勻強(qiáng)電場中電子運(yùn)動的路程分析
衛(wèi)麗娜
(寧夏理工學(xué)院文理學(xué)院寧夏 石嘴山753000)
摘 要:運(yùn)用微積分知識導(dǎo)出電子在勻強(qiáng)電場中做斜拋運(yùn)動的路程表達(dá)式.并推出對同一初速度而言,當(dāng)進(jìn)入角θ=56.455 078°時,電子運(yùn)動的路程最大.
關(guān)鍵詞:勻強(qiáng)電場電子運(yùn)動路程
收稿日期:(2015-08-17)
Abstract:Essentially,the model of spring oscillator motion affected by stable constraint on horizontal plane is a problem of particle motion under the action of central force which is proportional to the first-power of r. In this paper,we have established the kinetic equation about this model in polar coordinates by Lagrange equation. We respentively take the methods of Taylor series expansion and Matlab software numerical simulation to calculate the kinetic equation,and we have depicted the corresponding curve which coordinates change with the time,the movement phase diagram and the trajectory. We have compared the results of two methods and found that when the initial velocity is slower,the motion of spring oscillator in the radial direction is periodic simple harmonic motion and it is non-linear increasing in the transverse,the movement on the horizontal plane is quasiperiodic.
1引言
在普通物理課程中,電子e以初速度v0進(jìn)入帶等量異種電荷的平行金屬板之間的勻強(qiáng)電場E中,忽略其重力的影響[1],僅考慮電子受到的電場力.本文利用微積分知識推導(dǎo)出該電子在勻強(qiáng)電場E中路程的表達(dá)式,并進(jìn)一步推導(dǎo)出對同一初速度而言,只有當(dāng)進(jìn)入角θ=56.455 078°時,電子運(yùn)動的路程L最長.
2電子運(yùn)動路程表達(dá)式
如圖1所示,帶等量異種電荷的平行金屬板之間的勻強(qiáng)電場E,建立平面坐標(biāo)系xOy,電子進(jìn)入電場時的速度方向與正極板間的夾角為θ(0<θ<90°).
圖1
Study on Particle Motion under the Action of Central
Force in Proportional to the First Power of R
Li YangWang HongHan Yanling
(School of Mathematics and Physics,China University of Geosciences,Wuhan,Hubei430074)
Key words:horizontal plane;stable constraint;spring oscillator;polar coordinates;Taylor series expansion;Matlab software numerical simulation
(1)
其中R為電子的水平射程(平行于x軸)且
式中me為電子的質(zhì)量.又
(2)
其中t為電子運(yùn)動時間.消去t,則得電子運(yùn)動的軌跡方程
(3)
對其求導(dǎo)數(shù),可得軌跡微元的斜率
(4)
將式(4)代入式(1)并利用積分公式[2]
整理得
(5)
即為電子運(yùn)動的路程表達(dá)式.
3數(shù)值結(jié)果與討論
運(yùn)用式(5)對電子[進(jìn)入電場時的速度方向與正極板間的夾角為θ(0<θ<90°)]在帶等量異種電荷的平行金屬板之間的勻強(qiáng)電場E中的運(yùn)動進(jìn)行討論.
3.1當(dāng)θ為特殊值時電子運(yùn)動的路程
而由式(5),當(dāng)θ→90°時,有
(6)
可見,其結(jié)果與我們預(yù)見的一致.
3.2當(dāng)電子運(yùn)動的路程最長時的θ值
式(5)兩邊對θ求導(dǎo)(設(shè)v0一定),得
(7)
令
(8)
其解為θ0,則由式(7)得L′(θ0)=0 又因
(9)
故由式(8)、(9)得
L″(θ0)=
依題意0<θ<90°,則說明當(dāng)θ=θ0時,L取最大值.運(yùn)用二分法通過計算機(jī)求解式(8)得θ=56.455 078°時,即對于同一初速度v0進(jìn)入帶等量異種電荷的平行金屬板之間的勻強(qiáng)電場E中運(yùn)動的電子而言,當(dāng)進(jìn)入角θ=56.455 078°時,電子運(yùn)動的路程最大.
參 考 文 獻(xiàn)
1馬繼坤. 帶電粒子在電場中運(yùn)動的典型例題分析. 新高考(高一物理),2014(6):20~21
2黃立宏.高等數(shù)學(xué)(上冊)(第3版).上海:復(fù)旦大學(xué)出版社,2013.267