Winkler彈性地基板梁的自由振動(dòng)分析①
通信作者:蔣吉清。E-mail:jiangjq@zucc.edu.cn。
魏綱1, 李鋼2, 蔣吉清1, 魏新江1
(1.浙江大學(xué)城市學(xué)院工程分院,浙江 杭州 310015; 2.浙江大學(xué)建筑工程學(xué)院,浙江 杭州 310058)
摘要:中短型軌道板的幾何構(gòu)型介于梁、板之間,屬于寬梁結(jié)構(gòu)。從Mindlin板理論出發(fā),退化得到適用于寬梁的Mindlin板梁控制方程;引入Winkler地基剛度系數(shù),推導(dǎo)得到位移和轉(zhuǎn)角的模態(tài)函數(shù)表達(dá)式。考慮兩端簡支的邊界條件,得到彈性地基板梁的自由振動(dòng)特征方程。通過無量綱數(shù)值算例求解出彈性地基板梁的自振頻率,并與Timoshenko梁理論和Mindlin板理論進(jìn)行對比。研究高跨比、泊松比和彈性地基剛度等參數(shù)對結(jié)構(gòu)自振特性的影響,總結(jié)出彈性地基板梁方程的特點(diǎn)及適用范圍,即寬度效應(yīng)顯著且泊松比較大的寬梁結(jié)構(gòu)。
關(guān)鍵詞:Winkler地基; Mindlin板梁; 自振頻率; 泊松比
收稿日期:①2014-08-20
基金項(xiàng)目:國家自然科學(xué)基金(51278463,11202186);浙江省自然科學(xué)基金(LQ12E08009)
作者簡介:魏綱(1977-),男,博士,教授,主要從事軟土地基處理和地下隧道結(jié)構(gòu)相關(guān)的教學(xué)和科研。E-mail:weig@zucc.edu.cn。
中圖分類號:TU311.3文獻(xiàn)標(biāo)志碼:A
DOI:10.3969/j.issn.1000-0844.2015.03.0655
Free Vibration Analysis of a Mindlin Plate-beam
on a Winkler Elastic Foundation
WEI Gang1, LI Gang2, JIANG Ji-qing1, WEI Xin-jiang1
(1.SchoolofEngineering,ZhejiangUniversityCityCollege,Hangzhou310015,Zhejiang,China;
2.CollegeofCivilEngineeringandArchitecture,ZhejiangUniversity,Hangzhou310058,Zhejiang,China)
Abstract:In recent years, short- and medium-length floating-slab tracks have become commonly used in railway engineering. These tracks are of a model type between a Winkler foundation beam and a Winkler foundation plate. For this type of wide-beam structure, a more suitable theory is required that both ensures calculation accuracy, as does the plate theory but also provides a simple analytical process, such as that of beam equations. In this study, the governing equations of the Mindlin plate are degraded and the dynamic equations for wide-beam structures are obtained: this is called the Mindlin plate-beam theory. Although the equations of the Mindlin plate-beam theory appear similar to the equations of the Timoshenko beam theory, the coefficient of bending stiffness is different and retains the direct influence of the Poisson's ratio parameters. This means that lateral deformation can be considered in the Mindlin plate-beam theory. The stiffness of the elastic foundation is also considered, and the equations are extended accordingly. For general analysis, the variables and parameters in this study are normalized and the expressions for both the vertical displacement and flexural rotation angle of a wide beam are obtained. Based on the boundary conditions, the dynamic characteristic equation for a simply supported wide beam is finally derived, and the normalized frequencies for the wide beam can be calculated through certain root searching programs. In this study, different kinds of boundary conditions are considered using the same procedure. To illustrate the wide-beam theory described herein, several numerical examples are used and the natural frequencies of a Mindlin plate-beam on a Winkler elastic foundation are compared with the results of a Timoshenko elastic foundation beam and a Mindlin elastic foundation plate. The results demonstrate the accuracy of the present equations. The effects of the height-to-length Poisson's ratios and elastic foundation stiffness are considered and the following conclusions are obtained from the numerical results: (1) For a simply supported wide beam, the first three frequencies of the plate-beam model show good agreement with those based on the Mindlin plate model. The discrepancy of the results from the two beam models increases with the width of the beam as compared to those of the Mindlin plate. However, the fundamental frequency of the Mindlin plate-beam theory still remains in good agreement with the plate theory; (2) the natural frequencies obtained from the Mindlin plate and Mindlin plate-beam theories will increase with the Poisson's ratio for a wide beam on an elastic foundation and those obtained from the Timoshenko beam theory will decrease. This result means that the relative error of the beam-plate and Mindlin plate will further reduce for a larger Poisson's ratio; and (3) the equations derived here are suitable for wide-beam analysis, can incorporate the effect of beam width, and are especially suitable for a wide foundation beam with a relatively large Poisson's ratio. The numerical examples based on this approximation theory are in good agreement with the Mindlin plate theory, while the equations and calculation process are much simpler.
Key words: Winkler foundation; Mindlin plate-beam; natural frequency; Poisson's ratio
0引言
梁和板是土木工程常用的結(jié)構(gòu)形式,其相關(guān)的力學(xué)問題一直是學(xué)者研究的熱點(diǎn)[1-3]。工程中常用的梁理論有Euler梁和Timoshenko梁兩類,板理論則有Kirchhoff板和Mindlin板等。相對而言,Timoshenko梁和Mindlin板在中厚結(jié)構(gòu)及中高頻動(dòng)力分析方面更具優(yōu)越性。有學(xué)者采用Timoshenko梁對Mindlin板進(jìn)行退化分析[4],但在退化過程中卻未能考慮Timoshenko梁在結(jié)構(gòu)寬度方向上的尺寸效應(yīng)。
彈性地基上的梁和板振動(dòng)是工程領(lǐng)域廣泛關(guān)注的重要問題之一。呂朝鋒[5]基于二維平面理論和狀態(tài)空間微積分法分析了Winkler彈性地基梁的自由振動(dòng)。Wang等[6]采用Green函數(shù)給出了彈性地基Timoshenko梁在不同參數(shù)條件下的靜動(dòng)力解析解。Akhavan等[7]推導(dǎo)出了面內(nèi)受荷時(shí)的Mindlin板在Winkler地基上的精確解。Xiang[8]分析了Mindlin板在分段不均勻彈性地基上的振動(dòng)。
現(xiàn)在鐵路工程上常用的板式軌道,尤其是彈性CA砂漿板式軌道[9]和橡膠墊浮置板軌道[10],其構(gòu)件模型介于Winkler地基梁和Winkler地基板之間。對于這種寬梁結(jié)構(gòu),當(dāng)前的研究大多集中在工程應(yīng)用的角度,少有理論方面的討論。有必要尋求一種合適的計(jì)算理論,既能得到類似于板理論的計(jì)算精度,又能保證其分析過程如梁方程般簡潔。為此,Mindlin本人從Mindlin板的控制方程出發(fā),退化得到適用于寬梁結(jié)構(gòu)的動(dòng)力方程[13]。本文將此退化方程整理并定義為Mindlin板梁方程(Mindlin Plate-beam theory,簡稱P-B方程),并在方程中考慮彈性地基剛度的影響;通過數(shù)值算例分析Winkler地基上的Mindlin板梁的固有頻率,分別與Timoshenko彈性地基梁、Mindlin彈性地基板的計(jì)算結(jié)果進(jìn)行對比,由此驗(yàn)證本文方程。
1Mindlin彈性地基板梁的動(dòng)力方程
根據(jù)Mindlin板的動(dòng)力控制方程[10],并假設(shè)轉(zhuǎn)角ψx和豎向撓度υ沿z方向保持不變,即ψx=ψx(x,t),υ=υ(x,t);同時(shí),忽略繞y軸轉(zhuǎn)角ψz的影響,即可退化得到如下方程[12]
式中:E和G分別為彈性模量和剪切模量;ρ為材料密度;κ=π2/12為剪切系數(shù);I是關(guān)于z軸的轉(zhuǎn)動(dòng)慣量;A為橫截面面積;b為截面寬度;q為分布荷載;D=Eh3/12(1-μ2),為抗彎剛度系數(shù);h為板厚;μ為泊松比。位移υ和轉(zhuǎn)角ψx的正方向如圖1所示。
圖1 板梁模型示意圖 Fig.1 Sketch of the plate-beam model
式(1)為適用于寬梁結(jié)構(gòu)的Mindlin板梁方程,由Mindlin本人首先提出,該方程與Timoshenko梁方程非常相近,但抗彎剛度系數(shù)有所區(qū)別,并保留了泊松比參數(shù)的直接影響,若考慮彈性地基的影響,式(1)將變?yōu)?/p>
式中:Kw為Winkler地基剛度。
2彈性地基板梁的自由振動(dòng)分析
對于單根均勻彈性地基板梁,當(dāng)不考慮外力作用,即q(x,t)=0時(shí),板梁處于自由振動(dòng)狀態(tài)。根據(jù)分離變量法的思路,分別令υ(x,t)=V(x)eiωt,ψx(x,t)= ψ(x)eiωt,代入式(2)并消去eiωt可得
對于兩端簡支的彈性地基板梁,無量綱后的邊界條件可整理為:
將式(6)和(7)代入,并整理成矩陣形式:
3數(shù)值算例及分析
表1給出了不同地基剛度下三種計(jì)算理論得到的前三階無量綱頻率系數(shù)?。從中可以看到,不論是高跨比很小的淺梁(λ=1/100)、高跨比較大的深梁(λ=1/10),還是更極端的矩形中厚板(λ=3/10),板梁理論的結(jié)果總體上更接近二維Mindlin中厚板理論。
表1說明,在淺梁范疇(λ=1/100),也就是長度方向的尺寸遠(yuǎn)大于寬度和厚度時(shí),雖然板梁理論的結(jié)果與Mindlin板理論更為接近,但Timoshenko梁理論與Mindlin板的最大誤差也僅為0.73%,且隨著地基剛度的增加誤差還在進(jìn)一步降低??梢姡诟呖绫群苄〉臏\梁范疇,采用Timoshenko梁理論,甚至是經(jīng)典梁理論,都是可行的。
對于λ=1/10的深扁平梁,相比較Timoshenko梁的計(jì)算結(jié)果,板梁與Mindlin板理論更為接近。此時(shí)Timoshenko梁與Mindlin板的最大誤差增大近4倍,達(dá)到2.46%。隨著地基剛度的增加,誤差雖有所降低,但降低幅度不大。因此,對于較大高跨比的寬梁,板梁理論的計(jì)算結(jié)果相對于Timoshenko梁更接近實(shí)際,體現(xiàn)出板梁在寬扁梁到中厚單向板范圍內(nèi)的優(yōu)越性。
表 1 前三階固有頻率系數(shù)?的比較
針對λ=3/10且b/h=2的矩形中厚板,此時(shí)長寬高基本在一個(gè)量級范圍內(nèi)。從計(jì)算結(jié)果看出:板梁理論得到的值與Mindlin板理論雖然更為接近,但也僅限于低階;在第三階時(shí),兩種梁理論與Mindlin板理論的最大誤差都超過10%,隨著地基剛度的增加,誤差有所降低。因此,雙向矩形板范圍內(nèi)板梁理論在低階頻率求解時(shí)能體現(xiàn)一定的優(yōu)越性,但總體上看此時(shí)用梁理論來近似模擬已不合理。
表 2 不同泊松比下三種理論的基頻系數(shù)比較( λ=1/10)
除了考慮結(jié)構(gòu)尺寸的影響,還考察了三類理論在不同泊松比取值下的首階頻率系數(shù)隨地基剛度的變化情況。該結(jié)果基于b/h=2且λ=1/10的深扁平梁模型,同時(shí)也是板梁最佳的適用范圍。如圖2所示,在不同地基剛度下,隨泊松比的增加板梁的基頻增高,體現(xiàn)出與Mindlin板相同的趨勢。但是Timoshenko梁的變化趨勢卻剛好相反,即隨泊松比的增加,固有頻率有小幅度的下降。由此可以得出,對于泊松比較大的材料,采用板梁理論分析彈性地基寬梁結(jié)構(gòu)的動(dòng)力性能更加精確,也再次反映出板梁理論能夠考慮寬度變形效應(yīng)的影響。
圖2 不同泊松比下三種理論基頻系數(shù)比較 ( ——=100) Fig.2 Comparison of the fundameratal frequency coefficients based on three theories with different Poisson’s ratios ( =100)
圖3 不同理論基頻隨地基剛度變化誤差 Fig.3 Comparison of the fundamental frequency coefficients based on three theories with different foundation stiffness
以Mindlin板為基準(zhǔn),分別考察不同地基剛度下板梁理論和Timoshenko梁理論的首階自振頻率系數(shù)相對誤差。如圖3所示,隨著地基剛度的增加,板梁與Mindlin板的相對誤差較為穩(wěn)定,且相對較小;而Timoshenko梁與Mindlin板的相對誤差稍大,但隨著地基剛度的增加呈現(xiàn)減小的趨勢。
4結(jié)語
分析由Mindlin板理論退化得到的板梁控制方程在Winkler地基上的自振特性,得到以下結(jié)論:
(1) 簡支邊界條件下,在通常的中長梁范圍內(nèi),較之Timoshenko梁,彈性地基上的板梁與Mindlin板的前三階振動(dòng)頻率更加吻合,且隨著板寬的增加,低階頻率同樣吻合良好。
(2) 隨泊松比的增加,彈性地基板梁的自振頻率趨勢及計(jì)算精度與Mindlin彈性地基板更加一致,當(dāng)?shù)鼗鶆偠仍黾訒r(shí)板梁與Mindlin板的相對誤差將進(jìn)一步降低。
(3) 本文方程適用于寬度效應(yīng)顯著(b/h≤4)、泊松比較大的Winkler地基寬扁梁結(jié)構(gòu),且在保證近似于Mindlin板理論的精度情況下,可以避免復(fù)雜的運(yùn)算過程。
參考文獻(xiàn)(References)
[1]TimoshenkoSP.OntheCorrectionforShearoftheDifferentialEquationforTransverseVibrationsofPrismaticBars[J].PhilosophicalMagazine,1921,41(245):744-746.
[2]TimoshenkoSP.VibrationProblemsinEngineering[M].NewYork:Wiley, 1974.
[3]ChakravertyS.VibrationofPlates[M].BocaRaton:CRCPress,2009.
[4]馬晨明.Kirchhoff板和Mindlin板上動(dòng)態(tài)分布荷載的辨識問題研究[D].上海:復(fù)旦大學(xué), 2004.
MAChen-ming.ResearchonDeterminationofDynamicLoadDistributionAppliedtoKirchhoffPlatesandMindlinPlates[D].Shanghai:FudanUniversity, 2004.(inChinese)
[5]呂朝鋒, 陳偉球, 邊祖光. 狀態(tài)空間微積分法分析Winkler地基梁的自由振動(dòng)[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2004, 38(11):1451-1454.,
LVChao-feng,CHENWei-qiu,BIANZu-guang.FreeVibrationAnalysisofBeamsonWinklerFoundationviaState-space-basedDifferentialQuadrature[J].JournalofZhejiangUniversity:EngineeringScience,2004,38(11):1451-1454.(inChinese)
[6]WangCM,LamKY,HeXQ.ExactSolutionsforTimoshenkoBeamsonElasticFoundationsUsingGreen’sFunctions[J].MechanicsofStructureandMachines, 1998, 26(1):101-113.
[7]AkhavanH,HosseiniHashemiSh,RokniDamavandiTaherH,etal.ExactSolutionsforRectangularMindlinPlatesUnderIn-planeLoadsRestingonPasternakElasticFoundation.PartII:FrequencyAnalysis[J].ComputationalMaterialsScience,2009,44:951-961.
[8]XiangY.VibrationofRectangularMindlinPlatesRestingonNon-homogenousElasticFoundations[J].InternationalJournalofMechanicalSciences,2003,45:1229-1244.
[9]左景奇,姜其斌,傅代正,等.板式軌道彈性墊層CA砂漿的研究[J].鐵道建筑,2005,9:96-98.
ZUOJing-qi,JIANGQi-bin,F(xiàn)UDai-zheng,etal.StudyofCementAsphaltMotarIncludedinElasticPadUnderSlabTrack[J].RailwayEngineering,2005,9:96-98.(inChinese)
[10]耿傳智, 樓夢麟. 浮置板軌道結(jié)構(gòu)系統(tǒng)振動(dòng)模態(tài)分析[J].同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2006,34(9):1201-1205.
GENGChuan-zhi,LOUMeng-lin.VibrationModelAnalysisofFloatingSlabTrackSystem[J].JournalofTongjiUniversity:NaturalScience,2006, 34(9):1201-1205.(inChinese)
[11]MindlinRD.InfluenceofRotatoryInertiaandShearonFlexuralMotionsofIsotropic,ElasticPlates[J].JournalofAppliedMechanics,1951,18(1):31-38.
[12]MindlinRD.Thickness-shearandFlexuralVibrationsofCrystalPlates[J].JournalofAppliedPhysics,1951,22(2):316-323.
[13]CalimFF,AkkurtFG.StaticandFreeVibrationAnalysisofStraightandCircularBeamsonElasticFoundation[J].MechanicsResearchCommunications, 2011, 38(2):89-94.