• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Differentiation Analyses Based on mtDNA CO ΙΙ Gene Sequences Among Different Geographic Populations of Aphis glycines (Hemiptera: Aphididae) in Northeast China

    2015-12-29 01:22:33LiRanHanLanlanYeLefuZhangHongyuSunWenpengTongXinandZhaoKuijun

    Li Ran, Han Lan-lan, Ye Le-fu, Zhang Hong-yu, Sun Wen-peng, Tong Xin, and Zhao Kui-jun

    College of Agriculture, Northeast Agricultural University, Harbin 150030, China

    Genetic Differentiation Analyses Based on mtDNA CO ΙΙ Gene Sequences Among Different Geographic Populations of Aphis glycines (Hemiptera: Aphididae) in Northeast China

    Li Ran, Han Lan-lan, Ye Le-fu, Zhang Hong-yu, Sun Wen-peng, Tong Xin, and Zhao Kui-jun*

    College of Agriculture, Northeast Agricultural University, Harbin 150030, China

    Aphis glycines (Hemiptera: Aphididae) is considered as a cosmopolitan pest of cultivated soybean, major difficulties in its control measures may be due to its higher genetic diversity; however, the knowledge about population genetic diversity of this species is limited. This study aimed to represent the genetic differentiation among different geographic populations of soybean aphid in Northeast China. In order to investigate and assess the genetic diversity, genetic differentiation, molecular variance, population structure, ecological importance and evolutionary history of A. glycines, we sequenced a fragment of one protein-coding gene, the cytochrome c oxidaseⅡof mitochondrial DNA gene. The results showed that four haplotypes were defined among COⅡ gene of 180 sequences of soybean aphid in Northeast China including H1 shared by all the populations. Lower haplotype diversity (Hd=0.3590± 0.0420) and nucleotide diversity (Pi=0.0012±0.0002) were observed and high gene flow was detected in every two populations, while most of the variation (80.81%) arose from variability within A. glycines from individuals. Low genetic differentiation and high gene flow (Nm=2.106) indicated a high migration rate between the populations, which might reveal that gene flow in different geographic populations did not affect by geographical distance. The phylogenetic tree and the haplotype network of A. glycines were obtained based on sequences of COⅡ gene, there were no significant genealogical branches or clusters recognized in NJ tree, and no clear distribution, delineation of haplotypes were demonstrated in the haplotype network according to geographical location. This study rejected the vicariance hypothesis: geographic isolation could be a barrier and it restricted A. glycines gene flow among 10 populations.

    Aphis glycines, mtDNA COⅡ, geographic population, gene flow, genetic differentiation

    Introduction

    Aphids is one of the most destructive pest of agriculture, particularly in temperate regions, it causes direct damage to arable and horticultural crops as well as serve as a vector for many plant diseases (Vandermoten et al., 2012; Basky and Nasser, 1989). Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most common pest on soybean, and distributes in many areas of Asia, Africa, America and Australia (Liu, 2007). It is a native pest of eastern Asia (Gariepy et al., 2015; Blackman et al., 2000), and damages relatively seriously in Northeast China where the main soybean production region is (Xue, 2013; Li, 2006). It spreads widely in North America since it is discovered infesting soybean in 2000 (Zhang et al., 2009; Ragsdale et al., 2011), leading to yield lossesand increasing large control costs (Kim et al., 2008) since that it has become the most important pest of soybean (Ragsdale et al., 2011).

    Mitochondrial DNA (mtDNA) has some traits, such as maternal inheritance, absence of intermolecular genetic recombination, a fast evolutionary rate relative to nuclear DNA, the availability of efficient PCR primers, and a wealth of comparative data (Li et al., 2014; Barrette et al., 1994). Therefore, it is extensively applied in entomology, zoology (Li et al., 2014; Lakra et al., 2010; Chen et al., 2009; Puillandre et al., 2014) and has been proven to be very informative in genetic structure and gene flow (Li et al., 2013; Liu et al., 2012; Wang et al., 2014). So mtDNA has been widely used for studying population structure, phylogeography and phylogenetic relationship at various taxonomic levels (Wang et al., 2014; Xu et al., 2014). While sequences encoding of mitochondrial cytochrome oxidase subunit Ⅱ (COⅡ) are recognized as an appropriate tool for intraspecific analyses, due to the high degree of polymorphism observed (Li et al., 2010; Bu et al., 2005). In this study, partial sequences of mtDNA-COⅡgene of A. glycines from 10 locations of major soybean-growing areas in Northeast China were sequenced. The sequence data was used to assess the extent and characters of the genetic variation of A. glycines populations in Northeast China.

    Materials and Methods

    Sample collection and preparation

    A. glycines were sampled from 10 different sites in Northeast China, the geographic locations are given in Fig. 1. All the samples were identified based on morphological characteristics and preserved in anhydrous ethanol, and then stored at -20℃ until DNA extraction.

    Fig. 1 Map of Northeast China, showing localities of sampling Aphis glycinesThe 10 sampling localities were CC (Changchun), DL (Dalian), GZL (Gongzhuling), HH (Heihe), HRB (Harbin), JMS (Jiamusi), JX (Jixi), MDJ (Mudanjiang), SY (Shenyang), and TH (Tonghua).

    DNA extraction and PCR amplification

    Total DNA was extracted from single soybean aphid following the method previously described (Yang et al., 2005), but omitting the phenol-chloroform protocol steps (Sambrook and Russell, 2001). DNAwas diluted to a final concentration of 50 ng · mL-1.

    We designed a pair of primers COⅡ (F: 5-CATTC ATATGCAGAATTACC-3′ and 5′- GAGATCGTTAC TTTGCTTTT -3′) to amplify a fragment (673 bp) of COⅡ gene based on complete A. glycines mtDNA (KC840675.1). While each PCR was performed with a 50 μL reaction volume, containing 2 μL of genomic template DNA, 1 μL of each primer, 4 μL of dNTPs, 1 U of Taq DNA polymerase, 5 μL 10×reaction buffer, and ultrapure water. Amplification was carried out in a PCR system consisted of denaturation at 94℃ for 5 min, followed by 35 cycles of 94℃ for 60 s, 49.2℃for 50 s, and 72℃ for 50 s, with a final extension step at 72℃ for 10 min.

    Sequencing of PCR products

    PCR products were directed by electrophoresis in a 1.2% agarose gel and purified using DNA gel purification kit (Traans GenBitech). All PCR fragments were directly sequenced after purification by Beijing Huada Gene Research Center.

    Data analyses

    COⅡ gene sequences were aligned by ClustalX 1.83 (Thompson et al., 1997). While software program DnaSP 5.0 (Librado and Rozas, 2009) was used to calculate genetic parameters including the nucleotide composition, number of polymorphic sites, haplotype diversity (Hd) (Nei, 1987), and the nucleotide diversity (Pi) (Lynch and Crease, 1990). These genetic parameters were calculated for each geographic population of A. glycines. The phylogenetic tree were constructed through neighbor-joining (NJ) method (Saitou and Nei, 1987) by using Kimura-2-parameter (K2P) model (Kimura, 1980) in MEGA 5.0 (Tamura et al., 2011).

    Historical demographic and spatial expansions were studied using a distinct statistical approach, Tajima' D (Tajima, 1989) was calculated to verify the null hypothesis of selective neutrality in relation to mtDNA sequences, which would be expected with population expansion. While large negative D was characteristic of population expansion.

    A haplotype network was created using the medianjoining method by Network 4.1 software (Rohl, 2003) to depict phylogenetic and geographical relationships of the haplotypic sequences. The hierarchical nesting were used to reveal the geographical structure of genetic variation, which was estimated by using the analysis of molecular variance (AMOVA) approach, and calculated by using Arlequin 3.0 (Excoffier et al., 2005). In addition, fixation indexes (Fst) were calculated on the basis of the information of haplotypes and their frequencies, while we derived the values for Nm using the formula Fst=1/(1+2 Nm), which was specific to organelle genetic data (Goldberg and Ruvolo, 1997).

    Results

    Variation of mtDNA sequences

    A 673 bp fragment of mtDNA cytochronme oxidase subunitⅡgene (COⅡ) of A. glycines was amplified and sequenced in all of the collected samples. The average nucleotide frequencies of thymine (T), cytosine (C), adenine (A), and guanine (G) were 39.8%, 11.9%, 40.5%, and 7.8%, respectively. Among 180 collected individuals, nine variable sites, four haplotypes were observed, and no single variable sites were found. The sequences were deposited in GenBank (KP757883, KP757884, KP757885, KP757888 for haplotypes H1-H4).

    Genetic diversity

    The number of haplotypes, the values of nucleotide diversity and haplotype diversity, within each and among the total populations are shown in Table 1. There were seven populations whose haplotype diversity and nucleotide diversity were 0 in 10 populations. In remaining three populations, the haplotype diversities were 0.7433 ± 0.0350 (HRB), 0.3410 ± 0.0780 (JX) and 0.6020 ± 0.0570 (MDJ), while nucleotide diversity were 0.0043 ± 0.0005, 0.0005 ± 0.0001 (JX) and 0.0020 ± 0.0003 (MDJ), respectively.

    Table 1 Distribution of haplotypes, genetic diversity and neutral test among different geographic populations of Aphis glycines based on CO II gene

    Tests of neutrality and estimates of population expansion

    Tajima' D test was carried out to identify the presence of a selective sweep or a balancing selection in A. glycines populations (Harpending et al., 1998) and to test whether the COⅡ fragment evolved under neutrality or not. Tajima' D resulted in negative values for the total populations (Table 1), and the values suggested no significant deviations (P>0.10). This statistical finding was consistent with the possibilities that A. glycines populations from these locations may have not experienced population selection or expansion. Values for the statistic ranged from 0.6295 to 1.072 and no statistically significant (P>0.10) were found, indicating a significant correlation between the observed and expected outcomes.

    Population structure analysis

    AMOVA test (Table 2) revealed that 80.81% of the genetic variation occurred within groups, and 19.19% occurred among groups. The genetic variation components showed that genetic variation within populations was significantly greater than that among populations, which suggested that the genetic differentiation of A. glycines populations in Northeast China occurred primarily within populations, whereas the genetic variation among populations was relatively low. Fixation indexes (Fst) were calculated on the basis of the information of haplotypes and their frequencies, Fst=0.1919, and Nm=2.106.

    Gene flow and genetic differentiation analysisThe values of fixation index (Fst) and gene flow (Nm) (Table 3) among pairs of 10 populations showed that the pairwise fixation index (Fst) ranged from 0 to 0.1914. The average Fst value was 0.009301 (P>0.05), which suggested no genetic variation among 10 populations, Fst values were calculated for populations together as a group and separately for all pairs. Consistent with AMOVA test, the pairwise Fst analysis revealed insignificant genetic differentiation among the sampled regions. In addition, Nm could estimate the gene flow among 10 populations and estimate expected numbers of migrants exchanged among populations in each generation. According to Table 3, all Nm values between pairs of populations were greater than one. These results suggested that the extensive gene flow occurred among 10 populations of A. glycines.

    Table 2 Analysis of molecular variance (AMOVA) among 10 populations of Aphis glycines

    Table 3 Fst value (below diagonal) and gene flow Nm (above diagonal) among 10 populations of Aphis glycines based on CO II

    Phylogenetic and network analysis

    To further depict the phylogenetic and geographical relationship among the identified sequences, the haplotype networks were constructed using the median-joining method in Network 4.1 software (Fig. 2). The results revealed that the sequences of COⅡwere mostly related to a central and most abundant haplotype (H1), the dominant haplotype 1 accounted for 78.89% (142/180) of all A. glycines specimens and appeared in each sampled population, while H2 haplotype contained three individuals of the HRB population, H3 contained 22 individuals which were distributed in three populations (HRB, JX, and MDJ), and H4 was shared by two sample regions (HRB and MDJ).

    Fig. 2 Median-joining network of haplotypes of Aphis glycines based on CO II gene of mtDNACircle areas are proportional to haplotype frequencies, colored portions represent the proportions of the same haplotype that occurs in each sampling region, while red numbers represent variable sites.

    A neighbor-joining tree among four haplotypes was constructed based on the Kimura-2-parameter distance model (Fig. 3). While some closely related species were selected as the outgroups, all haplotypes in the populations were significantly separated from outgroups. There was no clear evidence of a geographical spectrum among the haplotypes, and each cluster confidence coefficient was low. The haplotypes H2 had a distant relationship compared with other three halotypes, the result was similar to the haplotype networks. H1, H3 and H4 were closely related and divided into the same cluster, whereas H2 divided into other clusters. All the four haplotypes were divided into the same cluster.

    Fig. 3 Neighbor-joining phylogenetic tree of haplotypes of different geographic populations of Aphis glycines based on CO II gene sequence, other aphids are used as outgroups.

    Discussion

    The sequence COⅡ of A. glycines (Hemiptera: Aphididae) was 673 bp in length, its nucleotide composition was highly A+T biased (80.30%), the result conformed to the composition and structure characteristics of mtDNA gene sequences of hemipteran insects, whose A+T content of mitogenomes ranged from 68.86% to 86.33% (Zhang et al., 2014). Genetic diversity provided a potential genetic resource for future adaptation (Hurt and Hedrick, 2004), and could be a key factor to the adaptability of a population. In addition, biological characteristics and the dependence on habitats of insect will lead to the different levels of genetic diversity (Li et al., 2003). In this study, we found low haplotype diversity (Hd) and nucleotide diversity within individual populations of all samples, the result might reflect its biological characteristics, and the ability to adapt hostile environment condition of A. glycines was relatively weak. Therefore, the limited habitat, food and simple survival environment might lead to relatively low genetic diversity within A. glycines populations. The difference of the values of haplotype diversity (Hd) and nucleotide diversity in each population might due to the wide distribution of A. glycines in Northeast China where the natural ecological conditions had some differences.

    The demographic history of A. glycines provides further evident from neutrality tests. The negative values for Tajima' D test (Tajima' D=-1.145) indicated that it conformed to the neutral evolutionmodel and the population had not undergone a recent bottleneck (Wang, 2014; Tajima, 1989; Nohara et al., 2010). Historical factors play an important role in population phylogeny and evolution, the results of Tajima's D test were no statistically significant for all populations indicated that A. glycines did not experience a recent population expansion (P>0.05) among 10 populations, while population size remained in relatively stable state. All of these observations were not statistically significant for genetic differentiation (P>0.05) which suggested that all the populations formed one genetic group.

    Fst can be a measurement of the variance in gene frequencies among populations (Garcia et al., 2003), and bears a direct relationship to Nm. In this study, Fst value (Fst=0.1919) implied a higher genetic differentiation within populations (Weight, 1978). Consistent with AMOVA study, genetic differentiation mainly occurred within populations. AMOVA was to determine if this molecular variation correlated with the geographical isolation of the different populations, indicated moderate differentiation between the populations (Haynes et al., 2014). The result of AMOVA showed that most of the variations (80.81%) arose from variability within populations, suggesting the geographical isolation was not the main reason which resulted in the genetic differentiation. These results showed that 10 populations had no apparent divergence and shared a great amount of gene flow. Nm for all the groups was greater than one, indicating that geographic isolation did not act as a barrier for the gene flow and led to lower genetic differentiation and lower genetic diversity among populations. It was so inferred that A. glycines had been mingling their genes by migration or other ways.

    Median-joining network for COⅡshowed that H1 was the most common haplotype, and shared by 10 populations, suggesting that potential adaptive existed in A. glycines populations, which might due to neutral processes like genetic bottleneck effects. The most prevalent haplotype (haplotype 1) showed a typical starlike topology, haplotype 2 was derived from a single substitution, each of other haplotypes which appeared to show star-like topologies and independently of each other. However, the rare haplotype in each population also revealed that genetic differentiation existed among populations to some extent.

    The data from mtDNA COⅡ sequences revealed low genetic diversity and insignificant genetic differentiation in A. glycines of Northeast China existed. Further studies including nuclear markers and more samples are needed to extend and corroborate the present findings, and other classes of molecular markers, such as nuclear microsatellites, which might reveal another aspect of A. glycines population structure and gain greater understanding and insights into the comprehensive population structure of A. glycines. Use of multiple genetic marker systems could increase resolving power of the future genetic studies (Gruenthal et al., 2007). These studies would help us to understand the comprehensive population evolution and gene flow in A. glycines, and thus achieve better prevention and control measures.

    Barrette R J, Crease T J, Hebert P D N, et al. 1994. Mitochondrial DNA diversity in the pea aphid Acyrthosiphon pissum. Genome,37: 858-865.

    Basky Z, Nasser M A. 1989. The activity of virus vector aphids on cucumbers. Agr Ecosyst Environ,25: 337-342.

    Blackman R L, Eastop V F. 2000. Aphids on the world's crops: an identification and information guide. 2nd ed. Wiley, New York.

    Bu Y, Zheng Z M, Guo K. 2005. Sequence analysis of mtDNA-COⅡgene and molecular phylogeny on five species of Pehtatoma (Hemiptera: Pentatomidae). Entomotaxonomia,27(2): 90-96.

    Chen J X, Song Z H, Rong M J, et al. 2009. The association analysis between Cytb polymorphism and growth traits in three Chinese donkey breeds. Livestock Science,126: 306-309.

    Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform,1: 47-50.

    Fu Y X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,147: 915-925.

    Garcia B A, Manfredi C, Fichera L, et al. 2003. Short report: variation in mitochondrial 12s and 16s ribosomal DNA sequences in natural populations of Triatomainfestans (Hemiptera: Reduviidae). Am J Trop Med Hyg,68: 692-694.

    Gariepy V, Boivin G, Brodeur J. 2015. Why two species of parasitoids showed promise in the laboratory but failed to control the soybean aphid under field conditions. Biol Control,80: 1-7.

    Goldberg T L, Ruvolo M. 1997. The geographic apportionment of mitochondrial genetic diversity in east African chimpanzees, Pan troglodytes schwein furthii. Mol Biol Evol,14(9): 976-984.

    Gruenthal K M, Acheson L K, Burton R S. 2007. Genetic structure of natural populations of California red abalone (Haliotis rufescens) using multiple genetic markers. Mar Biol,152: 1237-1248.

    Harpending H C, Batzer M A, Gurven M, et al. 1998. Genetic traces of ancient demography. Proc Natl Acad Sci U S A,95(4): 1961-1967.

    Haynes B T, Marcus A D, Higgins D P, et al. 2014. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts. Infect, Genet Evol,28: 192-200.

    Hurt C, Hedrick P. 2004. Conservation genetics in aquatic species: general approaches and case studies in fishes and springsnails of arid lands. Aquat Sci,66: 402-413.

    Kim C S, Schaible G, Carrett L, et al. 2008. Economic impacts of the US soybean aphid infestation: a multi-regional competitive dynamic analysis. Agric Res Econ Rev,37: 227-242.

    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol,16: 111-120.

    Lakra W S, Goswami M, Gopalakrishnan A, et al. 2010. Genetic relatedness among fish species of Genus Channa using mitochondrial DNA genes. Biochem Syst Ecol,38(6): 1212-1219.

    Li C X, Ma E B, Zheng X Y. 2003. Genetic differentiation of different populations of four locust species in China. Acta Genetica Sinica,30: 234-244.

    Li D, Qin J C, Zhou C F. 2014. The phylogeny of Ephemeroptera in Pterygota revealed by the mitochondrial genome of Siphluriscus chinensis (Hexapoda: Insecta). Gene,545:132-140.

    Li J, Zhang Y, Wang Z Y, et al. 2010. Genetic differentiation and gene flow among different geographical populations of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae) in China estimated by mitochondrial COⅡ gene sequences. Acta Entomologica Sinica,53(10): 1135-1143.

    Li J J, Ye Y Y, Wu C W, et al. 2013. Genetic variation of Mytilus coruscus gould (Bivalvia: Mytilidae) populations in the East China Sea inferred from mtDNA COⅠgene sequence. Biochem Syst Ecology,50: 30-38.

    Li Y R. 2006. The agricultural entomology. Higher Education Press, Beijing. pp. 212-216.

    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics,25(11): 1451-1452.

    Liu H J, Liu M, Ge S S, et al. 2012. Population structuring and historical demography of a common clam worm Perinereris aibuhitensis near the coasts of Shandong Peninsula. Biochem Syst Ecology,44: 70-78.

    Liu J Ed. 2007. Study on the predation of natural enemies on soybean aphid. Agricultural Science and Technology of China Press, Beijing. pp. 1-2.

    Lynch M, Crease T J. 1990. The analysis of population survey data on DNA sequence variation. Mol Biol Evol,7: 377-394.

    Nei M, 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, USA. pp. 10-88.

    Nohara K, Takeuchi H, Tsuzaki T, et al. 2010. Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fish Sci,76: 75-81.

    Puillandre N, Bouchet P, Duda T F, et al. 2014. Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol,78: 290-303.

    Ragsdale D W, Landis D A, Brodeur J, et al. 2011. Ecology and management of soybean aphid in North America. Annu Rev Entomol,56: 375-399.

    Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol,4: 406-425.

    Sambrook J, Russell D W. 2001. Molecular cloning: a laboratory manual. 3 rd. Cold Spring Harbor Laboratory Press, New York.

    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,123: 585-595.

    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA 5, molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,28(10): 2731-2739.

    Thompson J D, Gibson T J, Plewniak F, et al. 1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res,25: 4876-4882.

    Vandermoten S, Mescher M C, Francis F, et al. 2012. Aphid alarm pheromone: an overview of current knowledge on biosynthesis andfunctions. Insect Biochem Mol Biol,42: 155-163.

    Wang H, Xu Z X, Han L L, et al. 2014. Analysis of the genetic diversity in geographic populations of Leguminivora glycinivorella (Lepidoptera: Olethreutidae) from northeastern China based on mitochondrial DNA COI gene sequences. Acta Entomologica Sinica,57(9): 1051-1060.

    Wang X Y, Xu G Q. 2014. Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomologica Sinica,57(9): 1061-1074.

    Weight S. 1978. Evolution and the genetics of population. In: Wright S. Variability within and among natural populations. University of Chicago Press, Chicago. pp. 10-15.

    Xu H X, Zhang Y R, Xu D D, et al. 2014. Genetic population structure of miiuy croaker (Miichthys miiuy) in the Yellow and East China Seas base on mitochondrial COⅠsequences. Biochem Syst Ecol,54: 240-246.

    Xue Q X. 2013. Analysis on the change of 30 years' soybean areas, production and yield in China and Northeast China. Chinese Agricultural Science Bulletin,29(35): 102-106.

    Yang Z X, Feng Y, Chen X M. 2005. An effective method for extraction genomic DNA from aphids. Forest Research,18(5): 641-Cover three.

    Zhang B, Ma C, Edwards O, et al. 2014. The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene,533: 253-260.

    Zhang Y, Wu K M, Wyckhuys K A G, et al. 2009. Effect of parasitism on flight behavior of the soybean aphid, Aphis glycines. Biol Control,51: 475-479.

    Q81

    A

    1006-8104(2015)-03-0023-09

    Received 20 June 2015

    Supported by the Special funds for Construction of Modern Agricultural Technology System (CARS-04); Public Welfare Industry (Agriculture) Special Fund (201103002)

    Li Ran (1989-), female, Master, engaged in the research of insect ecology. E-mail: lirannl@126.com

    * Corresponding author. Zhao Kui-jun, professor, supervisor of Ph. D student, engaged in the research of insect ecology. E-mail: kjzhao@163.com

    久久综合国产亚洲精品| 我的老师免费观看完整版| 欧美3d第一页| 免费电影在线观看免费观看| 国产大屁股一区二区在线视频| 亚洲四区av| 日日摸夜夜添夜夜爱| 五月伊人婷婷丁香| 成人亚洲精品一区在线观看 | 国产淫语在线视频| 国产v大片淫在线免费观看| 亚洲精品国产av成人精品| 18禁在线播放成人免费| 亚洲精品日韩av片在线观看| 国产熟女欧美一区二区| 国产淫语在线视频| 亚洲精品中文字幕在线视频 | 大香蕉97超碰在线| 国产亚洲最大av| 99久久精品热视频| 日韩欧美精品v在线| 在线精品无人区一区二区三 | 亚洲欧美中文字幕日韩二区| 性插视频无遮挡在线免费观看| 黄色怎么调成土黄色| 国产免费福利视频在线观看| 少妇高潮的动态图| 看十八女毛片水多多多| 亚洲经典国产精华液单| 日本熟妇午夜| 欧美一级a爱片免费观看看| 亚洲精品影视一区二区三区av| 少妇丰满av| 天天躁夜夜躁狠狠久久av| 免费观看av网站的网址| 色综合色国产| 成年人午夜在线观看视频| 亚洲精品日韩av片在线观看| 国产高清三级在线| 三级国产精品片| 日本欧美国产在线视频| 天美传媒精品一区二区| 国产成人精品婷婷| 美女主播在线视频| 亚洲欧美一区二区三区黑人 | 在线播放无遮挡| 亚洲丝袜综合中文字幕| 中文乱码字字幕精品一区二区三区| 日韩三级伦理在线观看| 国产有黄有色有爽视频| 国产毛片a区久久久久| 联通29元200g的流量卡| 久久精品久久久久久久性| 2021少妇久久久久久久久久久| 舔av片在线| 亚洲国产欧美在线一区| 日本wwww免费看| freevideosex欧美| 高清视频免费观看一区二区| 国产久久久一区二区三区| 免费看av在线观看网站| 在线观看免费高清a一片| 国产一区亚洲一区在线观看| 午夜福利在线在线| 亚洲最大成人中文| 涩涩av久久男人的天堂| 亚洲欧美日韩另类电影网站 | 久久久亚洲精品成人影院| 日本熟妇午夜| 成人午夜精彩视频在线观看| 高清在线视频一区二区三区| 人妻系列 视频| 99久久精品国产国产毛片| 欧美性感艳星| 草草在线视频免费看| 在线天堂最新版资源| 日本熟妇午夜| 搞女人的毛片| 国产亚洲av片在线观看秒播厂| 亚洲精品第二区| 国产精品一二三区在线看| av国产精品久久久久影院| 日韩欧美精品v在线| 日本-黄色视频高清免费观看| 久久精品熟女亚洲av麻豆精品| 精品视频人人做人人爽| 少妇的逼水好多| 中文在线观看免费www的网站| 亚洲va在线va天堂va国产| 男女国产视频网站| 一级二级三级毛片免费看| 欧美激情在线99| 王馨瑶露胸无遮挡在线观看| 国产亚洲午夜精品一区二区久久 | 嫩草影院精品99| 亚洲av免费在线观看| 亚洲精品色激情综合| 精品久久久久久久久av| 欧美一区二区亚洲| 亚洲内射少妇av| 免费播放大片免费观看视频在线观看| 2021天堂中文幕一二区在线观| 最近中文字幕2019免费版| 国产精品99久久久久久久久| 久久女婷五月综合色啪小说 | 免费播放大片免费观看视频在线观看| 久久国产乱子免费精品| 五月伊人婷婷丁香| 亚洲欧美成人综合另类久久久| 人妻夜夜爽99麻豆av| 国产精品久久久久久久电影| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 国产乱人视频| 久久久久久久久久人人人人人人| 国产伦在线观看视频一区| 免费看不卡的av| 黄色配什么色好看| 国产伦精品一区二区三区四那| 直男gayav资源| 久久久久久久国产电影| 嘟嘟电影网在线观看| 国产精品久久久久久精品古装| 国产乱来视频区| 国产乱来视频区| 青春草国产在线视频| 蜜桃亚洲精品一区二区三区| av在线app专区| 三级国产精品片| 丝袜脚勾引网站| 国产精品嫩草影院av在线观看| 18禁裸乳无遮挡免费网站照片| 黄色怎么调成土黄色| 少妇裸体淫交视频免费看高清| 在线观看国产h片| 我要看日韩黄色一级片| 亚洲精品国产成人久久av| 国产成年人精品一区二区| 精品国产三级普通话版| 国产精品成人在线| 国产熟女欧美一区二区| 免费看不卡的av| 久久久欧美国产精品| 久久久精品免费免费高清| 伊人久久国产一区二区| 久久精品国产鲁丝片午夜精品| 欧美高清性xxxxhd video| 午夜精品国产一区二区电影 | 国产淫语在线视频| 精品视频人人做人人爽| 亚洲欧美成人精品一区二区| 亚洲av中文字字幕乱码综合| 男女那种视频在线观看| 成人午夜精彩视频在线观看| 九草在线视频观看| 一级毛片aaaaaa免费看小| 国产色爽女视频免费观看| 日日啪夜夜爽| 97超碰精品成人国产| 在线a可以看的网站| 欧美区成人在线视频| 欧美日韩综合久久久久久| 亚洲国产高清在线一区二区三| 精品少妇黑人巨大在线播放| 精品熟女少妇av免费看| 国产 一区精品| 亚洲自拍偷在线| 白带黄色成豆腐渣| 十八禁网站网址无遮挡 | 国产精品女同一区二区软件| 王馨瑶露胸无遮挡在线观看| 97在线视频观看| 黑人高潮一二区| 精品一区二区免费观看| 国产午夜精品久久久久久一区二区三区| 日韩一本色道免费dvd| 色吧在线观看| 亚洲精品久久午夜乱码| 成年免费大片在线观看| 一区二区三区免费毛片| 97热精品久久久久久| 能在线免费看毛片的网站| 毛片一级片免费看久久久久| 狂野欧美激情性bbbbbb| 国产亚洲一区二区精品| 51国产日韩欧美| 欧美高清性xxxxhd video| 国产伦精品一区二区三区四那| 亚洲成色77777| 边亲边吃奶的免费视频| 国产极品天堂在线| 久久久午夜欧美精品| 亚洲欧美精品自产自拍| 国产免费一级a男人的天堂| 久久99蜜桃精品久久| 国产亚洲午夜精品一区二区久久 | 最近2019中文字幕mv第一页| 久久久精品欧美日韩精品| 国产免费视频播放在线视频| 亚洲av免费高清在线观看| 中文乱码字字幕精品一区二区三区| 韩国av在线不卡| 色视频www国产| 国产精品伦人一区二区| 精品人妻一区二区三区麻豆| av在线亚洲专区| 成年版毛片免费区| 不卡视频在线观看欧美| 欧美最新免费一区二区三区| 国产成人精品久久久久久| 欧美精品人与动牲交sv欧美| 亚洲av国产av综合av卡| 日本与韩国留学比较| 亚洲av成人精品一二三区| 99久久中文字幕三级久久日本| 五月玫瑰六月丁香| 国产一区二区亚洲精品在线观看| 在线观看美女被高潮喷水网站| 欧美激情在线99| 一区二区三区乱码不卡18| 久久久久精品性色| 伦精品一区二区三区| 亚洲丝袜综合中文字幕| 欧美三级亚洲精品| 久久久成人免费电影| 精品少妇久久久久久888优播| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 午夜福利视频精品| 国产视频内射| 亚洲av中文字字幕乱码综合| 边亲边吃奶的免费视频| 久久久国产一区二区| 六月丁香七月| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 午夜激情久久久久久久| 一级二级三级毛片免费看| 亚洲欧美日韩卡通动漫| 好男人视频免费观看在线| 国产淫片久久久久久久久| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 中文天堂在线官网| freevideosex欧美| 街头女战士在线观看网站| 日韩大片免费观看网站| 有码 亚洲区| 丰满乱子伦码专区| 最后的刺客免费高清国语| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 日韩av不卡免费在线播放| 日本色播在线视频| 自拍偷自拍亚洲精品老妇| 午夜激情久久久久久久| 91久久精品国产一区二区成人| 丰满少妇做爰视频| 国产中年淑女户外野战色| 人妻 亚洲 视频| 在线天堂最新版资源| 99热网站在线观看| 亚洲精品久久午夜乱码| 国内精品宾馆在线| 国产中年淑女户外野战色| 日本三级黄在线观看| 亚洲成色77777| 日韩制服骚丝袜av| 噜噜噜噜噜久久久久久91| 一级毛片久久久久久久久女| 在线观看免费高清a一片| 国产乱来视频区| 男女无遮挡免费网站观看| 国产精品人妻久久久久久| 免费高清在线观看视频在线观看| 一级二级三级毛片免费看| 欧美丝袜亚洲另类| 丝瓜视频免费看黄片| av在线亚洲专区| 欧美精品人与动牲交sv欧美| 亚洲欧洲国产日韩| 国产男女内射视频| 2021少妇久久久久久久久久久| 欧美高清性xxxxhd video| 午夜精品一区二区三区免费看| 精品少妇黑人巨大在线播放| 1000部很黄的大片| 亚洲精品成人久久久久久| 有码 亚洲区| 亚洲国产最新在线播放| 又爽又黄无遮挡网站| 可以在线观看毛片的网站| 国产一区二区三区综合在线观看 | 黄色怎么调成土黄色| 丝袜脚勾引网站| 中文字幕人妻熟人妻熟丝袜美| 特级一级黄色大片| 三级国产精品欧美在线观看| 在线观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 国产69精品久久久久777片| 夜夜爽夜夜爽视频| 老司机影院毛片| 日本色播在线视频| 国产精品爽爽va在线观看网站| 国产亚洲av嫩草精品影院| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线观看播放| av在线蜜桃| 亚洲欧美精品专区久久| 免费电影在线观看免费观看| 久久韩国三级中文字幕| 亚洲成人一二三区av| 十八禁网站网址无遮挡 | 亚洲欧美日韩卡通动漫| 简卡轻食公司| 美女被艹到高潮喷水动态| 精品人妻偷拍中文字幕| 搡老乐熟女国产| 性色av一级| 别揉我奶头 嗯啊视频| 亚洲人成网站在线观看播放| 成人毛片60女人毛片免费| 亚洲欧洲日产国产| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 我的老师免费观看完整版| 成人黄色视频免费在线看| 又粗又硬又长又爽又黄的视频| 校园人妻丝袜中文字幕| 亚洲成人久久爱视频| 亚洲人成网站在线观看播放| 亚洲精品,欧美精品| 亚洲,一卡二卡三卡| 最近2019中文字幕mv第一页| 内地一区二区视频在线| 亚洲在久久综合| 成人黄色视频免费在线看| 六月丁香七月| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 男女下面进入的视频免费午夜| 国产免费一区二区三区四区乱码| 观看免费一级毛片| 成人亚洲欧美一区二区av| 日产精品乱码卡一卡2卡三| 国产男人的电影天堂91| av女优亚洲男人天堂| 成人一区二区视频在线观看| 国产黄片美女视频| 成人国产av品久久久| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 久久女婷五月综合色啪小说 | 91久久精品国产一区二区三区| 婷婷色综合www| 国产成人精品一,二区| 免费观看av网站的网址| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 可以在线观看毛片的网站| 天天躁夜夜躁狠狠久久av| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 一级爰片在线观看| 日韩av不卡免费在线播放| 久久影院123| 中文乱码字字幕精品一区二区三区| 国产日韩欧美亚洲二区| 国产老妇女一区| 色吧在线观看| 高清欧美精品videossex| 男女那种视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 王馨瑶露胸无遮挡在线观看| 亚洲美女搞黄在线观看| 国产精品一区二区三区四区免费观看| 久久精品国产自在天天线| 丝袜美腿在线中文| 亚洲精品国产av蜜桃| 亚洲综合色惰| 一区二区三区乱码不卡18| 久久久久久久久久成人| 国产成人免费观看mmmm| 中文乱码字字幕精品一区二区三区| 老师上课跳d突然被开到最大视频| 精品国产一区二区三区久久久樱花 | 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| 久久精品夜色国产| 人妻 亚洲 视频| 精品少妇黑人巨大在线播放| 2022亚洲国产成人精品| 99九九线精品视频在线观看视频| 三级国产精品片| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久久av| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| 欧美最新免费一区二区三区| av免费在线看不卡| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 亚洲av免费高清在线观看| 国产一区二区三区综合在线观看 | 麻豆精品久久久久久蜜桃| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| 日日摸夜夜添夜夜添av毛片| 国产黄频视频在线观看| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 亚洲第一区二区三区不卡| 在线观看国产h片| av在线app专区| 亚洲精品日韩在线中文字幕| 91精品伊人久久大香线蕉| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 成年女人看的毛片在线观看| 国产永久视频网站| 狂野欧美激情性xxxx在线观看| 亚洲精品中文字幕在线视频 | 熟女电影av网| 久久精品综合一区二区三区| 18禁动态无遮挡网站| 高清午夜精品一区二区三区| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线 | 国产高清不卡午夜福利| 精品一区在线观看国产| 午夜精品国产一区二区电影 | 日本色播在线视频| 亚洲精品影视一区二区三区av| 日韩电影二区| 精品人妻视频免费看| 久久午夜福利片| 18+在线观看网站| 少妇人妻 视频| 一本一本综合久久| 国产在线男女| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 免费高清在线观看视频在线观看| 嫩草影院精品99| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 免费观看av网站的网址| 深爱激情五月婷婷| 国产免费又黄又爽又色| 成人国产麻豆网| 99热这里只有是精品在线观看| 全区人妻精品视频| 中国国产av一级| 国产免费又黄又爽又色| 日本色播在线视频| 男人爽女人下面视频在线观看| 国产伦精品一区二区三区四那| 看非洲黑人一级黄片| 久久久久网色| 看免费成人av毛片| 2018国产大陆天天弄谢| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 亚洲国产精品成人久久小说| 久久久久久久久久人人人人人人| 少妇裸体淫交视频免费看高清| 日韩欧美一区视频在线观看 | 好男人在线观看高清免费视频| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 久久久久性生活片| 亚洲成色77777| 久久人人爽av亚洲精品天堂 | 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 97热精品久久久久久| 欧美日本视频| 亚洲国产色片| 少妇高潮的动态图| 国产高清有码在线观看视频| 男女无遮挡免费网站观看| 日本wwww免费看| 最近2019中文字幕mv第一页| 高清午夜精品一区二区三区| 听说在线观看完整版免费高清| 亚洲丝袜综合中文字幕| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲网站| 午夜福利高清视频| 国产精品熟女久久久久浪| 色网站视频免费| av卡一久久| 看免费成人av毛片| 精品一区在线观看国产| 国产日韩欧美亚洲二区| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 中文字幕人妻熟人妻熟丝袜美| 26uuu在线亚洲综合色| 干丝袜人妻中文字幕| 日日啪夜夜撸| 大香蕉97超碰在线| 亚洲av二区三区四区| 午夜亚洲福利在线播放| 少妇的逼水好多| 99热网站在线观看| 午夜精品国产一区二区电影 | 国产亚洲5aaaaa淫片| 麻豆成人午夜福利视频| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 欧美日本视频| 日本猛色少妇xxxxx猛交久久| 日日啪夜夜爽| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 免费看a级黄色片| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 成人漫画全彩无遮挡| 联通29元200g的流量卡| 高清日韩中文字幕在线| 狠狠精品人妻久久久久久综合| 蜜臀久久99精品久久宅男| 下体分泌物呈黄色| 夜夜看夜夜爽夜夜摸| 天天躁日日操中文字幕| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| av专区在线播放| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 亚洲成人精品中文字幕电影| 久久久久国产精品人妻一区二区| 三级国产精品欧美在线观看| 精品久久久精品久久久| 一个人看的www免费观看视频| 久久久久久久精品精品| 熟女av电影| 精品一区在线观看国产| 亚洲丝袜综合中文字幕| 精品午夜福利在线看| 丝袜喷水一区| 精品久久久久久电影网| 亚洲成人一二三区av| 男人舔奶头视频| 日韩 亚洲 欧美在线| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 美女脱内裤让男人舔精品视频| 亚洲精品影视一区二区三区av| 大香蕉久久网| 欧美激情在线99| 91精品一卡2卡3卡4卡| 久久ye,这里只有精品| tube8黄色片| 色吧在线观看| 最近最新中文字幕大全电影3| 亚洲国产av新网站| 97在线人人人人妻| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文在线观看免费www的网站| 亚洲国产av新网站| 丝瓜视频免费看黄片| 日韩精品有码人妻一区| 国产精品久久久久久久久免| eeuss影院久久| 内地一区二区视频在线| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 黑人高潮一二区| 国产免费又黄又爽又色| 国产亚洲91精品色在线| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 日韩,欧美,国产一区二区三区| 亚洲精品影视一区二区三区av| 人体艺术视频欧美日本| 国内精品宾馆在线| 午夜福利高清视频| 国产乱来视频区| 成人黄色视频免费在线看| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片|