• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Axon injury induced endoplasmic reticulum stress and neurodegeneration

    2016-01-23 08:11:30YangHuShrinersHospitalsPediatricResearchCenterCenterforNeuralRepairandRehabilitationTempleUniversitySchoolofMedicinePhiladelphiaPAUSA

    Yang HuShriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA

    Axon injury induced endoplasmic reticulum stress and neurodegeneration

    Yang Hu*
    Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA

    How to cite this article: Hu Y (2016) Axon injury induced endoplasmic reticulum stress and neurodegeneration. Neural Regen Res 11(10)∶1557-1559.

    Open access statement: This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding: This work was supported by grants from National Eye Institute (R01EY023295, R01EY024932), BrightFocus Foundation (G2013046) and National Multiple Sclerosis Society (RG 5021A1) to YH.

    Yang Hu, MD., PhD.,

    yanghu@temple.edu.

    orcid:

    0000-0002-7980-1649

    (Yang Hu)

    Accepted: 2016-10-08

    Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury oThen leads to axon degeneration, retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. Although these sequential events are clearly connected, ample evidence indicates that neuronal soma and axon degenerations are active autonomous processes with distinct molecular mechanisms. By exploiting the anatomical and technical advantages of the retinal ganglion cell (RGC)/optic nerve (ON) system, we demonstrated that inhibition of the PERK-eIF2α-CHOP pathway and activation of the X-box binding protein 1 pathway synergistically protect RGC soma and axon, and preserve visual function, in both acute ON traumatic injury and chronic glaucomatous neuropathy. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has been implicated in several other neurodegenerative diseases. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common upstream signal for disturbances in axon integrity, and that it leads to a retrograde signal that can subsequently induce neuronal soma death.Therefore manipulation of the ER stress pathway may be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic.

    endoplasmic reticulum stress; axonopathy; retinal ganglion cell; optic nerve; neurodegeneration; CHOP; XBP-1

    Introduction

    Axonopathy is a common early characteristic of neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, multiple sclerosis and glaucoma (Conforti et al., 2014). Axon degeneration often leads to retrograde neuronal cell death or atrophy and progressive permanent loss of vital neuronal functions. Deciphering the upstream signals that trigger the neurodegeneration cascades in both neuronal axon and soma is a key step toward developing the effective neuroprotectants that are greatly needed in the clinic. Although neuronal soma and axon degeneration are active autonomous processes with distinct molecular mechanisms (Conforti et al., 2014; Gerdts et al., 2016), they are clearly connected as sequential events (Li et al., 2013). We previously showed that optic nerve (ON) injury induces endoplasmic reticulum (ER) stress in retinal ganglion cells (RGCs), which plays an important role in RGC death in both acute ON traumatic injury and chronic glaucomatous neuropathy (Hu et al., 2012). By exploiting the anatomical and technical advantages of the RGC/ON system and AAV-mediated RGC-specific gene targeting for studies of these two mouse models of optic neuropathies, we also demonstrated that inhibition of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2 alpha (eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) pathway and activation of the X-box binding protein 1 (XBP-1) pathway synergistically protect both RGC soma and axon, and preserve visual function (Yang et al., 2016). Therefore we propose that ER stress is a common upstream signaling mechanism for both neuronal axon and soma degeneration and suggest that targeting ER stress molecules is a promising therapeutic strategy for neuroprotection in CNS axonopathies.

    ER Stress and Neuronal Cell Death

    The neuronal ER network is a continuous membrane system that comprises the nuclear envelope; sheet-like rough ER (rER) decorated with polyribosomes is present predominantly in neuronal perikarya and proximal dendrites; and tubular smooth ER (sER) distributed throughout the axons and distal dendrites. ER physically interacts with, and is functionally coupled with, other cellular organelles and plasma membrane. ER is known for synthesis and proper folding of membrane and secreted proteins in eukaryotic cells. When the ER is overwhelmed by unfolded and misfolded proteins, cells experience ER stress and activate a complexcascade of adaptive reactions, a process that is called the unfolded protein response (UPR) (Wang and Kaufman, 2016). ER stress occurs in many neurodegenerative diseases; modulating it protects neurons and improves functional recovery (Hetz and Mollereau, 2014; Wang and Kaufman, 2016). Thus unresolved ER stress could be a common mechanism for neurodegeneration in a broad range of neurological diseases.

    Three distinct ER-resident proteins sense stress and initiate the UPR pathways: activating transcription factor-6α (ATF6α), inositol-requiring protein-1 (IRE1α) and PERK. ATF6α is cleaved sequentially by site-1 protease (S1P) and site-2 protease (S2P) in Golgi apparatus to generate a cytosolic fragment which acts as an active transcription factor (ATF6f). Similar to the IRE1α pathway, ATF6f induces expression of ER chaperones to promote protein folding and it activates genes that are involved in ER-associated protein degradation (ERAD), which is generally considered cytoprotective. Interestingly, mutations of ATF6α have been identified recently in degenerative retinal disease, and ATF6α deletion mice develop photoreceptor dysfunction with ageing (Kohl et al., 2015). IRE1α, a bi-functional enzyme that contains both a Ser/Thr kinase domain and an endoribonuclease (RNase) domain, initiates this protective UPR pathway by mediating the splicing of XBP-1 mRNA to generate an active (spliced) form of the transcription factor, XBP-1s. The IRE1α-XBP-1s pathway targets genes that function in increasing ER protein-folding capacity and facilitating degradation of misfolded proteins through ERAD. In addition to its transcriptional function, XBP-1 directly interacts with Forkhead box O1 (FOXO1) to assist its degradation through the proteasome system (Zhou et al., 2011), which blocks FOXO-dependent apoptosis. We detected transient increase of XBP-1s aTher ON injury and found that sustained overexpression of XBP-1s significantly promotes RGC survival (Hu et al., 2012). XBP-1 activation has been shown to protect neurons in models of both AD and PD, and to improve locomotor recovery aTher experimental spinal cord injury (Hetz and Mollereau, 2014).

    A critical feature of UPR dynamics in chronic ER stress, which may contribute to the pathology of many diseases, is the early and transient, but protective, IRE1α-XBP-1 and ATF6α activation versus the late and persistent, but pro-apoptotic, PERK-CHOP activation (Lin et al., 2007; Hu et al., 2012). PERK phosphorylates and inactivates eIF2α to attenuate global mRNA translation and therefore reduce protein load on the ER. However, phosphorylated eIF2α (eIF2α-P) induces expression of a pro-apoptotic molecule, CHOP, by selectively activating translation of ATF4. As a negative feedback mechanism, ATF4 and CHOP induce expression of growth arrest and DNA-damage-inducible protein 34 (GADD34) to facilitate dephosphorylation of eIF2α-P and resume global mRNA translation. ATF4 and CHOP can form heterodimers to upregulate protein synthesis directly and induce oxidative stress, which causes cell death (Wang and Kaufman, 2016). CHOP has been associated with apoptosis downstream of ER stress through down-regulating anti-apoptotic Bcl2, upregulating pro-apoptotic BH-3 only molecules Bim and PUMA, activating death receptor 5 (DR5). Conversely, deletion of CHOP is beneficial in many non-neuronal disease models (Wang and Kaufman, 2016). Consistent with the theme that sustained activation of the PERK-CHOP pathway and diminished activation of IRE1α-XBP-1 are detrimental for cell survival in prolonged ER stress, we found that deletion of CHOP and activation of XBP-1 synergistically protect RGC and preserve visual function in mouse optic neuropathies (Hu et al., 2012; Yang et al., 2016).

    Unlike CHOP, phosphorylation of eIF2α by PERK seems to be a double-edge sword. On one hand, eIF2α-P inhibits cap-dependent mRNA translation, which counteracts ER stress and enables the cell to achieve a new homeostasis and survive by reducing the protein workload of ER. For example, activation of the PERK-eIF2α-P pathway is essential for pancreatic β cell survival, and sustained eIF2α-P by inhibition of eIF2α-P phosphatase enables motor neuron survival in mouse disease models (Hetz and Mollereau, 2014; Wang and Kaufman, 2016). On the other hand, emerging evidence indicates that eIF2α-P also leads to neuronal cell death and dysfunction in AD and prion disease, and that downregulation of eIF2α-P by a PERK inhibitor or de-repression of protein translation by small molecules results in potent neuroprotection (Baleriola et al., 2014; Hetz and Mollereau, 2014; Halliday et al., 2015). We found that genetic blocking of eIF2α-P significantly increases RGC survival (Yang et al., 2016). However, blocking eIF2α-P produces significantly greater RGC protection than CHOP deletion. This disparity in neuroprotection between CHOP inhibition and eIF2α-P inhibition highlights the CHOP-independent role of eIF2α-P in neurodegeneration. Future experiments will determine whether CHOP deletion and eIF2α-P blockade act synergistically to promote more potent neuroprotection. It will be of great interest to decipher the downstream mechanism by which eIF2α acts independently of blocking CHOP to contribute to neuroprotection. Resumed protein synthesis aTher blocking eIF2α-P may increase cell survival proteins. Intriguingly, X-linked inhibitor of apoptosis (XIAP) is a candidate since eIF2α-P downregulates its translation in a CHOP-independent manner, which contributes to cell death induced by chronic ER stress (Hiramatsu et al., 2014).

    ER Stress and Axon Degeneration

    We found that CHOP deletion and XBP-1 activation also synergistically promote RGC axon survival (Yang et al., 2016), consistent with previous findings that CHOP inhibition protects motor neuron axons (Li et al., 2013). The axon protection is either secondary to rescue of the RGC soma or an axonal autonomous effect of ER stress manipulation. We favor an axonal autonomous mechanism because we found similar axon protection when the ON was cut, and RGC somata in retina completely separated from their axons (Yang et al., 2016). Optic neuropathies are likely to have mechanisms in common with other neurodegenerative diseases, such as ALS, AD, PD and MS. Thus axon injury-induced neuronal ER stress could be a common mechanism for both neuronal soma and axon degeneration, suggesting an intra-axonal site of action (Li et al., 2013). That axon degeneration is an actively regulated axon autonomous process is supported by the identification of several key molecules that are involved in Wallerian degeneration through regulation of axonal nicotinamide adenine dinucleotide (NAD+) metabolism (Conforti et al., 2014; Gerdts et al., 2016). It will be important to determine whether ER stress manipulation affects the NAD+levels in axons aTher axon injury. Additional molecules have recently been found to be critical for axonal degeneration, including SCG10 (superior cervical ganglion 10) and mitogen-activated protein kinase (MAPK) cascade (Yang et al., 2015; Gerdts et al., 2016). It will be of great interest to determine whether there is crosstalk between these pathways and ER stress andwhether modulations of ER stress act synergistically with these pathways to provide more potent neuroprotection.

    How is ER Stress Initiated in Axotomized Neurons?

    The significant unanswered question is how ER stress is activated in response to disrupted axonal integrity. There is no evidence showing accumulation of misfolded proteins in neuronal ER aTher axon injury. It is plausible that ER stress in the neuronal soma is either induced indirectly by a retrograde injury signal from the axon, or that axonal ER stress is initiated first and subsequently translocated to the cell body. A wave of intra-axonal Ca2+elevation aTher axon injury propagates retrogradely to the cell body, where it may disturb Ca2+homeostasis and induce neuronal soma ER stress that results in excitotoxicity and apoptosis (Mattson et al., 2000). Interestingly, traumatic ON injury induces Ca2+influx in both axon and soma, which has been implicated in RGC death (Prilloff et al., 2007). There is also evidence that the UPR pathways can be activated locally in axons. For example, it has been shown that XBP-1 mRNA splicing occurs initially in neurites and that the XBP-1s is transported back to the neuronal soma aTher BDNF stimulation (Hayashi et al., 2007). Similarly, elevated levels of eIF2α-P and ATF4 have been detected in the axons of cultured neurons treated with Aβ1-42(Baleriola et al., 2014).

    But how does axotomy induce ER stress in axons? The critical role of Ca2+in ER function makes it the leading candidate as the messenger connecting axon injury, ER stress, apoptosis and axon degeneration. sER is the major intracellular Ca2+store and maintains a much higher calcium concentration (10-100 μM) than cytoplasm (100—300 nM). The gradient depends on the inward Ca2+pump in the ER membrane, SERCA (sarcoplasmic/endoplasmic reticulum Ca2+ATPase), and the ER Ca2+releasing channels, the inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs) and the ryanodine receptors (RyRs) (Mattson et al., 2000; Stirling and Stys, 2010). Thapsigargin, a SERCA inhibitor, is the most commonly used experimental ER stress inducer, because ER is extremely sensitive to Ca2+depletion. Elevation of intra-axonal Ca2+is a characteristic neuronal response to axon injury that correlates with axon degeneration. It is due to both Ca2+efflux from ER through IP3Rs and RyRs and Ca2+influx through the plasma membrane (Stirling and Stys, 2010). It is therefore possible that perturbation of intra-axonal Ca2+homeostasis by axon injury stimulates ER stress in axons. Indeed, ER Ca2+depletion can activate PERK, which in turn activates calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, to dephosphorylate calnexin and restore ER Ca2+by activating SERCA (Wang et al., 2013).

    Summary

    There is increasing evidence that neuronal ER stress and the UPR pathways play a causal role in neurodegeneration. Our recent results reveal axon injury-induced ER stress to be a new link between axonopathy and neurodegeneration. The findings indicate that neuronal ER stress serves as a general upstream signal for both neuron apoptosis and axon autonomous degeneration, and that modulation of the UPR molecules represents a novel and promising strategy for neuroprotection. A more thorough understanding of how ER stress is activated and transported in neurons, and how UPR pathways crosstalk with other key signaling pathways to determine the fate of neuronal somata and axons, is a prerequisite for developing relevant treatment. As a working hypothesis we propose that local axonal ER stress is involved in axon degeneration first, and that it leads to a retrograde signal that can induce neuronal soma death at a later time. What that signal is and the mechanisms by which it is transmitted are intriguing questions for future studies.

    References

    Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM, Nagy PL, Hengst U (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158:1159-1172.

    Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394-409.

    Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89:449-460.

    Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM, Harding HP, Ron D, Mallucci GR (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6:e1672.

    Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, Kato T (2007) The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 282:34525-34534.

    Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233-249.

    Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH (2014) Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell 25:1411-1420.

    Hu Y, Park KK, Yang L, Wei X, Yang Q, Cho KS, Thielen P, Lee AH, Cartoni R, Glimcher LH, Chen DF, He Z (2012) Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 73:445-452.

    Kohl S, Zobor D, Chiang WC, Weisschuh N, Staller J, Gonzalez Menendez I, Chang S, Beck SC, Garcia Garrido M, Sothilingam V, Seeliger MW, Stanzial F, Benedicenti F, Inzana F, Héon E, Vincent A, Beis J, Strom TM, Rudolph G, Roosing S, et al. (2015) Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 47:757-765.

    Li S, Yang L, Selzer ME, Hu Y (2013) Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 74:768-777.

    Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944-949.

    Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23:222-229.

    Prilloff S, Noblejas MI, Chedhomme V, Sabel BA (2007) Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics. Eur J Neurosci 25:3339-3346.

    Stirling DP, Stys PK (2010) Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 16:160-170.

    Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326-335.

    Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, Cavener DR (2013) Insulin secretion and Ca2+ dynamics in beta-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J Biol Chem 288:33824-33836.

    Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M (2015) Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160:161-176.

    Yang L, Li S, Miao L, Huang H, Liang F, Teng X, Xu L, Wang Q, Xiao W, Ridder WH, 3rd, Ferguson TA, Chen DF, Kaufman RJ, Hu Y (2016) Rescue of glaucomatous neurodegeneration by differentially modulating neuronal endoplasmic reticulum stress molecules. J Neurosci 36:5891-5903.

    Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, Fisher SJ, White MF, Biddinger SB, Ozcan U (2011) Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med 17:356-365.

    10.4103/1673-5374.193225

    *Correspondence to:

    中文在线观看免费www的网站 | 亚洲av成人一区二区三| 免费看日本二区| 变态另类丝袜制服| 亚洲熟妇中文字幕五十中出| 午夜a级毛片| 亚洲,欧美精品.| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 欧美成人性av电影在线观看| 桃红色精品国产亚洲av| 亚洲色图 男人天堂 中文字幕| av在线播放免费不卡| 国产91精品成人一区二区三区| 黄色女人牲交| 国产91精品成人一区二区三区| 在线免费观看的www视频| 哪里可以看免费的av片| 亚洲无线在线观看| 欧美性猛交╳xxx乱大交人| 听说在线观看完整版免费高清| 少妇裸体淫交视频免费看高清 | 一进一出抽搐动态| 麻豆国产av国片精品| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 精品久久久久久久久久免费视频| 亚洲精品av麻豆狂野| 国产激情偷乱视频一区二区| 日韩大尺度精品在线看网址| 制服人妻中文乱码| 啦啦啦韩国在线观看视频| 好看av亚洲va欧美ⅴa在| 国产精品亚洲美女久久久| 亚洲欧美日韩东京热| 欧美激情久久久久久爽电影| 999久久久精品免费观看国产| 男人舔女人的私密视频| 我的老师免费观看完整版| 亚洲全国av大片| 无遮挡黄片免费观看| 日韩欧美一区二区三区在线观看| 99久久精品热视频| 国产成年人精品一区二区| 亚洲av熟女| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 亚洲专区中文字幕在线| 精品久久久久久久毛片微露脸| 午夜福利在线观看吧| 午夜成年电影在线免费观看| 亚洲精品在线美女| 久久香蕉国产精品| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 嫩草影视91久久| 视频区欧美日本亚洲| 美女 人体艺术 gogo| 高清毛片免费观看视频网站| 亚洲人成网站高清观看| 亚洲全国av大片| 久久久久久大精品| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 午夜福利18| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区| 色老头精品视频在线观看| 此物有八面人人有两片| or卡值多少钱| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 亚洲成人中文字幕在线播放| 国模一区二区三区四区视频 | 岛国在线观看网站| 宅男免费午夜| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 午夜福利欧美成人| 午夜福利在线观看吧| 欧美大码av| 小说图片视频综合网站| 99精品欧美一区二区三区四区| 午夜精品在线福利| 国产探花在线观看一区二区| 91字幕亚洲| 亚洲av电影在线进入| 欧美色欧美亚洲另类二区| 香蕉久久夜色| 草草在线视频免费看| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 精品欧美国产一区二区三| 久久精品国产清高在天天线| av有码第一页| 国产亚洲精品久久久久5区| 国产成人精品久久二区二区91| 18美女黄网站色大片免费观看| 午夜精品久久久久久毛片777| 精品久久久久久成人av| 日日夜夜操网爽| 国产黄片美女视频| 免费在线观看影片大全网站| 国产不卡一卡二| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 国产视频内射| 怎么达到女性高潮| 国产精品免费视频内射| 精品久久久久久,| 91成年电影在线观看| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合久久99| 亚洲午夜理论影院| 激情在线观看视频在线高清| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| 国产一区在线观看成人免费| 波多野结衣高清作品| 精品免费久久久久久久清纯| 免费看十八禁软件| 午夜激情福利司机影院| 亚洲欧洲精品一区二区精品久久久| 日日爽夜夜爽网站| 99国产精品一区二区三区| 午夜两性在线视频| 欧美日本亚洲视频在线播放| 黄色女人牲交| 亚洲,欧美精品.| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| aaaaa片日本免费| 欧美久久黑人一区二区| 久久久久久久久中文| 特级一级黄色大片| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 亚洲五月天丁香| 91老司机精品| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 日本在线视频免费播放| 精品电影一区二区在线| 欧美在线一区亚洲| 黄色毛片三级朝国网站| 日本 av在线| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 亚洲国产精品合色在线| 亚洲全国av大片| 亚洲,欧美精品.| 五月玫瑰六月丁香| 国产精品av久久久久免费| 别揉我奶头~嗯~啊~动态视频| 精品久久蜜臀av无| 国产精品野战在线观看| 老司机在亚洲福利影院| 精品人妻1区二区| 宅男免费午夜| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲美女久久久| 国产一区二区三区视频了| www日本黄色视频网| 午夜免费观看网址| av视频在线观看入口| 久久这里只有精品19| 啦啦啦观看免费观看视频高清| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 色老头精品视频在线观看| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 一级黄色大片毛片| 欧美日韩亚洲综合一区二区三区_| 欧美另类亚洲清纯唯美| 日韩免费av在线播放| 少妇裸体淫交视频免费看高清 | 天天躁狠狠躁夜夜躁狠狠躁| 男插女下体视频免费在线播放| 村上凉子中文字幕在线| 天堂动漫精品| 男插女下体视频免费在线播放| 日韩精品免费视频一区二区三区| 黄色视频不卡| a在线观看视频网站| 色综合欧美亚洲国产小说| 亚洲国产日韩欧美精品在线观看 | 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 神马国产精品三级电影在线观看 | 国产av麻豆久久久久久久| 国产一级毛片七仙女欲春2| 午夜免费观看网址| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美 日韩 在线 免费| 国产精品久久久人人做人人爽| 久久久久久久精品吃奶| 操出白浆在线播放| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 国产野战对白在线观看| 久久久国产精品麻豆| 国产麻豆成人av免费视频| 黄色毛片三级朝国网站| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 一级作爱视频免费观看| 高潮久久久久久久久久久不卡| 女同久久另类99精品国产91| 久久亚洲精品不卡| 午夜亚洲福利在线播放| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 亚洲精品在线观看二区| 亚洲精品国产精品久久久不卡| 麻豆国产av国片精品| 亚洲av中文字字幕乱码综合| 天天躁夜夜躁狠狠躁躁| av国产免费在线观看| 国产乱人伦免费视频| 色在线成人网| 国产精品av久久久久免费| 成年免费大片在线观看| 香蕉久久夜色| 国产熟女午夜一区二区三区| 国产一区二区三区视频了| 精华霜和精华液先用哪个| 丝袜美腿诱惑在线| 欧美人与性动交α欧美精品济南到| 日本精品一区二区三区蜜桃| 久久亚洲真实| 午夜老司机福利片| 精品国产乱子伦一区二区三区| 亚洲精品在线美女| 88av欧美| 日本a在线网址| 国产v大片淫在线免费观看| 久久精品国产综合久久久| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 在线看三级毛片| 久久香蕉精品热| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 久久香蕉精品热| 黄频高清免费视频| 亚洲国产精品久久男人天堂| 国产亚洲精品久久久久久毛片| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 一本精品99久久精品77| 91字幕亚洲| 成人午夜高清在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 亚洲国产看品久久| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 国产免费男女视频| 国产欧美日韩一区二区三| 久久久久九九精品影院| 婷婷亚洲欧美| 两个人视频免费观看高清| 国产1区2区3区精品| 国产精品免费一区二区三区在线| www.熟女人妻精品国产| 国产主播在线观看一区二区| 午夜福利成人在线免费观看| 亚洲自拍偷在线| 一级作爱视频免费观看| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 国产成人精品无人区| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久亚洲av鲁大| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看 | 韩国av一区二区三区四区| 久久久久久久久久黄片| 亚洲天堂国产精品一区在线| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 精品久久久久久久末码| 老司机在亚洲福利影院| 亚洲aⅴ乱码一区二区在线播放 | 久久久久九九精品影院| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 五月伊人婷婷丁香| 十八禁人妻一区二区| 黄色a级毛片大全视频| ponron亚洲| 久久久久久大精品| 成年免费大片在线观看| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影| 国模一区二区三区四区视频 | 国产av麻豆久久久久久久| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| av在线播放免费不卡| 制服诱惑二区| 一本综合久久免费| 久久亚洲精品不卡| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜激情av网站| 男女做爰动态图高潮gif福利片| 久久久久久久精品吃奶| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 久久中文字幕一级| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 国产三级中文精品| 人成视频在线观看免费观看| 精品久久久久久久久久免费视频| 亚洲专区中文字幕在线| 露出奶头的视频| 精品第一国产精品| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| a在线观看视频网站| 久久精品国产综合久久久| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| 大型av网站在线播放| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 级片在线观看| 男人舔奶头视频| av超薄肉色丝袜交足视频| 国产熟女xx| 天天添夜夜摸| 欧美绝顶高潮抽搐喷水| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 又大又爽又粗| 亚洲中文字幕日韩| 国产av又大| 中文亚洲av片在线观看爽| 久久久久国内视频| 成人特级黄色片久久久久久久| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 久久亚洲真实| 中文亚洲av片在线观看爽| 国产成人影院久久av| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 亚洲五月天丁香| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| av福利片在线观看| 禁无遮挡网站| 国产爱豆传媒在线观看 | 国产精品久久久av美女十八| 色av中文字幕| 草草在线视频免费看| 成人18禁在线播放| 欧美黄色片欧美黄色片| 成人欧美大片| 久久久精品欧美日韩精品| 欧美日本视频| 亚洲欧美一区二区三区黑人| 婷婷精品国产亚洲av| 国模一区二区三区四区视频 | 男女床上黄色一级片免费看| 一级毛片精品| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看 | 久久人人精品亚洲av| 夜夜夜夜夜久久久久| 色在线成人网| www.精华液| 国产免费av片在线观看野外av| 成人18禁在线播放| 国产高清视频在线观看网站| 国产1区2区3区精品| 国产91精品成人一区二区三区| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产aⅴ精品一区二区三区波| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 日日干狠狠操夜夜爽| 高潮久久久久久久久久久不卡| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 老鸭窝网址在线观看| 真人做人爱边吃奶动态| 国产av一区二区精品久久| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区mp4| 91成年电影在线观看| 看免费av毛片| 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 国产蜜桃级精品一区二区三区| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 午夜福利在线在线| 午夜精品久久久久久毛片777| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 国产精品野战在线观看| av国产免费在线观看| 国产区一区二久久| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o| 在线看三级毛片| 日本黄色视频三级网站网址| 18美女黄网站色大片免费观看| 超碰成人久久| 国产欧美日韩一区二区三| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 欧美黑人巨大hd| 美女 人体艺术 gogo| 悠悠久久av| 国产真实乱freesex| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 国产精品一区二区免费欧美| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 曰老女人黄片| 人成视频在线观看免费观看| 亚洲欧美日韩东京热| 国产一区二区三区在线臀色熟女| 黄色毛片三级朝国网站| 99在线人妻在线中文字幕| 在线看三级毛片| 国产男靠女视频免费网站| 免费在线观看黄色视频的| 人妻夜夜爽99麻豆av| 99在线视频只有这里精品首页| 两个人看的免费小视频| 宅男免费午夜| 久久人妻av系列| 免费看a级黄色片| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| or卡值多少钱| 男女那种视频在线观看| 国产91精品成人一区二区三区| 免费在线观看成人毛片| 亚洲 国产 在线| 香蕉国产在线看| 老司机靠b影院| 麻豆国产av国片精品| 亚洲最大成人中文| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 精品高清国产在线一区| ponron亚洲| 国产成人一区二区三区免费视频网站| 此物有八面人人有两片| 国产精品爽爽va在线观看网站| 久久久精品大字幕| 一进一出抽搐gif免费好疼| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 成人精品一区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 久久香蕉精品热| 嫁个100分男人电影在线观看| 在线观看免费视频日本深夜| 极品教师在线免费播放| 窝窝影院91人妻| 久久精品综合一区二区三区| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 成人午夜高清在线视频| 欧美3d第一页| 久久国产乱子伦精品免费另类| 成年人黄色毛片网站| 身体一侧抽搐| 国产精华一区二区三区| 身体一侧抽搐| 欧美成狂野欧美在线观看| 悠悠久久av| 久久中文字幕人妻熟女| 成人精品一区二区免费| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲乱码一区二区免费版| 国产视频内射| 在线视频色国产色| www国产在线视频色| 男女午夜视频在线观看| 久久精品国产99精品国产亚洲性色| 欧美日本亚洲视频在线播放| 日韩有码中文字幕| 亚洲 国产 在线| 国产69精品久久久久777片 | 九色国产91popny在线| 美女黄网站色视频| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 国产激情偷乱视频一区二区| 欧美一区二区国产精品久久精品 | 精品久久久久久,| 欧美日韩亚洲国产一区二区在线观看| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月| 一级毛片精品| 色精品久久人妻99蜜桃| 波多野结衣高清无吗| 中文字幕最新亚洲高清| 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区| 中文字幕最新亚洲高清| 国产亚洲精品久久久久久毛片| 1024视频免费在线观看| 动漫黄色视频在线观看| av福利片在线| 少妇粗大呻吟视频| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 夜夜看夜夜爽夜夜摸| 色噜噜av男人的天堂激情| 婷婷丁香在线五月| 日本 av在线| 天堂影院成人在线观看| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 九九热线精品视视频播放| 欧美乱码精品一区二区三区| 两个人视频免费观看高清| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 我的老师免费观看完整版| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 成人18禁在线播放| АⅤ资源中文在线天堂| 国产乱人伦免费视频| av片东京热男人的天堂| 久久精品影院6| 一二三四在线观看免费中文在| 最新在线观看一区二区三区| 亚洲熟妇熟女久久| 成人高潮视频无遮挡免费网站| 三级毛片av免费| 久久中文看片网| 久久久久国产精品人妻aⅴ院| bbb黄色大片| 国产精品免费一区二区三区在线| 亚洲最大成人中文| 午夜激情福利司机影院| 精品乱码久久久久久99久播| 久久久久国产精品人妻aⅴ院| 精品一区二区三区四区五区乱码| 深夜精品福利| 欧美精品亚洲一区二区| 欧美3d第一页| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品久久久久久毛片| 精品日产1卡2卡| 久久久精品欧美日韩精品| 身体一侧抽搐| 国产av一区在线观看免费| 叶爱在线成人免费视频播放| 精品少妇一区二区三区视频日本电影| 国产真实乱freesex| 巨乳人妻的诱惑在线观看|