADVANTAGES AND SHORTCOMING OF SIM4LIFE FOR TREATMENT PLANING

    The computational life sciences platform Sim4Life (Zurich Med Tech,Zurich,Switzerland)[40-41]offers a range of features that make it uniquely suited for thermal therapy treatment planning:

    (1) The software platform offers strong support for medical image data,which can be co-visualized with the model and simulation results to offer intuitive interpretation and localization of the results for the medical staff.This is facilitated by the integration of the powerful Visualization Toolkit (VTK)[42]that permits for example volume rendering in combination with a unique OpenGL visualization framework[43].The medical image data can be segmented and processed to generate personalized patient models.For that purpose a wide range of automatic and interactive segmentation methods is available (Figure 2).The discretization methods (gridding,voxeling,meshing) are capable of dealing with the resulting large and noisy models.Sim4Life also allows to load previously segmented data from radiotherapy planning as a basis for hyperthermia treatment planning.

    (2) The numerical solvers that have been extensively verified and documented are optimized for modeling human anatomy and living tissue.By using high performance computing approaches,such as multi-GPU acceleration,simulations at high resolution and detail can be performed.As mentioned above,this is a crucial issue for the reliable detection of hot-spots.A large range of electromagnetic (full-wave and quasi-static)and thermal solvers are available.The thermal solvers offer a range of features to account for perfusion effects and thermal regulation,including the possibility of accounting for local vasodilation and body-core-temperature increase.

    (3) The numerical solvers are supplemented by tissue models,such as the Arrhenius tissue damage and CEM43 thermal dose models,for the quantification of induced biological and therapeutic effects (Figure 3).

    Figure 3 Assessment of the thermal treatment dose in treatment optimization with Sim4Life.

    (4) Sim4Life has the functionalized,computable Virtual Population 3.0 anatomical phantoms[24]at its core,which is a range of high fidelity and resolution models generated from medical image data of volunteers selected to represent a broad patient population.These (poseable) models can be used for applicator development,basic research,guideline development,etc.In addition to the anatomical models a synchronized literature-based tissue properties database is available that facilitates assignment of dielectric and thermal properties[23].

    (5) Sim4Life already includes tools for focus steering,antenna array parameter optimization,and feld control that can account for tissue sensitivity and heating priorities (Figure 4).

    Figure 4 Model of an exposure set-up with a body model including the cancer,and a phased array applicator for electromagnetic treatment.The treatment settings are optimized with Sim4Life.

    (6) The Sim4Life environment offers a Python scripting framework that has been used to automate treatment planning,reporting,and other tasks in a clinical environment,thus,reducing effort,time,and human error.

    In addition,a range of features have been developed in Sim4Life for research purposes that are not yet available for the general public: advanced thermal models (accounting for example for the impact of discrete vasculature and anisotropic tissue),novel treatment optimization paradigms (multiobjective optimization combined with means to achieve realtime reoptimization based on patient or measurement feedback;PDE-constrained optimization for simultaneous treatment optimization and thermal modeling),cell water evaporation and rehydration models for high temperature treatment modeling,and support for image-derived inhomogeneity information and tissue property personalization (e.g.,using MRI perfusion maps).

    4 CONCLUSIONS

    There exist currently software packages[40,44]that can be used in clinical practice for thermal therapy treatment planning.Even with the current limitations in the calculation of temperature distribution,treatment planning can help improve treatment quality,design new applicators,investigate the role of multiple treatment parameters,and develop updated treatment protocols and clinical guidelines.The progress of non-invasive thermometry and real-time optimization are expected to reinforce the use of individualized treatment planning in the near future.

    [1]Hurwitz MD.Today’s Thermal Therapy:Not Your Father’s Hyperthermia[J].Am J Clin Oncol,2010,33(1):96-100.

    [2]Toraya-Brown S,Fiering S.Local tumour hyperthermia as immunotherapy for metastatic cancer[J].Int J Hyperthermia,2014,30(8):531-539.

    [3]Cox RS,Kapp DS.Correlation of thermal parameters with outcome in combined radiation therapy-hyperthermia trials[J].Int J Hyperthermia,1992,8(6):719-732.

    [4]Wust P,Stahl H,Dieckmann K,et al.Local hyperthermia of N2/N3 cervical lymph node metastases:Correlation of technical/thermal parameters and response[J].Int J Radiat Oncol Biol Phys,1996,34(3):635-646.

    [5]Sherar M,Liu FF,Pintilie M,et al.Relationship between thermal dose and outcome in thermoradiotherapy treatments for superfcial recurrences of breast cancer:Data from a phase III trial[J].Int J Radiat Oncol Biol Phys,1997,39(2):371-380.

    [6]Maguire PD,Samulski TV,Prosnitz LR,et al.A phase II trial testing the thermal dose parameter CEM43T90 as a predictor of response in soft tissue sarcomas treated with pre-operativethermoradiotherapy[J].Int J Hyperthermia,2001,17(4):283-290.

    [7]Gellermann J,Hildebrandt B,Issels R,et al.Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia:Correlation with response and direct thermometry[J].Cancer,2006,107(6):1373-1382.

    [8]Franckena M,Fatehi D,de Bruijne M,et al.Hyperthermia dose-effect relationship in 420 patients withcervical cancer treated with combined radiotherapy andhyperthermia[J].Eur J Cancer,2009,45(11):1969-1978.

    [9]Bruggmoser G,Bauchowitz S,Canters R,et al.Quality assurance for clinical studies in regional deep hyperthermia[J].Strahlenther Onkol,2011,187(10):605-610.

    [10]De Bruijne M,Wielheesen DHM,van der Zee J,et al.Benefts of superficial hyperthermia treatment planning:Five case studies[J].Int J Hyperthermia,2007,23(5):417-429.

    [11]Canters RAM,Paulides MM,Franckena MF,et al.Implementation of treatment planning in the routine clinical procedure of regional hyperthermia treatment of cervical cancer:An overview and the Rotterdam experience[J].Int J Hyperthermia,28(6):570-581.

    [12]Karampatzakis A,Kühn S,Tsanidis G,et al.Heating characteristics of antenna arrays used in microwave ablation:A theoretical parametric study[J].Comput Biol Med,2013,43(10):1321-1327.

    [13]Livraghi T,Meloni F,Di Stasi M,et al.Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis:Is resection still the treatment of choice[J]?Hepatology,2008,47(1):82-89.

    [14]Livraghi T,Meloni L,Solbiati L,et al.Complications of Microwave Ablation for Liver Tumors:Results of a Multicenter Study[J].Cardiovasc Intervent Radiol,2012,35(4):868-874.

    [15]Togni P,Rijnen Z,Numan WCM,et al.Electromagnetic redesign of the HYPERcollar applicator:toward improved deep local head-and-neck hyperthermia[J].Phys Med Biol,58(17):5997-6009.

    [16]Capstick M,Neufeld E,Gosselin MC,et al.A new approach to high-quality patient-specific hyperthermia treatment[A].9thEuropean Conference on Antennas and Propagation(EuCAP) [C].2015:13-17.

    [17]Van derGaag ML,de Bruijne M,Samaras T,et al.Development of a guideline for the water bolus temperature in superficial hyperthermia[J].Int J Hyperthermia,2006,22(8):637-656.

    [18]Verhaart RF,Fortunati V,Verduijn GM,et al.CT-based patient modeling for head and neck hyperthermia treatment planning:Manual versus automatic normal-tissue-segmentation[J].Radiother Oncol,2014,111(1):158-163.

    [19]Wust P,Nadobny J,Seebass M,et al.Influence of patient models and numerical methods on predicted power deposition patterns[J].Int J Hyperthermia,1999,15(6):519-540.

    [20]Solazzo SA,Liu Z,Lobo SM,et al.Radiofrequency ablation: Importance of background tissue electrical conductivity-An agar phantom and computer modeling study[J].Radiology,2005,236(2):495-502.

    [21]Liu Z,Ahmed M,Weinstein Y,et al.Characterization of the RF ablation-induced ‘oven effect’:Theimportance of background tissue thermal conductivity on tissue heating[J].Int J Hyperthermia,2006,22(4):327-342.

    [22]Zorbas G,Samaras T.Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models[J].Electromagn Biol Med,2013,32(2):236-243.

    [23]Hasgall PA,Di Gennaro F,Baumgartner C,et al.IT’IS Database for thermal and electromagnetic parameters of biological tissues[EB/OL].Available at www.itis.ethz.ch/database.

    [24]Gosselin MC,Neufeld E,Moser H,et al.Development of a new generation of high-resolution anatomical models for medical device evaluation:the Virtual Population 3.0[J].Phys Med Biol,59(18):5287-5303.

    [25]Lagendijk JJW.Hyperthermia treatment planning[J].Phys Med Biol,2000,45(5):61-76.

    [26]Hand JW.Modelling the interaction of electromagnetic fields(10 MHz–10 GHz) with the human body:methods and applications[J].Phys Med Biol,2008,53(16):243-286.

    [27]Berjano EJ.Theoretical modeling for radiofrequency ablation:state-of-the-art and challenges for the future[J].Biomed Eng Online,2006,5:24.

    [28]Neufeld E.High Resolution hyperthermia treatment planning.PhD Thesis,ETH Zurich,Nr.17947[EB/OL].Available at http://e-collection.library.ethz.ch/eserv/eth:31164/eth-31164-02.pdf.

    [29]Paulides MM,Bakker JF,van Rhoon GC.Electromagnetic head-and-neck hyperthermia applicator:Experimental phantom verification and FDTD model[J].Int J Radiat Oncol Biol Phys,2008,68(2):612-620.

    [30]De Bruijne M,Samaras T,Chavannes T,et al.Quantitative validation of the 3D SAR profle of hyperthermia applicators using the gamma method[J].Phys Med Biol,2007,52(11): 3075-3088.

    [31]Wang Z,Aarya I,Gueorguieva M,et al.Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom[J].Int J Comput Assist Radiol Surg,2012,7(6):941-948.

    [32]Arkin H,Xu LX,Holmes KR.Recent developments in modeling heat transfer in blood perfused tissues[J].IEEE Trans Biomed Eng,1994,41(2):97-107.

    [33]Kotte AN,van Leeuwen GM,Lagendijk JJ.Modelling the thermal impact of a discrete vessel tree[J].Phys Med Biol,1999,44(1):57-74.

    [34]Crezee J,Lagendijk JJW.Temperature uniformity during hyperthermia:The impact of large vessels[J].Phys Med Biol,1992,37(6):1321-1337

    [35]Pennes HH.Analysis of tissue and arterial blood temperatures in the resting human forearm[J].J Appl Physiol,1948,1(2):93- 122.

    [36]Hirata A,Asano T,Fujiwara O.FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure[J].Phys Med Biol,2008,53(18):5223-5238.

    [37]Yang D,Converse MC,Mahvi DM,et al.Expanding the bioheat equation to include tissue internal water evaporation during heating[J].IEEE Trans Biomed Eng,2007,54(8):1382-1388.

    [38]Jones E,Thrall D,Dewhirst MW,et al.Prospective thermal dosimetry:The key to hyperthermia's future[J].Int J Hyperthermia,2007,22(3):247-253

    [39]Neufeld E,Chavannes N,Paulides MM,et al.Fast(re-) optimization for hyperthermia:Bringing treatment planning into the treatment room[A].10thInternational Congress on Hyperthermic Oncology[C].9-12 April 2008,Munich.

    [40]Neufeld E,Szczerba D,Chavannes N,et al.A novel medical image data-based multi-physics simulation platform for computational life sciences[J].Interface Focus,2013,3:2012 0058.

    [41]Sim4Life v2.0[EB/OL].http://www.zurichmedtech.com/sim4life.Last accessed 16 November 2015.

    [42]The Visualization Toolkit(VTK),v6.3.0[EB/OL].http://www.vtk.org.Last accessed 16 November 2015.

    [43]OpenGL[EB/OL].https://www.opengl.org.Last accessed 16 November 2015.

    [44]Gellermann J,Wust P,Stalling D,et al.Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan[J].Int J Radiat Oncol Biol Phys,2000,47(4):1145-1156.

    R318.08 [Document code]A

    10.3969/j.issn.1674-1633.2016.04.005

    1674-1633(2016)04-0023-07

    Received: 2015-11-30

    Niels Kuster,Founder &Chairman,IT'IS Foundation.

    E-mail: kuster@itis.ethz.ch

    av福利片在线| 黄网站色视频无遮挡免费观看| 国产亚洲欧美精品永久| 午夜精品久久久久久毛片777| 中文字幕另类日韩欧美亚洲嫩草| 亚洲男人天堂网一区| 美女免费视频网站| 伊人久久大香线蕉亚洲五| av免费在线观看网站| 亚洲午夜精品一区,二区,三区| 成熟少妇高潮喷水视频| 午夜福利一区二区在线看| 欧美黄色片欧美黄色片| 国产精品爽爽va在线观看网站 | 亚洲成av人片免费观看| 国产精品 欧美亚洲| 国产单亲对白刺激| 美国免费a级毛片| 成人国产一区最新在线观看| 亚洲人成77777在线视频| 禁无遮挡网站| 精品久久久久久久久久免费视频| 久9热在线精品视频| 在线观看66精品国产| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区三区四区久久 | 亚洲av成人av| 最近最新免费中文字幕在线| 婷婷丁香在线五月| 日韩国内少妇激情av| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 欧美日本亚洲视频在线播放| 久久人妻熟女aⅴ| 97超级碰碰碰精品色视频在线观看| 日韩欧美在线二视频| av天堂久久9| 亚洲专区字幕在线| 每晚都被弄得嗷嗷叫到高潮| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 日本三级黄在线观看| 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 国产色视频综合| 美女 人体艺术 gogo| 亚洲欧美日韩高清在线视频| 亚洲熟女毛片儿| 国产三级在线视频| 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看 | 在线国产一区二区在线| 欧美亚洲日本最大视频资源| av在线播放免费不卡| 国产黄a三级三级三级人| 精品久久久久久久毛片微露脸| 亚洲美女黄片视频| 人妻久久中文字幕网| 欧美国产日韩亚洲一区| 两性夫妻黄色片| 亚洲中文av在线| 国产野战对白在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品99久久99久久久不卡| 搞女人的毛片| 久久影院123| 97超级碰碰碰精品色视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产av又大| 午夜福利视频1000在线观看 | 午夜免费激情av| 啦啦啦 在线观看视频| 国产高清有码在线观看视频 | 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 日韩精品青青久久久久久| 国产精品,欧美在线| 91av网站免费观看| 男人操女人黄网站| 日韩欧美国产在线观看| 国产精品亚洲一级av第二区| 波多野结衣av一区二区av| 亚洲熟妇中文字幕五十中出| 夜夜爽天天搞| 首页视频小说图片口味搜索| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| av视频免费观看在线观看| 午夜亚洲福利在线播放| 18禁黄网站禁片午夜丰满| 亚洲国产中文字幕在线视频| 精品久久久久久久人妻蜜臀av | 亚洲精品久久成人aⅴ小说| 91成年电影在线观看| 又大又爽又粗| 午夜久久久久精精品| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 精品久久久久久久毛片微露脸| 成年人黄色毛片网站| 午夜精品在线福利| 在线观看日韩欧美| 成人亚洲精品av一区二区| 法律面前人人平等表现在哪些方面| xxx96com| 亚洲人成网站在线播放欧美日韩| 久久天堂一区二区三区四区| 亚洲五月天丁香| 一区在线观看完整版| 亚洲在线自拍视频| 欧美 亚洲 国产 日韩一| 午夜视频精品福利| 国产精品二区激情视频| 91国产中文字幕| 法律面前人人平等表现在哪些方面| av电影中文网址| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 免费看美女性在线毛片视频| 99国产精品一区二区蜜桃av| 18禁美女被吸乳视频| 丁香欧美五月| 女人高潮潮喷娇喘18禁视频| 999久久久国产精品视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟妇中文字幕五十中出| 麻豆国产av国片精品| 青草久久国产| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 两个人免费观看高清视频| 亚洲av电影在线进入| 好男人在线观看高清免费视频 | 精品一区二区三区四区五区乱码| 我的亚洲天堂| 国产亚洲精品久久久久久毛片| 日韩成人在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美98| 黄色毛片三级朝国网站| 日本免费一区二区三区高清不卡 | 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 国产一级毛片七仙女欲春2 | 成人国产一区最新在线观看| 亚洲中文av在线| 久久久国产成人免费| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 久久中文字幕人妻熟女| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 亚洲专区字幕在线| 人人妻,人人澡人人爽秒播| 长腿黑丝高跟| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 午夜视频精品福利| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看 | 国产精品久久久久久人妻精品电影| 级片在线观看| 人人妻人人澡欧美一区二区 | 成人av一区二区三区在线看| cao死你这个sao货| 亚洲色图综合在线观看| 久久婷婷人人爽人人干人人爱 | 精品久久久久久,| 久久久久久久精品吃奶| 亚洲在线自拍视频| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 国产精品1区2区在线观看.| 精品国产美女av久久久久小说| 别揉我奶头~嗯~啊~动态视频| 午夜福利影视在线免费观看| 国产私拍福利视频在线观看| 人人妻人人澡人人看| 亚洲一区中文字幕在线| 国产精品一区二区三区四区久久 | 欧美大码av| 神马国产精品三级电影在线观看 | 亚洲九九香蕉| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 精品欧美国产一区二区三| 咕卡用的链子| 欧美激情 高清一区二区三区| aaaaa片日本免费| av免费在线观看网站| 国产精品日韩av在线免费观看 | 岛国视频午夜一区免费看| 操美女的视频在线观看| 亚洲一区二区三区色噜噜| 丝袜美腿诱惑在线| 窝窝影院91人妻| 国产不卡一卡二| 欧美乱妇无乱码| 午夜福利影视在线免费观看| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 黄色丝袜av网址大全| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 日韩中文字幕欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 91字幕亚洲| 一级,二级,三级黄色视频| 精品久久久久久久人妻蜜臀av | 久久久国产成人精品二区| 亚洲欧美激情在线| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 波多野结衣av一区二区av| 亚洲成av人片免费观看| 一级a爱视频在线免费观看| 成人免费观看视频高清| 两个人看的免费小视频| 一级a爱片免费观看的视频| 久久久国产成人免费| 亚洲av五月六月丁香网| 久久久久久久午夜电影| 国产成人免费无遮挡视频| 人人妻人人澡欧美一区二区 | 午夜免费成人在线视频| 99在线视频只有这里精品首页| 亚洲午夜精品一区,二区,三区| 国产精品日韩av在线免费观看 | 在线天堂中文资源库| 国产精品久久电影中文字幕| 亚洲国产精品999在线| 香蕉国产在线看| 超碰成人久久| 日韩视频一区二区在线观看| 国产激情欧美一区二区| 日韩精品免费视频一区二区三区| 麻豆av在线久日| 欧美日韩福利视频一区二区| 搡老妇女老女人老熟妇| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 精品一区二区三区视频在线观看免费| 久久亚洲精品不卡| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 国产精品九九99| 日韩欧美国产在线观看| 精品一品国产午夜福利视频| 日本一区二区免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 欧美乱妇无乱码| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| av片东京热男人的天堂| 一区二区三区高清视频在线| 嫁个100分男人电影在线观看| 欧美绝顶高潮抽搐喷水| 国产精品爽爽va在线观看网站 | 国产aⅴ精品一区二区三区波| 国产xxxxx性猛交| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 亚洲专区国产一区二区| 大型av网站在线播放| 热re99久久国产66热| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 波多野结衣高清无吗| 91国产中文字幕| 欧美日韩精品网址| 两个人视频免费观看高清| 久久国产亚洲av麻豆专区| 国产私拍福利视频在线观看| 级片在线观看| 一进一出好大好爽视频| 在线播放国产精品三级| av欧美777| 国产单亲对白刺激| 男女午夜视频在线观看| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 国产精品 国内视频| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 日本三级黄在线观看| 免费少妇av软件| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女 | 久热爱精品视频在线9| 两个人视频免费观看高清| 欧美乱码精品一区二区三区| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 91成人精品电影| 精品无人区乱码1区二区| 一进一出抽搐gif免费好疼| 十八禁人妻一区二区| 九色亚洲精品在线播放| 一级,二级,三级黄色视频| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清 | 亚洲中文日韩欧美视频| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女黄片视频| 中文字幕色久视频| 中文字幕人成人乱码亚洲影| 欧美另类亚洲清纯唯美| avwww免费| 性欧美人与动物交配| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 亚洲精品久久国产高清桃花| 久热爱精品视频在线9| 久久久久久久久久久久大奶| 一级黄色大片毛片| 麻豆av在线久日| 97人妻天天添夜夜摸| 午夜亚洲福利在线播放| 岛国在线观看网站| a级毛片在线看网站| 国语自产精品视频在线第100页| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 国产精品爽爽va在线观看网站 | 国语自产精品视频在线第100页| 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| www.www免费av| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 大香蕉久久成人网| 久久婷婷成人综合色麻豆| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 好男人在线观看高清免费视频 | 黄色视频不卡| 国产1区2区3区精品| 女生性感内裤真人,穿戴方法视频| 怎么达到女性高潮| 女性生殖器流出的白浆| 国产熟女xx| or卡值多少钱| 国产成人精品久久二区二区免费| 国内毛片毛片毛片毛片毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 国产精品久久视频播放| 国产精品亚洲一级av第二区| 后天国语完整版免费观看| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 无遮挡黄片免费观看| 欧美丝袜亚洲另类 | 午夜a级毛片| 欧美午夜高清在线| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| av网站免费在线观看视频| 免费在线观看日本一区| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 黄片播放在线免费| 亚洲国产精品合色在线| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 午夜精品国产一区二区电影| 18美女黄网站色大片免费观看| 无限看片的www在线观看| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 久久精品国产99精品国产亚洲性色 | 黑人欧美特级aaaaaa片| 一级黄色大片毛片| 极品教师在线免费播放| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频 | 亚洲七黄色美女视频| 久久精品国产综合久久久| 亚洲第一青青草原| 老司机午夜十八禁免费视频| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 久久久水蜜桃国产精品网| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| av超薄肉色丝袜交足视频| 国产成人免费无遮挡视频| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 一边摸一边做爽爽视频免费| 久久久久久大精品| 亚洲情色 制服丝袜| 亚洲全国av大片| 91av网站免费观看| 久久影院123| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 成人三级黄色视频| 成人手机av| 欧美性长视频在线观看| 999久久久国产精品视频| 禁无遮挡网站| 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| 久久精品亚洲精品国产色婷小说| 亚洲精华国产精华精| 国产亚洲精品久久久久久毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产三级在线视频| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| av电影中文网址| 夜夜爽天天搞| 亚洲成人久久性| 性少妇av在线| 男女做爰动态图高潮gif福利片 | 国产蜜桃级精品一区二区三区| 国产成人av激情在线播放| 久久久久久国产a免费观看| 国产成+人综合+亚洲专区| 久久久久久久久久久久大奶| 老司机靠b影院| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 高清在线国产一区| 久久久水蜜桃国产精品网| 国产亚洲精品一区二区www| 精品免费久久久久久久清纯| 日韩中文字幕欧美一区二区| 日韩一卡2卡3卡4卡2021年| 男女下面进入的视频免费午夜 | 在线观看舔阴道视频| 国产高清有码在线观看视频 | 一级毛片女人18水好多| 成在线人永久免费视频| 黄色成人免费大全| 欧美人与性动交α欧美精品济南到| 日韩精品青青久久久久久| 午夜福利成人在线免费观看| 亚洲熟妇中文字幕五十中出| 熟妇人妻久久中文字幕3abv| 黄片大片在线免费观看| av天堂在线播放| 欧美中文综合在线视频| 一二三四社区在线视频社区8| 亚洲av片天天在线观看| 日本 欧美在线| 免费在线观看影片大全网站| 可以免费在线观看a视频的电影网站| 日韩欧美一区二区三区在线观看| 91精品国产国语对白视频| 满18在线观看网站| 亚洲 欧美 日韩 在线 免费| 日本vs欧美在线观看视频| 久热这里只有精品99| 成人欧美大片| 欧美在线一区亚洲| 少妇粗大呻吟视频| 亚洲欧美精品综合久久99| 日韩欧美一区二区三区在线观看| 精品高清国产在线一区| 亚洲国产欧美一区二区综合| 大型黄色视频在线免费观看| 午夜久久久在线观看| 变态另类丝袜制服| 亚洲最大成人中文| 国产欧美日韩一区二区精品| 国产又爽黄色视频| 精品国产乱子伦一区二区三区| 淫秽高清视频在线观看| 国产精品免费视频内射| 美女 人体艺术 gogo| 欧美黑人精品巨大| 91精品国产国语对白视频| cao死你这个sao货| 日本免费一区二区三区高清不卡 | 免费高清视频大片| 少妇熟女aⅴ在线视频| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 久久人妻av系列| 久久中文字幕一级| 精品一区二区三区视频在线观看免费| 亚洲免费av在线视频| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱 | 成熟少妇高潮喷水视频| 18禁观看日本| 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 国产精品秋霞免费鲁丝片| 999久久久国产精品视频| 国产欧美日韩综合在线一区二区| ponron亚洲| 国产精品美女特级片免费视频播放器 | 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 麻豆成人av在线观看| 两性夫妻黄色片| 午夜视频精品福利| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 国产高清有码在线观看视频 | 亚洲国产精品sss在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲片人在线观看| xxx96com| 亚洲欧美精品综合一区二区三区| 亚洲av熟女| 在线观看www视频免费| 操出白浆在线播放| 久久国产乱子伦精品免费另类| 少妇的丰满在线观看| 美女午夜性视频免费| 国产激情久久老熟女| 在线永久观看黄色视频| 精品久久久久久久久久免费视频| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 高清黄色对白视频在线免费看| 国产欧美日韩一区二区三区在线| 亚洲男人的天堂狠狠| 淫秽高清视频在线观看| 亚洲中文字幕日韩| 欧美一级毛片孕妇| 欧美日本中文国产一区发布| 97人妻天天添夜夜摸| 男人的好看免费观看在线视频 | 中文亚洲av片在线观看爽| 亚洲成a人片在线一区二区| 人人妻人人爽人人添夜夜欢视频| 色婷婷久久久亚洲欧美| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区三| 一本大道久久a久久精品| 男人的好看免费观看在线视频 | 亚洲少妇的诱惑av| 久久热在线av| 99国产精品一区二区蜜桃av| 久久欧美精品欧美久久欧美| xxx96com| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 黑人欧美特级aaaaaa片| 99国产精品一区二区蜜桃av| 亚洲伊人色综图| 丰满人妻熟妇乱又伦精品不卡| 香蕉丝袜av| 一边摸一边做爽爽视频免费| 91麻豆av在线| 国产一区二区激情短视频| 欧美成人午夜精品| 婷婷丁香在线五月| 国产精品爽爽va在线观看网站 | 亚洲成人精品中文字幕电影| 亚洲色图综合在线观看| 视频在线观看一区二区三区| 国产精品久久久av美女十八| 久久国产亚洲av麻豆专区| a在线观看视频网站| 啦啦啦免费观看视频1| 国产成人精品久久二区二区免费| 青草久久国产| 日本 av在线| 国产精品亚洲美女久久久| av福利片在线| 国产精品免费一区二区三区在线| 欧美 亚洲 国产 日韩一| 黄色片一级片一级黄色片|