• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Advance in Division of Carbohydrate and Protein Fractions of Ruminant Feed and Their Metabolism in Digestive Tract

    2016-01-12 01:16:56,,,*
    Asian Agricultural Research 2016年7期

    , , , *

    1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; 2. University of Liège, Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2. B-5030 Gembloux, Belgium

    1 Introduction

    In recent twenty years, the assessment of the ruminant feed nutritional values mainly focused on carbohydrate and protein content, ruminal degradation, outflow and intestinal digestion. The widely used systems for ruminant feed nutritional values include Weende system[16], Van Soest fiber analysis, NRC (2001) and CNCPS systems (The latest version is 6.1). The first two methods are the foundation for evaluation, and have been used for more than 100 years. However, both of them assess feed nutrition statically and couldn’t reveal feedstuff’ digestion properties in digestive tract. NRC (2001) and CNCPS 6.1 are mechanistic and dynamic mathematical models that developed from basic principles of rumen function, microbial growth, feed degradation, passage and animal physiology, also some connections and differences exist in two systems. The objectives of this study were to systematically review the subdivision and degradation of carbohydrate and protein in different CNCPS versions, also compare the different systems for ruminant feed nutritional values evaluation and the application of CNCPS in ruminant nutrition research.

    2 Characterization of feed fractions in CNCPS system

    2.1CarbohydratefractionThe changes of carbohydrate fractions in CNCPS from the first version to the version 6.1 were demonstrated in Table 1. In CNCPS versions prior to 6.1, carbohydrate fractions were divided into CA, CB1, CB2 and CC[12, 39], sugars, organic acids, and oligosaccharides were included in the CA, starch and soluble fiber compounds in the CB1. Some limitations of the previous schemes have become apparent: (i) the CHO fractions and degradation rates were not precisely defined and generally measured; (ii) Besides, it does not account for the various processing treatments’ effects on NFC digestibility[29]; (iii) In addition, the description and ruminal digestibility of the fraction containing starch and soluble fiber were highlighted[31]; (iv) CHO fractions in NFC differ in rate and extent of fermentation, products of fermentation, and contribution to animal performance[15]. For example, organic acids, which present high concentration in forages, are used less efficiently for microbial growth compared to sugars. Silages are rich in lactate, and contrary to VFA, lactate could produce microbial protein[10, 26]. So in CNCPS v6.1, the carbohydrate pools have been expanded to eight fractions: CA1 (acetic, propionic and butyric acid), CA2 (lactic acid), CA3 (organic acids), CA4 (sugars), CB1 (starch), CB2 (soluble fiber), CB3 (available NDF) and CC (unavailable NDF). The expanded CHO scheme provides a more biologically correct and appropriate feed description that closely related to rumen fermentation characteristics to account for variation in changes in silage quality and diet NFC composition. However, to fully account for differences in feed CHO utilization, further improvements in the methodology used to estimate the fractions and their corresponding degradation rates, inclusion of dietary factors in dry matter intake predictions, and prediction of ruminal VFA production and pH are necessary.

    Table1ComparisonofthecarbohydratefractionsindifferentversionsofCNCPS

    CNCPSpriorto6.1CNCPS6.1CASugars,organicacidsandshortoligosaccha-ridesCA1Acetate,Propionate,ButyrateCA2lactateCA3OrganicacidsCA4SugarsCB1Starchandsolublefi-berCB1StarchCB2AvailableNDFCB2SolublefiberCB3AvailableNDFCCUnavailableNDFCCUnavailableNDF

    2.2ProteinfractionTable 2 demonstrated the evolution of protein fractions in different CNCPS versions. The original CNCPS fractionates CP into 5 fractions (PA, PB1, PB2, PB3 and PC) based on solubility in protein precipitant agents, buffers, and detergent solutions[12, 30, 39]. However, recent researches found some limitations of the previous protein division scheme. Firstly, the assumption that the N insoluble in neutral detergent and in acid detergent represents slowly degradable and unavailable protein fractions, respectively, is not valid for all feeds[7]; Secondly, the assumption that all of the NPN fraction enters the ammonia pool completely and does not provide amino N that can stimulate microbial growth has underpredicted the microbial protein production[2]; Thirdly, the assumption that fraction A is completely degraded does not account for the contributions of free amino acids and peptides to the RUP flows[2, 37]; However, some small peptides and free AA may escape rumen degradation and flow through to the small intestine[14], and Choietal. (2002) suggested 10% of the AA flowing through to the small intestine originated from dietary NPN sources[6], also Velleetal. (1997)[36]infused free AA into the rumen at various rates and showed that up to 20% AA could escape degradation and flow to the small intestine. Based on the limitation mentioned above, an evolution of the protein division was made in the latest versions by Van Amburghetal. (2010)[32], Higgsetal. (2012)[17]and Van Amburgh (2013)[33], who re-divide protein into PA1 (ammonia), PA2 (soluble non-ammonia crude protein), PB1, PB2 and PC, this new configuration shifted a considerable amount of protein from PA1 to PA2. As PA2 fraction contributes MP to the animal, the new scheme enhances the accuracy of the predicted MP supply.

    2.3AnalysisofCHOandproteinfractionsofcommonfeedstuffTable 3 lists the CHO and protein fractions for common feedstuff and these contents were calculated by the equations according to Tylutkietal. (2008)[42]. For the new CA expanded scheme, CA1 mainly remains in wet feeds because VFAs are partly volatilized during oven drying. CA2 is the predominant organic acid in ensiled feeds, which can reach up to 50-150 g kg-1DM[25], CA2 also presents in molasses and corn as the degradation product of invert sugar[1], CA3 is almost undetectable in silages[25], but in fresh forages, citric, malic, and aconitic acids can comprise more than 10% of the DM[9], the possible reason is that organic acid degraded in the process of silage. From Table 3, we can conclude that the contents of CHO and protein fractions vary in different feedstuff. For example, sugar is the most abundant fraction for molasses beet and accounts for 700 g kg DM, while in corn or wheat, CA4 content doesn’t reach 50 g kg-1DM basis. Feed processing like roast, extraction and ensilage would change the proportion of each fraction, compared with soybean whole raw, PB1 content of roasted soybean whole decreased from 165.7 to 22.6 g kg-1DM, while PB2 increased from 213.9 to 353.1 g kg-1DM, which will reduces the ruminal degradation of soybean protein. Also, sugar or starch would be utilized by bacteria and degraded into VFAs or organic acids during silage, so CA4 content of alfalfa green chop decreased by 69.53% after silage (101.1 g kg-1vs 30.8 g kg-1, DM basis).

    Table2ComparisonoftheproteinfractionsindifferentversionsofCNCPS

    CNCPSpriortov6.5CNCPS6.5[33]PANPN(ammonia,pep-tidesandAAs)PA1AmmoniaPA2SolubletrueproteinPB1SolubletrueproteinRapidlydegradedpro-teinPB1Moderatelydegradablepro-teinPB2Intermediatelydegrad-edproteinPB2Slowlydegradableprotein,boundinNDFPB3SlowlydegradabletrueproteinPCADIPPCUnavailableCP

    3 Degradation and passage rates of CHO and protein fractions

    For ruminants, carbohydrate and protein fractions are firstly degraded by rumen microflora for microbial protein synthesis, and the residue of feedstuff not digested in the rumen will pass to the intestine for further digestion or not. However, as the difference in chemical composition and structure, CHO and protein fractions differ in Kd and Kp, and the degraded quantity of fractions were determined by the simple relationship Kd/(Kd+Kp). So it’s important to study the degradation and passage properties of different fractions for the accurate prediction of feedstuff’ effective nutrition.

    3.1DegradationrateTable 4 demonstrated the changes in degradation rates of the various fractions. CA is subdivided into four fractions and each has its own degradation rates. Degradation rate value for CA4 was downward from 200-300 % h-1to 40-60 % h-1(rumen retention time of 100 to 150 min) based on in vitro fermentation studies of Molina (2002)[26], who used a mixed sugar fermentation with mixed rumen bacteria by gas production. Further, Kd of PA reduced from 10 000 % h-1(retention time of 0.6 min) to 200 % h-1, for the 10 000 % h-1was generated to represent the rate of solubilization and not necessarily microbial uptake. Besides, the degradation rate variation in some ranges mainly because the composition of the sugar fraction in feeds and their ability to support microbial growth are different. Take CA4 for example, the fermentation rates of 40 % h-1for glucose and 16 % h-1for arabinose when fermented with a fiber source. As five carbon sugars support less microbial growth than hexoses[41], degradation rates for feeds containing mainly sucrose were set at 40 % h-1for the sugar fraction[26], but for milk derived products the assigned degradation rate for sugars is 30 % h-1as lactose supports less microbial growth than sucrose[24]. For silages, with the exception of immature corn silages, the sugar fraction mainly are arabinose and other simple sugars derived from the hydrolysis of the side chains of pectin and hemicelluloses[20], thus a rate of 20 % h-1, closer to the arabinose fermentation rate was assigned to the sugar fraction of silages.

    Table1Contentofcarbohydrateandproteinfractionsincommonfeedstuff

    FeedstuffCHOCA1CA2CA3CA4CB1CB2CB3CCCPPAPB1PB2PB3PCEnergyWheatbran727.047.4218.050.5326.684.517020.948.871.422.16.8feedstuffWheatground825.021.2651.035.593.817.514212.829.893.72.82.8Corngroundsteamrolled(34lb)857.315.6755.67.874.04.3904.46.967.13.68.1Cornhighmoisture22%coarse850.531.01018.4721.914.677.84.89810.716.763.12.74.7Corngrainwhole851.71021.3737.61.876.24.8906.710.463.94.54.5Molassesbeet795.04040700.015.08542.542.5Beetpulp721.099.830.0239.9245.5105.814721.650.410.356.38.4ProteinCorndistlightspirits506.024.080.096.0210.096.030426.649.4133.851.442.9feedstuffPeanutmealsolventCP48%386.0134.0110.453.654.433.652020.6151.0296.446.85.2CottonseedmealCP42%449.982.517.4117.364.1168.64203.259.9290.724.541.8Cottonseeddelint525.068.64.924.5232.6194.42303.261.2142.69.213.8Cottonseedfuzzy530.022.92.525.5170.0309.02353.158.5149.45.218.8Soybeanmealextruded351.181.027.084.983.175.24377.051.5344.422.411.6SoybeanWholeRaw324.0123.033.063.899.44.842822.6165.7213.917.28.6SoybeanWholeRoasted326.0137.336.871.176.04.84283.122.6353.134.514.7RoughageGrasspasture72.54077.44.182.3428.892.41601.530.599.223.75.1Legumepasture617.860147.06.193.1185.6126.02401.670.4129.633.64.8Alfalfagreenchop705.080101.115.8119.0182.8206.417020.430.678.227.213.6Grasshay750.03072.036.0102.0437.472.616046.825.248.030.99.1Alfalfahay705.02087.515.6189.3186.2206.417023.835.773.123.813.6Grasssilage737.017.75047.722.788.9404.4105.616052.028.040.027.212.8Alfalfasilage697.015.55030.815.4196.1182.8206.417055.329.844.213.627.2CornSilage(25%DM)848.125.75013.5347.814.6298.198.48023.412.630.59.63.9

    Note: Unit of index above is g kg-1DM; " " in the above table means 0 g kg-1DM.

    Table4Feeddegradationrates(Kd, %h-1)usedforCHOandproteinpoolsinCNCPSv6.1andpriortoversion6.11

    ComponentPriortov6.1v6.1CA1Notmodeled0CA2Notmodeled7CA3Notmodeled5CA4300-50040-60CB120-4020-40CB220-4020-40CB34-94-9CC00PA210000200PB1130-30010-40PB23-203-20PB30.05-2.0Forforages,4-9PC00

    Note: 1 This table refers to Van Amburghetal. (2010)[32]; 2For the new protein scheme, the degradation rates for PA1, PA2, PB1, PB2 and PC are 200 % h-1, 10-40 % h-1, 3-20 % h-1, 4-9 % h-1, 0 % h-1, respectively[17].

    3.2PassagerateTable 5 showed the development of equations for feed passage rates and their difference compared with NRC (2001). Particle size, forage to concentrate ratio, hydration rate and intake level can affect the passage rates of feeds[4, 43]. Sniffenetal. (1992)[39]incorporated these effects into the equations for Kpf and Kpc, and Kp was adjusted for particle size using effective NDF (eNDF), but lacking equation for Kpl. As Kpl could affect the soluble nutrient digestion[19], outflow of rumen metabolites[23], rumen undegraded protein ratio[12]and microbial growth[11], Foxetal. (2004)[12]adding the Kpl equation to CNCPS v5.0, and Kp rates were adjusted by peNDF. The CNCPS version 6.1 absorbed Seo’s researching results, integrating FpBW (Forage DMI as a proportion of BW), CpBW (Concentrate DMI as a proportion of BW) and FDMI (Forage Dry matter intake) factors into the Kp equations, also the peNDF adjustment factor is abandoned, for the double accounting for the particle sizes. For the soluble pools, they were predicted to flow out of the rumen with the solids passage rate in CNCPS prior to v6.1, thus with the high degradation rates and the slow passage rates, all the soluble fractions were considered to be degraded in the rumen. To be more appropriately reflect the biology of the cow, the CNCPS V6.1 reassigned the soluble pools to the liquid passage rate equation, which increasing the predicted outflow of soluble components, thus reducing microbial yield and estimated ammonia production as well as rumen N balance.

    Table5EquationsforfeedpassageratesindifferentCNCPSversionsandNRC(2001)

    ReferenceEquationAdjustfactor,AfSniffen(1992)Kpf=0.388+(0.002×DMI/BW0.75)+[0.0002×forage2(%DM)]100/(eNDF+70)Kpc=-0.424+1.45×Kpf100/(eNDF+90)NRC(2001)Kpf,wetforage=3.054+0.614X1NoKpf,dryforage=3.362+0.479X1-0.007X2-0.017X3NoKpc=2.904+1.375X-0.020X2NoCNCPSv5.0Kpf=[0.38+(0.022×DMI×1000/BW0.75)+2.0×forage2]/100100/(NDF×peNDF/100+70)Kpc=[-0.424+(1.45×Kpf×100)]/100100/(NDF×peNDF/100+90)Kpl=(4.413+0.191×DMI×1000/FBW)/100NoCNCPSv6.1Kpf=2.365+(0.214×FpBW)+(0.734×CpBW)+(0.069×FDMI)NoKpc=1.169+(1.375×FpBW)+(1.721×CpBW)NoKpl=4.524+(0.223×FpBW)+(2.046×CpBW)+(0.344×FDMI)No

    Note: Kpf Passage rate of forages; Kpc Passage rate of concentrate; Kpl Passage rate of liquids; DMI Dry matter intake; BW Body weight; eNDF Effective NDF; peNDF Physical effective NDF; FBW Full body weight; FpBW Forage DMI as a proportion of BW; CpBW Concentrate DMI as a proportion of BW; FDMI Forage Dry matter intake; X1DMI as a proportion of BW; X2Concentrate as a proportion of DMI; X3NDF as a proportion of DMI.

    3.3PossibleproblemsforCHOandproteinfractionsKdandKpvaluesAvornyo (2012)[3]compare three methods (gravimetric, Curve peeling technique, and Cornell values) to estimate protein B2 and B3 degradation rates in the rumen. The results showed that no statistical difference founded among three methods for the degradation rates of protein B2, whereas for protein B3, the degradation rate estimated with the gravimetric method was highest followed by the curve peeling method and then the Cornell values (P<0.01). So the degradation rates assigned to protein B3 in the Cornell databank needs re-examination. Generally, prediction equations of Kp in CNCPS have been developed separately for forage, concentrate and liquid feed, and all Kp equations are based on DMI. However, there some questions found for CNCPS Kp prediction: 1) the equations in CNCPS have been developed based on large sets of empirical data using data of Cr-mordanted fiber as a Kp marker (CNCPS). However, marker type could influences Kp[18]estimated values and Kp equations of forages and concentrates in CNCPS were not corrected for the effect of marker[38]; 2) In CNCPS, Kp for concentrate and forage were calculated separately, and one Kp equation for all forages no matter dry and met forages[38]. However, it is’t possible to separate Kp of forages and concentrate particles, and there are interaction effects between concentrate and forages, as Coluccietal. (1990)[8]observed that Kp of both forage and concentrate particles decreased when the proportion of concentrate in the diet to dairy cows increased as well as Stensigetal. (1998)[40]reported that increased starch supplementation in the diet to dairy cows decreased ruminal particle passage rate; 3) Kp equations in CNCPS don’t containing forage type factors. Forage type affect Kp as Krizsanetal. (2010)[21]indicated that the fastest Kp of iNDF was reported for corn silage diets (2.66 % h-1and 2.87 % h-1); the alfalfa hay diet was in between (1.65 % h-1and 2.17 % h-1), and Kp was lowest for grass hay (1.27 and 1.34 % h-1) when fed to dairy cows supplemented with concentrate or without any supplementation. Krizsanetal. (2010)[21]conducted a meta-analysis of studies using the flux/compartmental pool method with indigestible neutral detergent fiber (iNDF) as internal marker to evaluate Kp equations in CNCPS. He established two models for feeds based on NDF intake: Kp (% h-1) = 1.19 + 0.0879 × NDF intake (g kg-1 of body weight) + 0.792 × proportion of concentrate NDF of total NDF + 1.21 × diet iNDF: NDF ratio when forage type was not included, and Kp(% h-1) = F + 1.54 + 0.0866 × NDF intake for forage type. The models combined the feed type (concentrate, forage and forage type) and forage maturity factors, and by meta-analysis, he reported that prediction of Kp in CNCPS may overestimated and intake of NDF performed better as a predictor of Kp than DMI. So more research is needed to confirm the importance of relative forage differences in a rumen model and to separate animal effects from feed factors in predictions of ruminal particulate matter Kp.

    4 Comparison of Weende, Van Soest, NRC (2001) and CNCPD in CHO and protein fraction and digestive metabolism

    4.1WeendeandVanSoestfiberanalysis-staticfeednutrientevaluationmethodsFor feed chemical composition division, there are mainly Weende feed proximate analysis, Van Soest fiber analysis, CNCPS and NRC systems. Weende analysis system, also called ’Feed Proxinate Analysis’, was established by Henneberg and Stohmann (1860)[16], which divided feed nutrient into six fractions: moisture, crude protein(CP), ether extract(EE), crude fiber(CF), ash and nitrogen-free extracts(NFE). This concept has been used in feed evaluation systems for more than 150 years and still widely used in China’s feed quality evaluation. However, there has been much dissatisfaction with this system, for example, the crude protein or crude fiber weren’t subdivided to predict their nutritive availability and the NFE content was overestimated because most of the lignin and hemicellulose were extracted into the NFE. Based on Weende analysis system, Van Soest (1967)[34]corrected the CF and NFE and established detergent fiber analysis method, CF was subdivided into cellulose, hemicellulose and lignin according to their solubility in neutral detergent and acidic detergent. This analysis method laid the foundation for the carbohydrate and protein fractions division.

    4.2NRC(2001)andCNCPSsystems-dynamicfeednutrientevaluationmethodsThe feed proximate analysis and Van Soest fiber analysis method evaluate feed nutrition statically, not considering factors like animal body condition, feed particle size, digestion. Both NRC (2001) and CNCPS system represent a large step to the dairy industry in that feed composition is described by carbohydrate and protein fractions and their degradation rates, as well as rumen fermentation and animal factors were integrated in two systems. However, there are still some difference and relationship between NRC (2001) and CNCPS for carbohydrate and protein fractions, degradation and passage rates, mainly including: (i) For carbohydrate and protein fractions, NRC (2001) absorbed the theoretical achievements of CNCPS before 2001, and divided carbohydrate simply into structural carbohydrate (SC) and non-structural carbohydrate (NSC), protein was subdivided into three fractions according to in situ method: Protein A (NPN, solubilized protein, and protein in particles smaller than the porosity of the nylon bag), protein B (potentially degradable protein) and protein C(unavailable protein, the remaining nitrogen at the end of predetermined incubation time). Whereas the CNCPS adopted the chemical partitioning method (solubility) to partition carbohydrate into eight fractions as described above, and protein was subdivided into five fractions (PA, PB1, PB2, PB3 and PC). (ii) Using different index to describe feed nutrient. NRC (2001) uses DM, CP(%DM), NDIP(%CP), ADIP(%CP), EE(%DM), NDF, ADF, Lignin(%DM), Ash (%DM), while CNCPS6.1 uses DM, OM(%DM), CP(%DM), SP(%CP), NPN(%CP), ADIP(%CP), NDIP(%CP), NFC(%DM), Sugar(%DM), Starch (%DM), SF(%DM), ADF(%DM), NDF(%DM), peNDF(%NDF), Lignin(%NDF), Ash(%DM). (iii) As showed in Table 5, the NRC (2001) and CNCPS models use different equations for predicting passage rate of undigested feed. NRC (2001) developed separate equations for wet forages and dry forages and found that the Kp of wet forages was higher (P<0.01) than that of dry forages (0.0432 h-1versus 0.0377 h-1), and Kp equation for liquid was not developed, though the liquid Kp may affect digestion of soluble nutrients[19], outflow of end products of fermentation[23], peptide escape[12]and microbial growth[11]. Because of the lack of data for both development and evaluation, CNCPS system developed one equation for forages Kp prediction, wet forage and dry forage are not calculated separately, and Kp equation for liquid was also established. (iv) NRC (2001) uses RDP=A+B (Kd/Kd+Kp) and RUP= B(Kp/Kd+Kp)+C to calculate RUP and RDP, respectively, which is similar to CNCPS system.

    5 Conclusions

    CNCPS is a dynamic ruminant nutrition model that integrate animal, environment, physiological functions and metabolic processes, also carbohydrate and protein fractions and their degradation and passage rates continuously update. This update has allowed us to predict feed availability with more accuracy. Also the feed library and programs like CPM Dairy, AMTS.Cattle, NDS, DinaMilk of CNCPS help predict feed nutritional values and optimize ruminant diets more accurately and efficiently. However, the assessment of feed nutritional values mainly based on Weende system in China, and CNCPS was not commonly used for its meticulous division of carbohydrate, protein fractions, and complicated index, which is difficult to be determined for producer. So for the utilization of CNCPS in China’s ruminant production, feedstuff database should be built and the integration of CNCPS models with computer technology should be further strengthened to realize China’s precision farming.

    [1] AMIN A. Gas-chromatographic separation and identification of organic-acids in beet molasses and date syrup[J]. Nahrung, 1980(24): 705-711.

    [2] AQUINO DL, TEDESCHI LO, LANZAS CS,etal. Evaluation of CNCPS predictions of milk production of dairy cows fed alfalfa silage[C]. In Cornell Nut. Conference of Feed Manufacture, Cornell University, Syracuse, NY, 2003.

    [3] AVRONYO FK. Comparison of three approaches of estimating protein B2 and B3 degradation rates in the rumen of sheep[J]. Online Journal of Animal and Feed Research (OJAFR), 2012, 2(2):166-173.

    [4] BHATTI SA, BOWMAN JGP, FIRKINS JL,etal. Effect of intake level and alfalfa substitution for grass hay on ruminal kinetics of fiber digestion and particle passage in beef cattle[J].Journal of Animal Science, 2008, 86(1): 134-145.

    [5] CHOI CW, AHVENJARVI S, VANHATALO A,etal. Quantitation of the flow of soluble non-ammonia nitrogen entering the omasal canal of dairy cows fed grass silage based diets[J]. Animal Feed Science and Technology, 2002, 96(3): 203-220.

    [6] CHOI CW, VANHATALO A, AHVENJARVI S,etal. Effects of several protein supplements on flow of soluble nonammonia nitrogen from the forestomach and milk production in dairy cows[J]. Animal Feed Science and Technology, 2002(102):15-33.

    [7] COBLENTZ WK, FRITZ JO, FICK WH,etal. In situ disappearance of neutral detergent insoluble nitrogen from alfalfa and eastern gamagrass at three maturities[J]. Journal of Animal Science,1999(77):2803-2809.

    [8] COLUCCI PE, MACLEOD GK, GROVUM WL,etal. Digesta kinetics in sheep and cattle fed diets with different forage to concentrate ratios at high and low intakes[J].Journal of Dairy Science, 1990(73):2143-2156.

    [9] DIJKSHOORN W. Organic acids and their role in ion uptake. In: Bailey, R.W. (Ed.), Chemistry and Biochemistry of Herbage[M]. Academia Press, NY, USA,1973:163-188.

    [10] DOANE PH, PELL AN, SCHOFIELD P. The effect of preservation method on the neutral detergent soluble fraction of forages[J]. Journal of Animal Science, 1997(75): 1140-1148.

    [11] EUN JS, FELLNER V, GUMPERTZ ML. Methane production by mixed ruminal cultures incubated in dual-flow fermentors[J]. Journal of Dairy Science, 2004, 87(1): 112-121.

    [12] FOX DG, TEDESCHI LO, TYLUTKI TP,etal. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion[J]. Animal Feed Science and Technology, 2004, 112(1): 29-78.

    [13] FOX DG, SNIFFEN CJ, OCONNOR JD,etal. A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy[J].Journal of Animal Science, 1992, 70(11): 3578-3596.

    [14] GIVENS DI, RULQUIN H. Utilisation by ruminants of nitrogen compounds in silage-based diets[J]. Animal Feed Science and Technology, 2004, 114(1): 1-18.

    [15] HALL MB, HEREJK C. Differences in yields of microbial crude protein from in vitro fermentation of carbohydrates[J]. Journal of Dairy Science, 2001(84): 2486-2493.

    [16] HENNEBERG W, STROHMANN F. Beitr ge zur Begründung einer rationellen fütterung der Wiederk uer.[Z]. Praktisch-landwirthschaftliche und physiologische Untersuchungen. Heft 1u.2, Braunschweig, 1860: 1860-1864.

    [17] HIGGS RJ, CHASE LE, ROSS DA,etal. Evaluating and refining the cncps feed library using commercial laboratory feed databases[O]. In Proceedings Cornell Nutrient Conference, Syracuse, NY, 2012.

    [18] HUHTANEN P, KUKKONEN U. Comparison of methods, markers, sampling sites and models for estimating digesta passage kinetics in cattle fed at two levels of intake[J]. Animal Feed Science and Technology, 1995(52):141-158.

    [19] ILLIUS AW, GORDON IJ. Prediction of intake and digestion in ruminants by a model of rumen kinetics integrating animal size and plant characteristics[J]. Journal of Agricultural Science, 1991, 116(1), 145-57.

    [20] JONES BA, HATFIELD RD, MUCK RE. Effect of fermentation and bacterial inoculation on lucerne cell walls[J]. Journal of the Science of Food and Agriculture, 1992(60): 147-153.

    [21] KRIZSAN SJ, AHVENJARVI S, HUHTANEN P. A meta-analysis of passage rate estimated by rumen evacuation with cattle and evaluation of passage rate prediction model[J]. Journal of Dairy Science, 2010, 93(12): 5890-5901.

    [22] LANZAS C, SNIFFEN CJ, SEO S,etal. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants[J]. Animal Feed Science and Technology, 2007, 136(3): 167-190.

    [23] LOPEZ S, HOVELL FDD, DIJKSTRA J,etal. Effects of volatile fatty acid supply on their absorption and on water kinetics in the rumen of sheep sustained by intragastric infusions[J].Journal of Animal Science, 2003, 81(10): 2609-2616.

    [24] MCCORMICK ME, REDFEARN DD, WARD JD,etal. Effect of protein source and soluble carbo-hydrate addition on rumen fermentation and lactation performance of holstein cows[J]. Journal of Dairy Science, 2001 (84): 1686-1697.

    [25] MCDONALD P, HENDERSON AR, HERON SJE. The biochemistry of silage, 2nd[Z]. Cambrian Printers Ltd., Aberystwyth, UK, 1991.

    [26] MOLINA DO. Prediction in intake of lactating cows in the tropics and of the energy value of organic acids[D]. Ph. D. Dissertation, Cornell University, Ithaca, NY, 2002.

    [27] MORRISON FB. Feeds and feeding[M]. 22th Clinton: Morrison Publishing Co, 1956.

    [28] NRC. Nutrient requirements of dairy cattle, 7thed[M].Washington: National Academy Press, 2001.

    [29] OFFNER A, SAUVANT D. Comparative evaluation of the molly cncps, and les rumen models[J]. Animal Feed Science and Technology, 2004(112): 107-130.

    [30] PICHARD D. Forage nutritive value: Continuous and batch in vitro rumen fermentations and nitrogen solubility[D]. Cornell University, 1977.

    [31] PITT RE, VANKESSEL, JS, FOX DG,etal. Prediction of ruminal volatile fatty acids and ph within the net carbohydrate and protein system[J]. Journal of Animal Science, 1996(74): 226-244.

    [32] VAN AMBURGH ME., CHASE LE, OVERTON TR,etal. Updates to the cornell net carbohydrate and protein system v6.1 and implications for ration formulation[D]. Department of Animal Science at the New York State College of Agriculture and Life Sciences (A Statutory College of the State University of New York) Cornell University, 2010:144.

    [33] VAN AMBURGH ME, FOSKOLOS A, COLLAO-SAENZ EA,etal. Updating the CNCPS feed library with new feed amino acid profiles and efficiencies of use: evaluation of model predictions-version 6.5.[C].Syracuse NY: Cornell Nutrition Conference, 2013: 59-76.

    [34] VAN SOEST PJ. Development of a comprehensive system of feed analyses and its application to forages[J]. Journal of Animal Science, 1967, 26(1): 119-128.

    [35] VAN SOEST PJ, ROBERTSON JB, LEWIS, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597.

    [36] VELLE W, SJAASTAD OV, AULIE A,etal. Rumen escape and apparent degradation of amino acids after individual intraruminal administration to cows[J]. Journal of Dairy Science, 1997, 80(12): 3325-3332.

    [37] REYNAL SM, IPHARRAGUERRE IR, LINEIRO M,etal. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities[J]. Journal of Dairy Science, 2007(90):1887-1903.

    [38] SEO S, TEDESCHI LO, LANZAS C,etal. Development and evaluation of empirical equations to predict feed passage rate in cattle[J]. Animal Feed Science and Technology, 2006, 128(1): 67-83.

    [39] SNIFFEN CJ, OCONNOR JD, VAN SOEST PJ,etal. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability[J]. Journal of Animal Science, 1992, 70(11): 3562-3577.

    [40] STENSIG T, WEISBJERG MR, HVELPLUND. Digestion and passage kinetics of fibre in dairy cows as affected by the proportion of wheat starch or sucrose in the diet[J]. Acta Agric Scand, 1998, 48:129-140.

    [41] STROBEL HJ, RUSSELL JB. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria[J]. Journal of Dairy Science, 1986(69): 2941-2947.

    [42] TYLUTKI TP, FOX DG, DURBAL VM,etal. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle[J]. Animal Feed Science and Technology, 2008, 143(1-4):174-202.

    [43] YANG WZ, BEAUCHEMIN KA, RODE LM. Effects of particle size of alfalfa-based dairy cow diets on site and extent of digestion[J]. Journal of Dairy Science, 2002, 85(8), 1958-1968.

    АⅤ资源中文在线天堂| 亚洲精品粉嫩美女一区| 一本综合久久免费| 成年女人毛片免费观看观看9| 99国产精品一区二区蜜桃av| 亚洲av美国av| ponron亚洲| 白带黄色成豆腐渣| 一级毛片女人18水好多| 精品午夜福利视频在线观看一区| 国模一区二区三区四区视频| 九色成人免费人妻av| 久久精品夜夜夜夜夜久久蜜豆| 久久久久亚洲av毛片大全| 午夜福利在线观看免费完整高清在 | 俄罗斯特黄特色一大片| 国产一区二区在线av高清观看| 免费看a级黄色片| 国内精品美女久久久久久| 国产伦一二天堂av在线观看| 窝窝影院91人妻| 国产高清videossex| 99久国产av精品| 久久久国产成人免费| 母亲3免费完整高清在线观看| 久久精品国产自在天天线| 97碰自拍视频| 99视频精品全部免费 在线| av专区在线播放| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式 | 国产精品98久久久久久宅男小说| 一本精品99久久精品77| 免费看日本二区| 别揉我奶头~嗯~啊~动态视频| 免费搜索国产男女视频| 国产精品精品国产色婷婷| 日本与韩国留学比较| 欧美最新免费一区二区三区 | 俺也久久电影网| 岛国在线免费视频观看| 18禁美女被吸乳视频| 露出奶头的视频| 国产精品,欧美在线| 精品人妻1区二区| 久久香蕉精品热| 国产亚洲精品久久久久久毛片| 国产亚洲精品一区二区www| 啦啦啦韩国在线观看视频| 成熟少妇高潮喷水视频| 久久久久性生活片| 成人无遮挡网站| 深爱激情五月婷婷| 午夜a级毛片| 国内揄拍国产精品人妻在线| 成人三级黄色视频| 日韩精品青青久久久久久| 欧美日韩综合久久久久久 | 精品一区二区三区视频在线观看免费| 亚洲最大成人中文| 成人精品一区二区免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产一区二区入口| 少妇熟女aⅴ在线视频| 免费在线观看日本一区| 一本精品99久久精品77| 99久国产av精品| 别揉我奶头~嗯~啊~动态视频| 欧美成人a在线观看| 综合色av麻豆| 亚洲精品粉嫩美女一区| 国产精品久久久人人做人人爽| 亚洲片人在线观看| 日本免费一区二区三区高清不卡| 在线观看免费视频日本深夜| 91在线观看av| 午夜视频国产福利| 成人精品一区二区免费| 成人一区二区视频在线观看| 久久久久久久久中文| 亚洲午夜理论影院| 精品久久久久久久人妻蜜臀av| 丁香六月欧美| 国产av麻豆久久久久久久| 两个人看的免费小视频| 亚洲av电影不卡..在线观看| 亚洲人成伊人成综合网2020| xxxwww97欧美| 别揉我奶头~嗯~啊~动态视频| 母亲3免费完整高清在线观看| 欧美性猛交╳xxx乱大交人| 国产av不卡久久| 国产伦精品一区二区三区视频9 | 亚洲国产欧美人成| 老汉色av国产亚洲站长工具| 午夜a级毛片| 日本五十路高清| 精品人妻1区二区| 三级国产精品欧美在线观看| 欧美日韩精品网址| 国产伦精品一区二区三区四那| 99热精品在线国产| 色综合欧美亚洲国产小说| 别揉我奶头~嗯~啊~动态视频| 一级作爱视频免费观看| 久久午夜亚洲精品久久| 亚洲五月婷婷丁香| 欧美成人一区二区免费高清观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av电影在线进入| 国产高清视频在线观看网站| 岛国视频午夜一区免费看| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| 在线观看一区二区三区| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区成人 | 国产一区二区亚洲精品在线观看| 男女做爰动态图高潮gif福利片| 美女免费视频网站| 2021天堂中文幕一二区在线观| 亚洲精品日韩av片在线观看 | 噜噜噜噜噜久久久久久91| 舔av片在线| 偷拍熟女少妇极品色| 国内毛片毛片毛片毛片毛片| 一夜夜www| 一个人观看的视频www高清免费观看| 啪啪无遮挡十八禁网站| 嫩草影院入口| 日韩欧美精品免费久久 | 亚洲欧美日韩卡通动漫| 性色avwww在线观看| 久久九九热精品免费| 非洲黑人性xxxx精品又粗又长| x7x7x7水蜜桃| 久久久国产成人精品二区| 欧洲精品卡2卡3卡4卡5卡区| 成人欧美大片| 免费看光身美女| 小说图片视频综合网站| 亚洲电影在线观看av| 亚洲专区中文字幕在线| 午夜免费成人在线视频| 久久国产乱子伦精品免费另类| 国产伦精品一区二区三区视频9 | 欧美激情在线99| 成人无遮挡网站| 青草久久国产| 禁无遮挡网站| 中文字幕精品亚洲无线码一区| 热99re8久久精品国产| 很黄的视频免费| 欧美色欧美亚洲另类二区| x7x7x7水蜜桃| 亚洲avbb在线观看| 亚洲精品乱码久久久v下载方式 | 国产三级在线视频| 在线观看一区二区三区| 婷婷六月久久综合丁香| 在线免费观看的www视频| 天堂√8在线中文| 欧美一区二区国产精品久久精品| 18禁美女被吸乳视频| 欧美xxxx黑人xx丫x性爽| 欧美在线一区亚洲| 免费人成视频x8x8入口观看| 99riav亚洲国产免费| 给我免费播放毛片高清在线观看| 美女cb高潮喷水在线观看| 在线观看免费午夜福利视频| 久久久久性生活片| 丰满人妻熟妇乱又伦精品不卡| 两个人看的免费小视频| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉精品热| 99视频精品全部免费 在线| 日本黄大片高清| 国产三级中文精品| 久久亚洲精品不卡| 久久精品国产清高在天天线| 久久这里只有精品中国| 黄片小视频在线播放| 亚洲av日韩精品久久久久久密| 天美传媒精品一区二区| 成人无遮挡网站| 欧美日韩一级在线毛片| 国内精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 日本在线视频免费播放| 国产激情偷乱视频一区二区| 美女被艹到高潮喷水动态| 特级一级黄色大片| 国产乱人伦免费视频| 悠悠久久av| 久久国产乱子伦精品免费另类| 男人舔女人下体高潮全视频| 18禁国产床啪视频网站| 亚洲18禁久久av| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩卡通动漫| 啪啪无遮挡十八禁网站| 十八禁人妻一区二区| 最后的刺客免费高清国语| 无人区码免费观看不卡| 欧美3d第一页| 日本一本二区三区精品| 午夜日韩欧美国产| 老熟妇乱子伦视频在线观看| 国产精品亚洲一级av第二区| 国产精品综合久久久久久久免费| 男女下面进入的视频免费午夜| 国产免费av片在线观看野外av| 美女黄网站色视频| 舔av片在线| 国产精品一区二区免费欧美| 观看免费一级毛片| 国产免费男女视频| 国产乱人伦免费视频| 老熟妇仑乱视频hdxx| 欧美bdsm另类| 19禁男女啪啪无遮挡网站| 黄色视频,在线免费观看| 搡老妇女老女人老熟妇| 亚洲国产色片| 精品无人区乱码1区二区| 国产亚洲欧美98| 国产在视频线在精品| 亚洲一区二区三区不卡视频| 午夜两性在线视频| 大型黄色视频在线免费观看| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av | 制服丝袜大香蕉在线| 成年人黄色毛片网站| 婷婷丁香在线五月| 一级毛片高清免费大全| 国产乱人伦免费视频| 亚洲成人久久性| 欧美bdsm另类| 十八禁网站免费在线| 国产亚洲欧美在线一区二区| 欧美日韩乱码在线| 国产成人影院久久av| 校园春色视频在线观看| 午夜视频国产福利| 久久国产精品影院| 久久久久亚洲av毛片大全| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 久久亚洲真实| 操出白浆在线播放| 国产97色在线日韩免费| 99热这里只有是精品50| 日韩欧美在线乱码| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 人人妻人人澡欧美一区二区| 99久久精品热视频| 一个人免费在线观看的高清视频| 国产黄色小视频在线观看| 久久精品91无色码中文字幕| 在线观看日韩欧美| 国产精品久久久久久久久免 | 国模一区二区三区四区视频| 欧美成人一区二区免费高清观看| 51国产日韩欧美| 欧洲精品卡2卡3卡4卡5卡区| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 亚洲美女视频黄频| 91久久精品国产一区二区成人 | 99视频精品全部免费 在线| 欧美av亚洲av综合av国产av| 久久久精品欧美日韩精品| 最近在线观看免费完整版| 午夜久久久久精精品| 国产乱人伦免费视频| 国产一区在线观看成人免费| 国产一区二区激情短视频| 精品久久久久久久末码| 91麻豆av在线| 国产伦精品一区二区三区四那| 老汉色∧v一级毛片| 亚洲自拍偷在线| www.999成人在线观看| 岛国在线免费视频观看| 狂野欧美白嫩少妇大欣赏| 国产精品永久免费网站| 国产激情欧美一区二区| 变态另类成人亚洲欧美熟女| 人人妻人人澡欧美一区二区| 变态另类丝袜制服| 99riav亚洲国产免费| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 国产一级毛片七仙女欲春2| 亚洲精品日韩av片在线观看 | 叶爱在线成人免费视频播放| 黄片大片在线免费观看| 国内精品久久久久久久电影| 人妻丰满熟妇av一区二区三区| 欧美绝顶高潮抽搐喷水| 1000部很黄的大片| 香蕉av资源在线| 亚洲精品影视一区二区三区av| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 男人舔奶头视频| 国产精品av视频在线免费观看| 男女床上黄色一级片免费看| 亚洲精华国产精华精| 午夜激情福利司机影院| 九色国产91popny在线| 免费看光身美女| 日韩欧美 国产精品| 成人三级黄色视频| 国产欧美日韩精品亚洲av| 91久久精品国产一区二区成人 | 看片在线看免费视频| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| av视频在线观看入口| 最近最新免费中文字幕在线| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 精品国产三级普通话版| 免费人成视频x8x8入口观看| 老司机午夜福利在线观看视频| 亚洲无线观看免费| 日韩欧美国产一区二区入口| 88av欧美| 欧美成狂野欧美在线观看| 亚洲精品乱码久久久v下载方式 | 国产一区二区激情短视频| 久久九九热精品免费| 久久伊人香网站| 久久精品国产亚洲av涩爱 | 免费在线观看亚洲国产| 日韩大尺度精品在线看网址| 91久久精品电影网| 亚洲七黄色美女视频| 国产久久久一区二区三区| 精品电影一区二区在线| 国产精品久久久人人做人人爽| 国产真实乱freesex| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 91在线精品国自产拍蜜月 | 国产一区二区三区视频了| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 欧美乱色亚洲激情| 亚洲国产精品sss在线观看| 观看美女的网站| 精品久久久久久成人av| 老司机在亚洲福利影院| 丰满的人妻完整版| 国产成人影院久久av| 精品久久久久久久久久久久久| av福利片在线观看| 日本精品一区二区三区蜜桃| 麻豆成人午夜福利视频| 美女被艹到高潮喷水动态| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 日本黄色片子视频| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| www.熟女人妻精品国产| 亚洲国产高清在线一区二区三| 国产高清视频在线观看网站| 18禁黄网站禁片午夜丰满| netflix在线观看网站| 91av网一区二区| 男女视频在线观看网站免费| 最新美女视频免费是黄的| 国产高潮美女av| 成人特级av手机在线观看| aaaaa片日本免费| 老司机在亚洲福利影院| 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 国产亚洲精品综合一区在线观看| 欧美日本亚洲视频在线播放| 丝袜美腿在线中文| 亚洲av成人精品一区久久| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 99久久综合精品五月天人人| 在线观看66精品国产| 黄片小视频在线播放| 美女 人体艺术 gogo| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 国产高清三级在线| 12—13女人毛片做爰片一| 成年女人永久免费观看视频| 国产中年淑女户外野战色| 特级一级黄色大片| 婷婷六月久久综合丁香| 男人和女人高潮做爰伦理| 看黄色毛片网站| 男女午夜视频在线观看| 欧美在线一区亚洲| 九色国产91popny在线| 日韩欧美 国产精品| 综合色av麻豆| 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 少妇的逼好多水| 欧美中文日本在线观看视频| 欧美区成人在线视频| 综合色av麻豆| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 久久久精品欧美日韩精品| 99热这里只有精品一区| 午夜两性在线视频| 90打野战视频偷拍视频| 欧美极品一区二区三区四区| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 三级国产精品欧美在线观看| 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| 夜夜看夜夜爽夜夜摸| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 深爱激情五月婷婷| 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 日本一本二区三区精品| 国产男靠女视频免费网站| 久久久久国内视频| 国产激情欧美一区二区| 成人三级黄色视频| 高清毛片免费观看视频网站| 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 亚洲avbb在线观看| 日本黄大片高清| 日韩欧美免费精品| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 国产av麻豆久久久久久久| 久久这里只有精品中国| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 女警被强在线播放| 欧美日韩综合久久久久久 | 国产成人aa在线观看| 小说图片视频综合网站| 偷拍熟女少妇极品色| 亚洲人成网站高清观看| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 三级毛片av免费| 三级国产精品欧美在线观看| 夜夜爽天天搞| 9191精品国产免费久久| 久久中文看片网| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 中国美女看黄片| 搞女人的毛片| 一区福利在线观看| x7x7x7水蜜桃| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 九色成人免费人妻av| 国产精品 欧美亚洲| 国产午夜精品久久久久久一区二区三区 | 欧美日本视频| 国产成人福利小说| 国产av一区在线观看免费| 国产三级在线视频| 久9热在线精品视频| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 18禁国产床啪视频网站| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| 亚洲成av人片免费观看| 波野结衣二区三区在线 | 在线免费观看不下载黄p国产 | 一本一本综合久久| 九九在线视频观看精品| 69人妻影院| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 最新在线观看一区二区三区| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 精品福利观看| 欧美成人性av电影在线观看| 中文资源天堂在线| a级毛片a级免费在线| 国产探花在线观看一区二区| 国产精品久久久久久精品电影| 欧美中文日本在线观看视频| 国产午夜精品久久久久久一区二区三区 | 午夜免费成人在线视频| 国产美女午夜福利| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 婷婷亚洲欧美| 18禁美女被吸乳视频| 熟妇人妻久久中文字幕3abv| 香蕉丝袜av| 小蜜桃在线观看免费完整版高清| 免费高清视频大片| 色尼玛亚洲综合影院| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 国产精品久久久久久久电影 | 韩国av一区二区三区四区| 国产三级黄色录像| 九色国产91popny在线| 久久久久久久久大av| 亚洲不卡免费看| 少妇丰满av| 欧美一级毛片孕妇| 色在线成人网| 夜夜夜夜夜久久久久| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 在线天堂最新版资源| 在线观看午夜福利视频| 国产乱人伦免费视频| 国产精品 国内视频| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 国产探花极品一区二区| 国产黄色小视频在线观看| 一本综合久久免费| 偷拍熟女少妇极品色| 国产探花极品一区二区| 午夜亚洲福利在线播放| 国产午夜精品论理片| 免费大片18禁| 一本综合久久免费| 我要搜黄色片| 一个人看视频在线观看www免费 | 国产探花在线观看一区二区| 女生性感内裤真人,穿戴方法视频| 精品国内亚洲2022精品成人| 久久精品影院6| 日日夜夜操网爽| 亚洲内射少妇av| 99久久精品一区二区三区| 有码 亚洲区| 国产精品野战在线观看| 久久久久久国产a免费观看| 丁香六月欧美| 成年女人永久免费观看视频| 99久久精品一区二区三区| 亚洲国产欧美人成| 日韩欧美在线乱码| 国产精品女同一区二区软件 | 亚洲七黄色美女视频| 内射极品少妇av片p| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 国内精品一区二区在线观看| 免费看十八禁软件| 国产高潮美女av| 成年女人毛片免费观看观看9| 草草在线视频免费看| 最近最新中文字幕大全电影3| 亚洲熟妇熟女久久| 国产熟女xx| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 欧美日韩一级在线毛片| 亚洲精品一区av在线观看| 成人亚洲精品av一区二区| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 久久伊人香网站| 啦啦啦免费观看视频1| 天堂影院成人在线观看| 亚洲内射少妇av| 国产成+人综合+亚洲专区| 天天躁日日操中文字幕| 不卡一级毛片| xxxwww97欧美| 国产精品av视频在线免费观看| 高潮久久久久久久久久久不卡|