陳思瑩,段淑榮
急性缺血性卒中作為臨床危重癥之一,發(fā)病有復雜的病理基礎(chǔ),除超急性期溶栓治療外,目前還沒有其他特別有效的方法[1]。近年來研究表明,信號轉(zhuǎn)導通路在缺血性腦血管病中發(fā)揮重要作用,在眾多信號轉(zhuǎn)導通路中,趨化因子細胞基質(zhì)衍生因子-1α(stromal derived factor-1α,SDF-1α)及其受體在大鼠缺血腦梗死模型中表達含量增高,在腦梗死后新生血管形成中起著重要作用[2]。此外,陸續(xù)研究發(fā)現(xiàn),除了影響血管形成,SDF-1α及其受體還影響腦梗死后內(nèi)源性神經(jīng)干細胞的增殖、遷移,以及影響炎癥反應(yīng)。本綜述將詳細闡述SDF-1α及其受體在缺血性腦血管病中的作用。
1.1 細胞基質(zhì)衍生因子-1α SDF-1α,又稱為趨化因子CXCL12(C-X-C chemokine ligand 12,CXCL12),或前B細胞生長刺激因子(pre-B-cell growth factor,PBSF),屬于趨化因子蛋白CXC亞家族,是由6~8個氨基酸構(gòu)成的小分子蛋白[3]。它廣泛地表達于多種器官與組織,如骨髓、腦、心臟、肺、肝等,可由血管內(nèi)皮細胞、骨細胞或間質(zhì)成纖維細胞持續(xù)性分泌[4],在體內(nèi)穩(wěn)定表達[5]。SDF-1α可以通過磷脂酰肌醇3-激酶(phosphatidylinositol-3,P13)/絲氨酸/蘇氨酸激酶(serine/threoninekinase,AKT)、蛋白激酶(extracellular regulated protein kinases,ERK)1/2等途徑調(diào)節(jié)細胞趨化、細胞增殖[6-7],在內(nèi)皮祖細胞的動員和歸巢上起著重要作用[8]。SDF-1α與血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的表達存在相互促進的作用[9],此外,腦組織缺血缺氧時,缺氧誘導因子-1α(hypoxia inducible factor-1α,HIF-1α)也可以誘導SDF-1α在缺血組織中表達增高[10]。
1.2 趨化因子CXC受體4 趨化因子CXC4受體(C-X-C chemokine receptor type 4,CXCR4)最開始被命名為萊斯特(LESTER)或融合素(fusin),是在嗜T細胞病毒人類免疫缺陷病毒(human immunodeficiency virus,HIV)-1、HIV-2攻擊CD4陽性T細胞時作為主要輔助受體被識別。一直以來CXCR4都被認為是SDF-1α的唯一特異性受體,它由352個氨基酸組成,是具有高度保守的七次跨膜結(jié)構(gòu)的G蛋白偶聯(lián)受體(G-protein-coupled receptor,GPCR)。CXCR4廣泛地表達于神經(jīng)系統(tǒng)或免疫系統(tǒng)。CXCR4陽性神經(jīng)元在腦內(nèi)多個部位表達,包括大腦皮層、蒼白球、尾狀核、豆狀核、視上核、室旁核、中縫背側(cè)、小腦等[11]。CXCR4與SDF-1α特異性結(jié)合發(fā)揮多種生物學效應(yīng):介導炎癥和免疫反應(yīng)、血細胞生成、血管形成、胚胎發(fā)育、艾滋病毒感染、器官發(fā)生、惡性腫瘤轉(zhuǎn)移、干細胞移植和歸巢等[12-13]。CXCR4可以刺激神經(jīng)元突觸釋放谷氨酸及氨基丁酸,此外,還可以通過增加鈣離子流促進突觸后膜電壓門控鉀通道整流,后者與神經(jīng)元存活相關(guān)。
1.3 趨化因子CXC受體7 CXCR7最初是從犬的甲狀腺反向轉(zhuǎn)錄脫氧核糖核酸(complementary deoxyribonucleic acid,cDNA)庫中克隆來的,稱為狗受體基因1(Receptor Dog cDNA1,ROC1),也成為趨化因子孤立受體(chemokine orphan receptor 1,CMKOR1)。系統(tǒng)研究表明,CXCR7與CXCR4在氨基酸序列上有31%的同源性,并且與SDF-1α結(jié)合可以產(chǎn)生信號轉(zhuǎn)導級聯(lián)反應(yīng)[14],從而被認為是SDF-1α的第二受體,命名為CXCR7,其可以表達于血管內(nèi)皮細胞、腦源性神經(jīng)細胞、免疫細胞、多種腫瘤細胞等。研究認為,CXCR7是通過CXCR4對SDF-1α進行信號轉(zhuǎn)導的[15],它可以協(xié)同CXCR4增強SDF-1α介導的信號轉(zhuǎn)導作用,提高細胞的增殖、黏附和遷移能力[16]。
動物實驗顯示,SD大鼠腦梗死后,缺血半暗帶區(qū)SDF-1α、CXCR4表達增高,激活SDF-1α-CXCR4信號轉(zhuǎn)導通路,募集大量血管生成因子到缺血組織,從而促進腦新生血管形成[2]。SDF-1α通過CXCR4依賴的平滑肌祖細胞募集從而修復受損血管,SDF-1α與其受體結(jié)合可以發(fā)揮動員血管內(nèi)皮干細胞歸巢的作用,后者參與腦缺血后新生血管的形成,在血管修復中其重要作用[17]。申明琪等通過小鼠動物實驗研究表明,骨髓間充質(zhì)干細胞(bone mesenchymal stem cell,BMSC)具有向缺血缺氧腦組織遷移的能力[18],腦梗死后,受損的內(nèi)皮細胞分泌SDF-1α促進CXCR4陽性BMSC遷移至受損血管,促進血管生成[19-20]。腦梗死后,HIF-1α在梗死的腦組織表達增高,作用于靶基因SDF-1α及VEGF等,而后兩者均可促進新生血管的形成以及促進內(nèi)源性神經(jīng)干細胞(neural stem cell,NSC)的增殖、遷移。
既往研究證實,SDF-1α及其趨化因子受體CXCR4在誘導細胞的遷移中發(fā)揮重要作用[21-22]。SDF-1α-CXCR4軸可以調(diào)節(jié)A9-A10多巴胺等神經(jīng)元的定位及遷移[23]。SDF-1α能通過CXCR4上調(diào)下丘腦的神經(jīng)內(nèi)分泌細胞即促性腺激素釋放激素調(diào)節(jié)神經(jīng)元的遷移率,在哺乳動物的繁殖階段起著重要作用。研究表明,SDF-1α可以調(diào)節(jié)內(nèi)源性神經(jīng)干細胞的遷移、歸巢[24]。在腦組織缺血時,SDF-1α可以上調(diào)室管膜下區(qū)(subventricular zone,SVZ)NSC的增殖,此外,還能上調(diào)表皮生長因子(epidermal growth factor,EGRF)及整合素α6的表達,從而刺激SVZ的NSC向嗅球、梗死區(qū)遷移[25]。SDF-1α與其受體CXCR4、CXCR7結(jié)合,其中,NSC的增殖、遷移通過結(jié)合CXCR4來調(diào)節(jié),而結(jié)合CXCR7可以促進細胞成活[26]。牟臨杰等通過體外試驗表明,SDF-1α-CXCR4對NSC的趨化性隨濃度的增大而增高,并且證實了該趨化軸對NSC趨化遷移的特異性[27]。
既往SDF-1α-CXCR4通路在腦損傷后的研究重點是其誘導干細胞遷移修復損傷組織的作用,而忽略了其誘導炎性細胞的作用[28]。龐宏剛等研究表明,SDF-1α及其受體CXCR4在彌漫性軸索損害的大鼠皮層腦組織明顯高表達,并且抑制SDF-1α-CXCR4通路可以顯著降低外周炎性細胞的浸潤以及相關(guān)蛋白的表達,在彌漫性軸索損傷中發(fā)揮重要作用[29]。既往研究表明,SDF-1α-CXCR4信號傳導通路與組織損傷后的中性粒細胞遷移至損傷部位密切相關(guān)[30],病理狀態(tài)下中性粒細胞能釋放基質(zhì)金屬蛋白酶9(matrix metalloproteinases-9,MMP-9),后者可以導致正常腦組織結(jié)構(gòu)破壞[31]。在腦缺血研究中發(fā)現(xiàn),高遷移率族蛋白1(high mobility group box-1 protein,HMGB1)可以顯著地誘導缺血后腦組織中炎性細胞的浸潤以及MMP-9的表達升高[32],而已有研究證實,HMGB1是SDF-1α-CXCR4通路中一個重要的環(huán)節(jié),其能與SDF-1α形成復合體從而與CXCR4結(jié)合誘導炎性細胞的遷移,此外,HMGB1能誘導核因子NF-KB1進而激活SDF-1α表達升高[33]。腦梗死后,血腦屏障破壞,激活的星型膠質(zhì)細胞、巨噬細胞、少突膠質(zhì)細胞入侵,分泌SDF-1α等炎癥因子,發(fā)揮促進炎癥反應(yīng)作用[34]。然而,SDF-1α除了能促進炎癥反應(yīng)以外,還有研究發(fā)現(xiàn),SDF-1α能抑制腦缺血區(qū)內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)反應(yīng),從而抑制炎癥反應(yīng)的發(fā)生[35-36]。綜上所述,SDF-1α對腦缺血缺氧后的炎癥反應(yīng)可能起著雙向作用,具體機制還需要進一步研究。
綜上所述,SDF-1α通過與其受體結(jié)合在腦梗死后血管修復、神經(jīng)保護、內(nèi)源性神經(jīng)干細胞增殖與遷移等方面發(fā)揮重要作用。由于SDF-1α有許多生物學作用,越來越多的研究也致力于將此趨化因子作為治療中樞神經(jīng)系統(tǒng)疾病的新的治療策略。相信通過學者們的不斷努力,未來SDF-1α及其受體在腦梗死的治療中也會有一席一地。
1 中華醫(yī)學會神經(jīng)病學分會,中華醫(yī)學會神經(jīng)病學分會腦血管病學組. 中國急性缺血性腦卒中診治指南2014[J]. 中華神經(jīng)科雜志,2015,4:246-257.
2 陶錄嶺. 基于調(diào)節(jié)SDF-1α/CXCR4軸的腦脈通對腦缺血/再灌注老齡大鼠腦微血管生成機制的研究[D]. 河南中醫(yī)學院,2014:1-95.
3 冉黎婧,史明霞,洪敏. 間充質(zhì)干細胞歸巢機會研究進展[J]. 醫(yī)學研究生學報,2014,27:423-426.
4 Kim H. Will the stromal-derived factor-1α (CXCL12)/CXCR4 pathway become a major concern for advanced colorectal cancer?[J]. J Korean Soc Coloprotol,2012,28:3-4.
5 達陽,孟秋宏,劉宏全,等. 干細胞救治缺血性腎損傷:基質(zhì)細胞衍生因子-1-CXCR4/CXCR7軸功效特征[J].中國組織工程研究,2014,18:2250-2256.
6 Xing Y,Gu Y,Gomes RR,et al. P2Y(2) receptors and GRK2 are involved in oscillatory fl uid fl ow induced ERK1/2 responses in chomdrocytes[J]. J Orthop Res,2011,29:823-833.
7 Tu X,Yang W,Liang R,et al. Effect of baicalin on matrix metalloproteinase-9 expression and bloodbrain barrier permeability following focal cerebral ischemia in rats[J]. Neurochem Res,2011,36:2022-2028.
8 Zhou X,Porter AL,Robinson DK,et al. Nanoenabled drug delivery:A research profile[J]. Nanomedicine,2014,10:889-896.
9 張文文,林明,許昌聲. 缺氧誘導因子-1α小干擾RNA對骨髓間充質(zhì)干細胞缺氧誘導因子-1α、基質(zhì)細胞衍生因子-1α和血管內(nèi)皮生長因子基因表達的影響[J].中國組織工程研究與臨床康復,2010,14:6759-6763.
10 李士勇,鄧宇斌. SDF-1/CXCR4軸在缺氧缺血性腦損傷中的研究進展[J]. 生命科學,2008,20:463-466.
11 Heinisch,S,Kirby LG. SDF-1alpha/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus[J].Neuropharmacology,2010,58:501-514.
12 方丹,殷明,游捷. CXCL12(SDF-1)/CXCR4軸調(diào)控肺癌及中醫(yī)藥干預(yù)研究進展[J]. 上海中醫(yī)藥大學學報,2013,27:93-98.
13 Domanska UM,Kruizinga RC,Nagengast WB,et al. A review on CXCR4/CXCL12 axis in oncology:no place to hide[J]. Eur J Cancer,2013,49:219-230.
14 林軻羽,宿華威. 趨化因子受體在結(jié)直腸癌肝轉(zhuǎn)移研究中的新進展[J]. 世界華人消化雜志,2013,21:2403-2411.
15 Sierro F,Biben C,Martinez-Mufioz L,et al. Disrupted cardiae development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor,CXCR7[J]. Proc Natl Acad Sci USA,2007,104:14759-14764.
16 Levoye A,Balabanian K,Balwnx F,et al. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling[J]. Blood,2009,113:6085-6093.
17 Callagher KA,Liu IJ,Xiao M,et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha[J]. J Clin Incest,2007,117:1249-1259.
18 申明琪,初桂蘭. CXCR4/SDF-1軸在BMSCs向新生小鼠缺血缺氧腦組織定向遷移的潛在機制研究[J]. 中國醫(yī)藥指南,2010,8:54-56.
19 Kayali AG,Lopez AD,Hao E,et al. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells[J]. PloS One,2012,7:e38721.
20 余剛,夏紅利,李敏才. CXCR4+骨髓間充質(zhì)干細胞遷移與氧化型低密度脂蛋白致內(nèi)皮細胞損傷[J]. 細胞與分子免疫學雜志,2013,29:805-808.
21 Schiradi M,Raucci A,Munoz LM,et al. HMGB1 promates recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4[J]. J Exp Med,2012,209:551-563.
22 Dai X,Mao Z,Huang J,et al. The CXCL12/CXCR4 autorine loop increases the metastatic potential of non-small cell lung cancer in vitro[J]. Oncol Lett,2013,5:227-282.
23 Yang,S,Edman,LC,Sanchez-Alcaniz,JA,et al.CXCL12/CXCR4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons[J]. Development,2013,140:4554-4564.
24 Shen L,Gao Y,Qian J,et al. The role of SDF-1α/Rac pathway in the regulation of endothelial progenitor cell polarity;homing and expression of Rac1,Rac2 during endothelial repair[J]. Mol Cell Biochem,2012,365:1-7.
25 Kokovay E,Goderie S,Wang Y,et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling[J].Cell Stem Cell,2010,7:163-173.
26 Bakondi B,Shimada IS,Peterson BM,et al. SDF-1α secreted by human CD133-derived multipotent stromal cells promotes neural progenitor cell survival through CXCR7[J]. Stem Cells Dev,2011,20:1021-1029.
27 牟臨杰,丁鵬,等. 基質(zhì)細胞衍生因子1趨化神經(jīng)干細胞遷移的體外效應(yīng)[J]. 中國組織工程研究與臨床康復,2011,15:5058-5062.
28 Li S,Wei M,Zhou Z,et al. SDF-1α induces angiogenesis after traumatic brain injury[J]. Brain Res,2012,1444:76-86.
29 龐宏剛,宋錦寧,李丹東,等. SDF-1α/CXCR4通路在大鼠彌漫性軸索損害中的作用[J]. 西安交通大學學報,2015,36:40-44.
30 Petty JM,Sueblinveng V,Lenox CC,et al.Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury[J]. J Immunol,2007,178:8148-8157.
31 Rosell A,Cuadrado E,Ortega-azner A,et al. MMP-9-positive neurophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation ater human ischemic stroke[J]. Stroke,2008,39:1121-1126.
32 Qiu J,Xu J,Zheng Y,et al. High-mobility group box1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia[J]. Stroke,2010,41:2077-2082.
33 Venereau E,Schiraldi M,Uguccioni M,et al. HMGB1 and leukocyte migration during trauma and sterile inf l ammation[J]. Mol Immunol,2013,55:76-82.
34 Jaerve,A,Müller,HW. Chemokines in CNS injury and repair[J]. Cell Tissue Res,2012,349:229-248.
35 Huang C,Gu H,Zhang W,et al. SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury[J]. Am J Physiol Heart Circ Physiol,2011,301:H1496-1505.
36 Zhao Y,Tan Y,Xi S,et al. A novel mechanism by which SDF-1β protects cardiac cells from plamitateinduced endoplasmic reticulum stress and apoptosis via CXCR7 and AMOK/p38 MAPK-mediated interleukin-6 generation[J]. Diabetes,2013,62:2545-2558.