• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    在氣液界面上壓縮誘導聚(L-乳酸)膜的結(jié)構(gòu)變化

    2015-12-29 02:33:26陳啟斌劉洪來
    物理化學學報 2015年6期
    關(guān)鍵詞:原子力膜結(jié)構(gòu)華東理工大學

    王 麗 季 姍 陳啟斌 劉洪來

    (華東理工大學化學系,化學工程國家重點實驗室,上海200237)

    在氣液界面上壓縮誘導聚(L-乳酸)膜的結(jié)構(gòu)變化

    王 麗 季 姍 陳啟斌*劉洪來

    (華東理工大學化學系,化學工程國家重點實驗室,上海200237)

    聚乳酸(PLA)是一種環(huán)境友好及生物可降解的聚合物,其界面性質(zhì)受到了廣泛關(guān)注.本文以Langm uir-Blodgett(LB)膜天平、原子力顯微鏡(AFM)研究了聚(L-乳酸)(PLLA)在氣液界面上的性質(zhì).表面壓-面積(π-A)等溫曲線的結(jié)果表明,在膜壓縮的初始階段,表面壓逐漸增大;當膜壓為9.0mN·m-1時,曲線出現(xiàn)了一個平臺,其重復單元的面積大約在0.11-0.17 nm2之間.原子力顯微鏡的結(jié)果發(fā)現(xiàn),在壓縮過程中,膜結(jié)構(gòu)發(fā)生了明顯的變化:平臺剛出現(xiàn)時,膜內(nèi)出現(xiàn)了大量的纖維結(jié)構(gòu);在平臺區(qū)內(nèi),界面上出現(xiàn)了多層膜結(jié)構(gòu).特別地,當表面壓為20.0mN·m-1時,PLLA在界面上可形成約6.0 nm厚的薄膜.由此可見,PLLA等溫線中的平臺與其膜結(jié)構(gòu)的變化緊密相關(guān).這有別于普通雙親分子的性質(zhì),即這類雙親分子π-A等溫線中的平臺通常表示它們在二維空間上發(fā)生了單分子膜的相轉(zhuǎn)變.

    聚(L-乳酸);界面;單分子膜;相轉(zhuǎn)變;結(jié)構(gòu)特征

    1 In troduc tion

    Biomaterialshave played an important role in the treatmentof disease and the improvementof health care throughouthistory,in particular,since theadventof the synthetic polymersat theend of the nineteenth century.1Although thesematerials,which are almost adopted from other areas of science and technology,are desirable to use inmedical treatments,therapy,diagnosis,and so forth,how to achieve their biocompatibility,mechanical properties,degradation and numerous other functions still remains a challenge.Moreover,in order tominimize wastemanagement caused by synthetic nondegradable polymers and reduce their impacton the environments,there are increasing demands for the utilization of degradablemacromolecules.2Recently,themost w idely researched biodegradable polymers were aliphatic polyesters,e.g.,poly(glycolide),poly(lactic acid)(PLA),poly(3-hydroxybutyrate),and poly(ε-caprolactone),which have nontoxic and biocompatible properties both as polymers and as their degradation products.3-10Therefore,biodegradable polymershave attracted a great deal of attention over the past few decades as potential replacements for synthetic nondegradable or slow ly degrading polymers.On theotherhand,up to now therehasbeen an increased emphasison theenhancementofmaterial properties w ith the structuresengineered atnanometer scalesand the technology for fabricating the material surface.Moreover,the microscopic structureson thematerial surfaceshavea considerable influence on bulk behaviors,such as adhesions,m igrations,and proliferations.11In general,the critically interfacial layer is typically only a few nanometers'thickness,and sometimes even molecular scales,and thus a detailed physical and chem ical characterization of the interfaces isnecessary for understanding the interfacialbehavior.

    The Langmuir-Blodgett(LB)technique offers the possibility to fabricate highly ordered filmsw ith the desired controlover their thickness,morphologies,and surface roughnesson the orderat the molecular level,12which are desirable foranumberof applications such asmodelsurfaces for protein adsorption,tissueengineering, drug delivery,modified substrates for supportedmembranes,and microelectronic and opticaldevices.1,13-17The successof the classic LB technique draws on the property of amphiphilicmolecules when spread and compressed at the air/water interface to form a compact monolayer w ith hydrophobic and hydrophillic parts directed to air and water,respectively.Polymer monolayers, spread at the air/water interface,are under active investigation in order to help ourunderstanding of the factorscontrolling polymerpolymerand polymer-interface interactions,because their details concerningmolecular orientations,monomer conformations,and interaction energiesof polymersare in principledeterminablewith the aid of the surface film balance techniqueand ancillary spectroscopic andm icroscopicmethods.

    Among degradable polymers,PLA can be produced from the renewable resources such as corn,wheatstarch,and sugarbeets or the ring-opening polymerization of lactides,meanwhile it can break down to commonmetabolites.Furthermore,PLA issuperior to other polyesters in many aspects such as thermal and mechanical properties and transparency of the processedmaterials.7Based on both characteristics of PLA,wewere interested in its interfacialproperties.Due to the chirality of the lactidemonomer, PLA can form polyenantiomers,i.e.,poly(L-lactic acid)(PLLA) and poly(D-lactic acid)(PDLA).So far,there have been quite a few of papersdealingw ith the behaviorsof PLA(including PLLA and PDLA)at the air/water interface.18-22However,the structural transition of PLLA during compressing the polymeric filmsat the air/water interface is still unclear.In this work,therefore,our objectivewas to study the change in the film structure of PLLA during the compressing process.

    2 Materials and m ethods

    2.1 Materials

    PLLA(Mn=14000 g·mol-1,polydispersity index(PDI)=1.12) was purchased from Polymer Source,Inc.,and used w ithout further purification.Waterw ith the resistivity of 18.2MΩ·cm was purified by a M illi-Q pluswater purification system(ultra pure UVF,ShanghaiHitech Co.,Ltd.)containing one carbon stage and two ion-exchange stages.Chloroform,analyticalgrade chemicals(>99%),wasused as the solventof the spreading solution.

    2.2 π-A iso therm m easu rem en t

    Surface pressure-area(π-A)isothermswere obtained using a model612D computer-controlled Langmuir film balance(Nima Technology,Coventry,UK),equipped w ith dual barriers and a Wilhelmy plate sensing device.The subphase temperaturewas maintained at20°C using a circulating temperature controller.

    PLLA stock solutionswere prepared using chloroform to give final concentrationsof 0.5mmol·L-1relative to the repeatunit.In a typicalexperiment,polymer filmswere fabricated by spreading ~30μL of the stock solution dropw ise over the M illi-Q water surface.Compression was initiated after a delay of 15 m in to allow the complete evaporation of the spreading solventand the compression ratewaskeptat20 cm2·min-1,with a constantbarrier movement.π-A isothermswere recorded during the compressing process.

    2.3 LB film p reparation

    Themonolayerwas transferred atdifferentsurface pressuresof 5.0,9.0,9.2,9.6,and 20.0mN·m-1and the deposition ratewas 2 mm·m in-1.One-layer LB films for atomic forcemicroscopy (AFM)observation were transferred onto freshly cleaved atomically flatm ica surfaces by a vertical dippingmethod while the monolayerwas held atconstantsurface pressure,and they were dried in air at room temperature and then put into a desiccator. The transfer ratio of theupstrokewasabout0.90-1.05.

    2.4 A tom ic fo rcem ic roscopym easu rem en t

    TheAFM topographic imageswere carried outon amodelAJIII(Aijian Nanotechnology Inc.,China)m icroscope in tapping modew ith a triangularm icrofabricated cantilever(M ikro Masch Co.,Russia)with a length of(130±5)μm,a Sipyramidal tipw ith Au reflective side and a spring constantof 2.5-10.0 N·m-1.A resonance frequency in the range of 55-500 kHzwas used and resonance peaks in the frequency response of the cantilevertypically at 123.33 kHz were chosen for a tapping mode oscillation.The curvature radius of the tip was less than 10 nm.The experiments were operated under ambient conditions.Prior to AFM measurements,LB filmswere dried in a desiccator at least for24 h.

    2.5 Film thicknessm easu rem en ts

    The AFM iswellsuitable for the directmeasurementof heights andmorphologiesof surface features,especiallywhen the surface height is less than 50 nm.The thickness of LB films can commonly be obtained by profilometry w ith AFM.That isa partof LB films removed via scratching the surfacew ith an AFM tip or a razorblade so as to expose the substrate,so that the step heights above the substrate could be determined using AFM directly. Herein,an AFM probe tip itselfwasused to remove a portion of the LB film by first creating an approximate square holew ith a size of 1μm×1μm in the film via a contactingmode.In brief,the operating procedure of the thicknessmeasurementof LB films is as following.Firstly,these films could be imaged nondestructively in anormal tappingmode by choosing generalAFM parameters carefully(set point of~0 V,scan speed of~1 Hz).Next,the scanning mode was shifted to a contacting mode and these parameters can bealtered so as to cause the removalof theadhered material,accomplished by scanning repeatedly after increasing the setpoint to nearly themaximum value and the scan speed to 10 Hz(herein,the scanned areawas setat1μm×1μm).Then,the removed film could be verified by increasing the scan sizewhile returning to thenormal imaging parameters in the tappingmode, as shown in Fig.S1(Supporting Information).The resulting image,was used to analyze in the cross section to gain the step heightof the film.

    Fig.1 Surface p ressure--area(π-A)isotherm of poly (L-lactic acid)(PLLA)at theair/water interface

    3 Resu lts and d iscussion

    3.1 π-A iso therm

    Theπ-A isotherm of PLLA is shown in Fig.1.This curvewas measured at least five times to confirm reproducibility.The isotherm exhibits a high compressibility region,i.e.,a pre-plateau feature,a sharp break point followed by a relatively horizontal plateau,and then a post-plateau inflection pointand a low compressibility region followed on as the compression proceeds. Herein,theareaof thebreak pointisaround 0.17 nm2·repeatunit-1and the plateau appearsata surface pressure of about9.0mN·m-1. After the plateau,the constant compression leads to a sharp increase in the surface pressure and extrapolation of the steeply linear portion of this curve to zero surface pressure gives a limiting areaof~0.09 nm2·repeatunit-1.More interestingly,this value of~0.09 nm2·repeat unit-1is remarkably less than the crosssectional area of an alkyl chain,i.e.,~0.21 nm2.12-14This result may be attributed to two possibilities:one is the solubility of the polymer,leading to the partly solving PLLA in the subphase during the compression;the other is the formation of themultilayer structure of PLLA.Since PLLA is insoluble in water,the smallareaof the repeatunit isa likely consequenceof the latter case.On theotherhand,it isusual thata polymer film is formed by stacks of non-monomolecular structures.Actually,since this area of~0.09 nm2·repeat unit-1is based on the repeat unit of lactide,if PLLA forms amonomolecular film,the value of the repeatunitshould be larger than thatof the cross-sectionalareaof the alkyl chain,that is to say,it isunlikely thatPLLA can form a truemonomolecular film at the air/water interface.Up to now, only few works have reported the formation ofmonomolecular Langmuir film of polyheterocyclics.23Accordingly,PLLAmight form multilayer or complicated structuresat the air/water interface,leading to the reducingmean area of the repeatunit.This w ill be confirmed by AFM results as follow ing.In addition,it should benoted thatwe discovered that the compressing ratehad a negligible influence on suchπ-A isotherms(see Fig.S2(Supporting Information)),thus the value of the compressing ratewas chosen at20 cm2·m in-1.

    In general,plateau regions in isotherms are usually associated w ith the formation of a new phase for conventionalamphiphiles, such as lipidsand surfactants.Many researchershad investigated the properties of such amphiphiles at the air/water interface and suggested that Langmuir filmsof them exhibita liquid expanded (LE)to a liquid condensed(LC)phase transition in themonolayer region.24-26In Fig.1,the presenceof a break point followed by a plateau regionmight thusmean that the plateau corresponds to the formation of a new phase.Therefore,five pointswere selected in this work to monitor the change in film structures during the compression,i.e.,theposition before the plateau(A,5.0mN·m-1), the beginning(B,9.0mN·m-1),middle(C,9.2mN·m-1),and term inal(D,9.6mN·m-1)sites in the plateau region and the point after the plateau(E,20.0mN·m-1).

    3.2 Mo rpho logies o f PLLA LB film s

    AFM is a useful tool for obtaining information on surface morphology,particularly for LB films.PLLA LB films were deposited on themica atdifferentsurface pressuresandmeasured by AFM,asshown in Fig.2.

    The PLLA LB films were firstly transferred onto themica substratesw ith a high film transfer ratio by the vertical dipping method easily and conveniently.In all cases,AFM imagesalmost show the fullarea coverage of the one-layer LB film.This indi-cates that themorphology of the film formed at theair/water interface is preserved upon the vertical upstroke.27As shown in Fig.2A,when PLLA film wascompressed up to 5.0mN·m-1at the air/water interface,a relatively even and featureless film w ith some irregularly dispersed holes was observed.The height of these filmsbased on the defectswasabout2.2 nm.This implies that before the plateau,PLLA primarily adopts a random coil conformation and formsa featurelessmonolayer at the air/water interface.Herein,the gradualsurface pressure increase in the preplateau region is suggestive of a compressible,fluid-like film in this region.

    Fig.2 AFM imagesof PLLA Langmuir-Blodgett(LB)films transferred atdifferentsurface pressures

    At theonsetof the plateau(the surface pressure is increased up to~9.0mN·m-1),a certain amount of the fibrillar structure is apparently observed,while the featureless polymer thin film of the underlying layer could still be observed at the same time,as shown in Fig.2B.Theheightandwidth of the fibrilsareabout1.0 nm and from~20 to 60 nm,respectively.Here,the practicalwidth of the fibrilshould be re-calculated ow ing to the presence of the AFM tip enlargementeffect.If oneassumes that the tip isa half sphere of diameter(D)and that the fibril isa cylinderw ith a diameter of d,the apparentw idth W,obtained from AFM images, can be expressed by the relation W=2(Dd)1/2.28Given W=20 nm and the value of D is20 nm,the actual diameter d of the PLLA fibril is close to 5.0 nm(in the case of W=60 nm,d=45 nm).In this plateau region,compression the PLLA film over the water surface doesnotcontribute to the surface pressure remarkably,but it results in the change in surfacemorphology from the featureless film to nanofibrillarstructures.In themiddleof theplateau(π=9.2 mN·m-1),aworm likeor vermiculate pattern emerges in thewhole view and this film is relatively uniform,while the featureless polymer thin film of the underlying layer isnotdetected.Herein, the apparentw idth of theworm like structure isalso in the range from 20 to 60 nm.In contrast,the apparentlymean heightof this structure decreases from~0.6 to 1.0 nm,whichmay be due to the closer packing fibersas the film is compressed.At the end of the plateau,compressing the film resulted in the fact thataminor partof fibrils was forced to hump up from the relatively uniform worm like structure,as shown in Fig.2D.A fter this transition,the surface pressure rapidly increases due to the formation of a compacting or solid-like film.When the surface pressure is increased up to 20.0mN·m-1,a relatively flat film is derived from the humped fibrils.Taken together,themorphological change in the film structures indicates that PLLA formsamultilayer film at the air/water interface,rather than amonomolecular film,which w illbe confirmed by the thicknessof the PLLA LB film from the profilometry w ith AFM.The formation of such amultilayer film isa likely resultof this fact that PLLA is lack of a strong polar group in the repeatunit.In this case,thehydrophilic segmentof the lactidemonomer could not be steadily confined at the air/ water interface.PLLA isdifferent from theamphiphilic copolymersor polymeric surfactants,which are of the structure nature of smallmolecule surfactants(<1 kDa).As for such amphiphilic copolymersor polymeric surfactants,thehydrophilic block or the polarhead groups reside readily in the subphase due to theirgood affinity w ithwater.29,30In contrast,PLLA tends to form intra-or inter-molecular aggregates due to the intra-and inter-molecular interactionsof itself and the relatively strong hydrophobicity of the repeatmonomer.Themultilayer structure is closely consistent w ith the resultof theπ-A isotherm and explain why the area of the repeat unit ismuch smaller than expected.Therefore,this finding suggests that it is the amphiphilic nature of the polymer which isa key point for itself to form monomolecular film at the air/water interface.In addition,it is noted that the rootmean square roughness(Rrms)measured on all these images is less than 1.0 nm,indicating that these LB filmsare fairly flat.

    3.3 Film thickness

    Fig.3A displaysa largerscanning imagew ith asizeof 10μm× 10μm at the surface pressure of 20.0mN·m-1,the roughnessof which hasa slight increase comparedwith thatin 3.0μm×3.0μm, namely that Rrmsis0.318 nm.Fig.3B showshow the film thickness wasmeasured using the AFM.The darker region in the image corresponds to the substrate,where the film was removed by a probe tip.Here,PLLA LB filmswere subjected to perturbation w ith the AFM probe tip,such that repeated scanning under the highest operating forces feasible w ith the cantilevers we used could scrape the adhered PLLA off.This can be verified by the fact that very little,if any,materialwas left(more details seen Fig.S3(Supporting Information)),as shown in the lower partof Fig.3B,the cross-section profile along the corresponding line.For an accuratemeasurementof film thickness,itwas important that the film was completely removed in this region,butat the same time such scratching did notscrape off the substrate.Itwas noticed that therewere high ridgesat the step edges,whichwere due to the buildup ofmaterial thatwas removed from the substrate. Thus,they should be ignored in themeasurementof thickness. Moreover,since neither the film surface nor the scraped region was perfectly flat,as would be expected,the thickness measurementwas thus conducted by using average cross-section analysis from differentareasof several independentpositions(Fig. S3).The darker region is where the average cross section was taken,from which one can obtain the step height thatcorresponds to the thicknessof PLLA LB film.The resulting valueof the film thickness is ca6.0 nm,which strongly supports that PLLA does form multilayer filmswhen compressed after the plateau at theair/ water interface.

    Itmustbe pointed out that image bow or tilt is typically presented during AFM scanning,due either to the sample alignment or to the piezoelectric scannersemployed.These bowsand tilts in Fig.2 and Fig.3A were typically removed bym inimal postprocessing,i.e.,simply first-order flattening.However,secondorder flatteningwas carried out in Fig.3B,but the tiltof the cross section profile in the darker region could notbe removed because of the existence of high ridges at the edges.Anyhow,it has a negligible effecton determining the resulting film thickness,as shown in Fig.S3.

    Taken together,π-A isotherm,film thickness,and AFM images indicated thatPLLA formedmultilayer structuresafter the plateau at the air/water interface.When the surface pressure started to increase,the featureless film structure displayed and the film thicknesswas about 2.2 nm.These facts suggested that PLLA primarily adopted a random coil conformation,leading to the formation of the featurelessmonolayer at the air/water interface in the pre-plateau region.The area at the inflection pointof the plateau isaround 0.17 nm2·monomer-1,which is consistentw ith the value reported by Klass et al.20This value also indicates a special property of PLLA at the air/water interface.Unlike conventional amphiphilicmolecules at the air/water interface w ith their hydrophilic parts anchored onto the subphase and hydrophobic parts pointing toward air,PLLAmolecules tend to reside freely on the subphase due to the relatively weak hydrophilic character of an including estergroup in the repeatunit.Thus,at the initial compressing stage,PLLA has a tendency to adopt a random coil conformation at the air/water interface.At the beginning of the plateau,a numberof fibrillar structureswere presented and theamountof the fibrilswasapparently increased as the film was compressed.Such plateausareoften associatedwith phase transitionsand are indicatorsof phase coexistence for those conventional amphiphiles in a two-dimensional plane.12-14,24,25Bulk PLLA crystallization studies show thatPLLA or PDLA can crystallize to form the left-handed and right-handed 103helices, respectively,known as theα-form,while blends of PLLA and PDLA form 31helices,termed as theβ-form.31,32However,it turned out that the further compression would lead to the formation of a bilayerand even a trilayer in thiswork,where the top layer is composed of compacting fibrils.In otherwords,PLLA molecules assemble into a well-defined arrangement,in which PLLA molecules are forced out of the interface to form such multilayer.These findings indicate thatPLLAmoleculesareordered as the film is compressed in the plateau region so that a nanoscale surface pattern w ith well-ordered fibrillar structures is formed.Moreover,such fibrils almost lay flat in the plane of the film,leading to the fairly even and uniform surface.The negli-gible increase in the surface pressure in the plateau region indicates that there exists a low level of van derWaals interaction between the fibrils in the film.In addition,according to the ratio of the practicaldiameter to the heightof fibrils,PLLAmolecules have a tendency to laterally associate during compressing.As compression continues,the surface pressure increases rapidly when the area of the repeatunit isabout0.11 nm2·repeatunit-1, corresponding to the closely packing of such fibrils,where multilayers are formed completely.Suchmultilayer structure can be strongly verified by the resultof the film thickness.Furthermore,the compacting fibrilsmake the film stiffer,giving rise to an increase in surface pressure,which explainswhy the surface pressurekeepssteeply increasing in the region of0.06-0.11 nm2· repeatunit-1.The schematic self-assembling processof PLLA at the air/water interface is given in Fig.4,which can be used to explain the resultsof theπ-A isotherm and AFM images,namely that the fact that the area per the repeatunit is smaller than 0.2 nm2is a likely resultof the formation ofmultilayers.Suchmultilayer is composed of the top layers(i.e.,the pink part in the schematic diagram)stemmed from fibrillar structures and the underlying layer w ith an even film(i.e.,the green part in the schematic diagram).In the underlying layer,PLLA molecules readily adopta random coil conformation,while in top layers,the compression can induce the formation of fibrillar structures.

    Fig.3 Thicknessm easurementobtained by scratching to rem ove allPLLA LB film from an area asπ=20.0m N·m-1

    Fig.4 Schematic processof the PLLA structural transition at the air/water interface during the comp ression

    4 Conc lusions

    In summary,PLLA can form a stablehyperthin film withwelldefined structureat theair/water interface.A numberof fibrilsare observed over thewater surface at the onsetof the plateau.Intriguingly,compression can induce a transition in the PLLA film structure from a featureless layer to amultilayer.More importantly,the surface pattern is composed of the closely packing fibrils,which is relatively uniform and even.These studiesprovide a new approach for controlling surfacemorphology w ith a biodegradable polymer commonly used for drug delivery and tissue engineering.In addition,it is also necessary to distinguish between the structural transition of the plateau in PLLA LB films and conventional amphiphiles,because the latter commonly corresponds to a phase separation in the two-dimensionalplane.

    Suppo rting In fo rm ation:available free of charge via the internetathttp://www.whxb.pku.edu.cn.

    (1)Langer,R.;Tirrell,D.A.Nature 2004,428,487.doi:10.1038/ nature02388

    (2)Ha,C.;Gardella,J.A.,Jr.Chem.Rev.2005,105,4205.doi: 10.1021/cr040419y

    (3)Lee,W.;Iwata,T.;Gardella,J.A.,Jr.Langmuir2005,21, 11180.doi:10.1021/la051137b

    (4)Fischer,A.M.;Frey,H.Macromolecules2010,43,8539.doi: 10.1021/ma101710t

    (5)Kawalec,M.;Adamus,G.;Kurcok,P.;Kowalczuk,M.;Foltran, I.;Focarete,M.L.;Scandola,M.Biomacromolecules2007,8, 1054.doi:10.1021/bm061155n

    (6)Kulinski,Z.;Piorkowska,E.Polymer2005,46,10290.doi: 10.1016/j.polymer.2005.07.101

    (7)Urayama,H.;Kanamori,T.;Fukushima,K.;Kimura,Y. Polymer2003,44,5635.doi:10.1016/S0032-3861(03)00583-4

    (8)Hu,J.;Sun,X.;Ma,H.;Xie,C.;Chen,Y.E.;Ma,P.X. Biomaterials2010,31,7971.doi:10.1016/j. biomaterials.2010.07.028

    (9)Shao,J.;Wang,Y.;Chen,X.;Hu,X.;Du,C.Colloids Surf.B 2014,120,97.doi:10.1016/j.colsurfb.2014.05.021

    (10)Ni,S.;Lee,W.;Li,B.;Esker,A.R.Langmuir2006,22, 3672.doi:10.1021/la060084a

    (11)Fukuhira,Y.;Kitazono,E.;Hayashi,T.;Kaneko,H.;Tanaka, M.;Shimomura,M.;Sumi,Y.Biomaterials2006,27,1797. doi:10.1016/j.biomaterials.2005.10.019

    (12)Petty,M.C.Langmuir-Blodgett Films:An Introduction; Cambridge University Press:Cambridge,1996;pp 1-37.

    (13)Gaines,G.L.;Roberts,G.Insoluble Monolayersat Liquid-Gas Interfaces;JohnWiley&Sons,Inc.:New York,1966;pp 136-202.

    (14)Ulman,A.An Introduction to Ultrathin Organic Films:From Langmuir-Blodgett to Self-Assembly;Academ ic Press:Boston, 1991;pp 101-105.

    (15)Penner,T.L.;Motschmann,H.R.;Armstrong,N.J.; Ezenyilimba,M.C.;Williams,D.J.Nature 1994,367,49.doi: 10.1038/367049a0

    (16)Allen,D.;Westerblad,H.Science 2004,305,1112.doi:10.1126/ science.1103078

    (17)Wijekoon,W.M.K.P.;Wijaya,S.K.;Bhawalkar,J.D.;Prasad, P.N.;Penner,T.L.;Armstrong,N.J.;Ezenyilimba,M.C.; Williams,D.J.J.Am.Chem.Soc.1996,118,4480.doi:10.1021/ ja953974d

    (18)Pelletier,I.;Pézolet,M.Macromolecules2004,37,4967.doi: 10.1021/ma035949v

    (19)Bourque,H.;Laurin,I.;Pézolet,M.;K lass,J.M.;Lennox,R. B.;Brown,G.R.Langmuir2001,17,5842.doi:10.1021/ la0009792

    (20)Klass,J.M.;Lennox,R.B.;Brown,G.R.;Bourque,H.; Pézolet,M.Langmuir2003,19,333.doi:10.1021/la020606w

    (21)Sato,G.;Nishitsuji,S.;Kumaki,J.J.Phys.Chem.B 2013,117, 9067.doi:10.1021/jp403195g

    (22)Gurarslan,A.;Tonelli,A.E.Macromolecules2011,44,3856. doi:10.1021/ma200530w

    (23)Bj?rnholm,T.;Greve,D.R.;Reitzel,N.;Hassenkam,T.;Kjaer, K.;Howes,P.B.;Larsen,N.B.;B?gelund,J.;Jayaraman,M.; Ewbank,P.C.;M cCullough,R.D.J.Am.Chem.Soc.1998, 120,7643.doi:10.1021/ja981077e

    (24)Casillas-Ituarte,N.N.;Chen,X.;Castada,H.;A llen,H.C. J.Phys.Chem.B 2010,114,9485.doi:10.1021/jp1022357

    (25)Picas,L.;Suárez-Germà,C.;TeresaMontero,M.;Domènech, ò.;Hernández-Borrell,J.Langmuir2012,28,701.doi:10.1021/ la203795t

    (26)Rom?o,R.I.S.;Ferreira,Q.;Morgado,J.;Martinho,J.M.G.; Gon?alvesda Silva,A.M.P.S.Langmuir2010,26,17165.doi: 10.1021/la103029d

    (27)Genson,K.L.;Vaknin,D.;Villacencio,O.;M cGrath,D.V.; Tsukruk,V.V.J.Phys.Chem.B 2002,106,11277.doi:10.1021/ jp026244i

    (28)Fang,J.;Knobler,C.M.;Gingery,M.;Eiserling,F.A.J.Phys. Chem.B 1997,101,8692.doi:10.1021/jp971057j

    (29)Wang,M.H.;Janout,V.;Regen,S.L.Langmuir2012,28, 4614.doi:10.1021/la204985d

    (30)Perepichka,I.I.;Borozenko,K.;Badia,A.;Bazuin,C.G.J.Am. Chem.Soc.2011,133,19702.doi:10.1021/ja209502d

    (31)De Santis,P.;Kovacs,A.J.Biopolymers1968,6,299. doi:10.1002/bip.1968.360060305

    (32)Okihara,T.;Tsuji,M.;Kawaguchi,A.;Katayama,K.I.;Tsuju, H.;Hyon,S.H.;Ikada,Y.J.Macromol.Sci.Phys.B 1991,30, 119.doi:10.1080/00222349108245788

    Struc tu ral Transition o f Po ly(L-lac tic acid)Film Induced by Com p ression at Air/Water In terface

    WANG Li JIShan CHEN Qi-Bin*LIU Hong-Lai
    (State Key Laboratory ofChemical Engineering,DepartmentofChemistry,EastChina University of Science and Technology,Shanghai200237,P.R.China)

    Poly(lactic acid)(PLA)has attracted considerable interest as an environmentally friend ly and biodegradable polymer.The properties ofpoly(L-lactic acid)(PLLA)atan air/water interfacewere studied based on the Langmuir-Blodgett(LB)film balance and atom ic forcem icroscopy(AFM).The surface pressure-area (π-A)isotherm indicated that the surface pressure of PLLA initially increased as the interfacial film was com pressed;atπ=9.0mN·m-1,a p lateau was observed in theπ-A isotherm,in which the area of the repeat unitwas in the approximate range 0.11-0.17 nm2.The AFM results showed that there is a clear structural transition in the PLLA film during the com pression:(i)at the beginning of the p lateau,a numberof fibrils are presentat the air/water interface and(ii)multilayer structures(at leastbilayer,i.e.,the underlying layerand top layer consisting of fibrils)is formed in the plateau region.In particular,whenπ=20.0mN·m-1,a thin film ofPLLA of thickness about6.0 nm was fabricated.Our findings suggest that the plateau in the PLLAπ-A isotherm is closely related to a change in the film structure from monolayer tomultilayerat the air/water interface.This is significantly different from the behaviorof conventionalamphiphiles,because the p lateau in amphiphilesπ-A isotherm is equivalent to a phase transition ofmonolayers derived from amphiphiles in a two-dimensionalplane.

    Poly(L-lactic acid);Interface;Monomolecular film;Phase transition; Structure characteristic

    O647;O641

    icle]

    10.3866/PKU.WHXB201504013 www.whxb.pku.edu.cn

    Received:January 29,2015;Revised:April1,2015;Published onWeb:April1,2015.

    ?Corresponding author.Email:qibinchen@ecust.edu.cn;Te/Fax:+86-21-64252921.

    The projectwassupported by the NationalNatural Science Foundation of China(21273074)and FundamentalResearch Funds for the Central Universitiesof China.

    國家自然科學基金(21273074)及中央高?;究蒲袠I(yè)務費專項資金資助項目

    ?EditorialofficeofActa Physico-Chimica Sinica

    猜你喜歡
    原子力膜結(jié)構(gòu)華東理工大學
    原子力顯微鏡(AFM)用于瀝青老化行為微觀表征研究綜述
    石油瀝青(2022年3期)2022-08-26 09:13:44
    華東理工大學藝術(shù)設計與傳媒學院設計作品選登
    單浩作品選登
    現(xiàn)代膜結(jié)構(gòu)的應用與研究
    金屬過渡層類型對非晶碳膜結(jié)構(gòu)性能的影響
    原子力顯微鏡—熒光顯微鏡聯(lián)用技術(shù)在活細胞單分子檢測中的應用
    分析化學(2017年12期)2017-12-25 01:10:38
    一種民用氣肋式膜結(jié)構(gòu)建筑失效機理
    The Immoral Duchess
    原子力顯微鏡在材料成像中的應用
    化工管理(2015年8期)2015-12-21 08:37:22
    膜結(jié)構(gòu)沼氣池在新疆養(yǎng)殖業(yè)中的應用
    纯流量卡能插随身wifi吗| 亚洲va日本ⅴa欧美va伊人久久| www日本在线高清视频| 国产精品亚洲av一区麻豆| 欧美精品一区二区免费开放| 国产人伦9x9x在线观看| av天堂久久9| 免费av中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美激情综合另类| 成人手机av| 很黄的视频免费| 国产精品永久免费网站| 欧美激情久久久久久爽电影 | 满18在线观看网站| a级毛片在线看网站| 99香蕉大伊视频| 80岁老熟妇乱子伦牲交| 高清在线国产一区| 高清在线国产一区| 成人18禁高潮啪啪吃奶动态图| 制服人妻中文乱码| 日日摸夜夜添夜夜添小说| 天天躁日日躁夜夜躁夜夜| 91在线观看av| 咕卡用的链子| 在线国产一区二区在线| 在线观看66精品国产| 新久久久久国产一级毛片| 在线天堂中文资源库| 一区二区三区精品91| 色尼玛亚洲综合影院| 色婷婷久久久亚洲欧美| 久久国产乱子伦精品免费另类| 啦啦啦 在线观看视频| 最新的欧美精品一区二区| 欧美成人免费av一区二区三区 | 精品亚洲成a人片在线观看| 欧美日本中文国产一区发布| 这个男人来自地球电影免费观看| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 韩国精品一区二区三区| 欧美黑人欧美精品刺激| 最近最新免费中文字幕在线| svipshipincom国产片| 咕卡用的链子| 欧美av亚洲av综合av国产av| 人妻一区二区av| 国产精品.久久久| 久久99一区二区三区| 亚洲一区二区三区欧美精品| 日韩欧美在线二视频 | 免费看十八禁软件| 高清在线国产一区| 久久国产精品影院| 1024香蕉在线观看| a在线观看视频网站| 亚洲第一欧美日韩一区二区三区| 在线观看舔阴道视频| 成人国产一区最新在线观看| 露出奶头的视频| 麻豆国产av国片精品| 国产aⅴ精品一区二区三区波| 国产精品98久久久久久宅男小说| 国产不卡av网站在线观看| 国产精品久久视频播放| 久久ye,这里只有精品| 变态另类成人亚洲欧美熟女 | 欧美精品高潮呻吟av久久| 俄罗斯特黄特色一大片| 国产精品免费大片| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 亚洲熟女精品中文字幕| 色播在线永久视频| 免费黄频网站在线观看国产| 电影成人av| www.精华液| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 久久中文字幕一级| 午夜久久久在线观看| 亚洲国产精品合色在线| 午夜免费观看网址| 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 热99国产精品久久久久久7| 曰老女人黄片| 国产精品99久久99久久久不卡| 午夜精品国产一区二区电影| tube8黄色片| 亚洲成人国产一区在线观看| 久久久久久久午夜电影 | 9191精品国产免费久久| 国产男女内射视频| 中文字幕色久视频| 99热网站在线观看| 色尼玛亚洲综合影院| 亚洲综合色网址| 一进一出抽搐动态| 日本wwww免费看| 波多野结衣一区麻豆| 黄频高清免费视频| 国产av又大| 99国产综合亚洲精品| 国产精品免费一区二区三区在线 | 99精品欧美一区二区三区四区| 亚洲欧美色中文字幕在线| 亚洲欧美色中文字幕在线| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 久久久水蜜桃国产精品网| 亚洲av日韩精品久久久久久密| 男女床上黄色一级片免费看| 精品一区二区三卡| 欧美不卡视频在线免费观看 | 自线自在国产av| 亚洲精品久久成人aⅴ小说| 99国产精品一区二区蜜桃av | 精品第一国产精品| xxx96com| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 国产欧美亚洲国产| 视频在线观看一区二区三区| 人人妻人人澡人人看| 亚洲精品久久午夜乱码| www日本在线高清视频| 一级黄色大片毛片| 一级a爱片免费观看的视频| 国产高清激情床上av| 久久精品国产亚洲av香蕉五月 | 国产精品免费大片| 色播在线永久视频| 国产欧美日韩一区二区三区在线| 美女午夜性视频免费| 一个人免费在线观看的高清视频| 叶爱在线成人免费视频播放| 亚洲人成77777在线视频| 在线看a的网站| 天天操日日干夜夜撸| 亚洲av欧美aⅴ国产| 丝袜美腿诱惑在线| 国产免费现黄频在线看| 成人亚洲精品一区在线观看| 中文字幕人妻熟女乱码| 国内久久婷婷六月综合欲色啪| 校园春色视频在线观看| 伦理电影免费视频| 亚洲综合色网址| 欧美一级毛片孕妇| 亚洲精品乱久久久久久| 免费在线观看亚洲国产| 一进一出抽搐动态| 精品欧美一区二区三区在线| 久久影院123| 成人18禁在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产在线精品亚洲第一网站| 脱女人内裤的视频| 黑人操中国人逼视频| 亚洲成人免费电影在线观看| 999久久久国产精品视频| 国产高清视频在线播放一区| 精品一品国产午夜福利视频| 亚洲av欧美aⅴ国产| 亚洲人成伊人成综合网2020| 两人在一起打扑克的视频| 亚洲精品国产一区二区精华液| 欧美色视频一区免费| 在线观看免费日韩欧美大片| 视频区图区小说| 免费不卡黄色视频| 国产成人一区二区三区免费视频网站| 18禁黄网站禁片午夜丰满| 操出白浆在线播放| 在线观看免费高清a一片| 99国产极品粉嫩在线观看| 黄色视频不卡| 女警被强在线播放| 久久 成人 亚洲| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频| 国产成人av教育| 午夜日韩欧美国产| 久热这里只有精品99| 男女下面插进去视频免费观看| 91大片在线观看| 午夜两性在线视频| 美女高潮到喷水免费观看| 无人区码免费观看不卡| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇被粗大的猛进出69影院| 免费观看a级毛片全部| 国产激情欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 欧美另类亚洲清纯唯美| 黄色 视频免费看| 人人妻人人爽人人添夜夜欢视频| 久久人妻福利社区极品人妻图片| 久久草成人影院| 国产麻豆69| 亚洲欧美一区二区三区久久| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 精品人妻熟女毛片av久久网站| 热99re8久久精品国产| 真人做人爱边吃奶动态| 老司机亚洲免费影院| 久久久国产欧美日韩av| 人成视频在线观看免费观看| 高清在线国产一区| 嫩草影视91久久| 免费高清在线观看日韩| 国产区一区二久久| 色婷婷久久久亚洲欧美| 人妻一区二区av| 大码成人一级视频| 久久久久国产精品人妻aⅴ院 | 精品一区二区三区视频在线观看免费 | 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月 | 黑人操中国人逼视频| 老熟妇仑乱视频hdxx| 免费在线观看完整版高清| 在线观看日韩欧美| 99国产精品99久久久久| 欧美精品高潮呻吟av久久| cao死你这个sao货| 国产成人av激情在线播放| 日韩成人在线观看一区二区三区| av网站免费在线观看视频| 久久这里只有精品19| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 久久人妻福利社区极品人妻图片| 成人影院久久| 村上凉子中文字幕在线| 免费看十八禁软件| 中文字幕av电影在线播放| 自线自在国产av| 欧美日韩乱码在线| 精品久久久久久电影网| 午夜两性在线视频| 久久久久精品人妻al黑| 久久香蕉激情| 国产成+人综合+亚洲专区| 精品亚洲成国产av| 视频区图区小说| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 丝袜美足系列| 欧美黑人精品巨大| 老司机福利观看| 久久国产精品影院| 黑丝袜美女国产一区| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 成人av一区二区三区在线看| 午夜亚洲福利在线播放| 国产高清videossex| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 18禁观看日本| 欧美激情高清一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 久久中文字幕人妻熟女| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 男人的好看免费观看在线视频 | 两性夫妻黄色片| 夜夜躁狠狠躁天天躁| 水蜜桃什么品种好| 又黄又粗又硬又大视频| 又黄又粗又硬又大视频| 久久香蕉精品热| av视频免费观看在线观看| 国产黄色免费在线视频| 国产熟女午夜一区二区三区| 久久影院123| 9热在线视频观看99| 亚洲国产精品sss在线观看 | 久久久久国产一级毛片高清牌| 丁香六月欧美| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人爽人人夜夜| 欧美日韩乱码在线| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 国产成人欧美| 在线永久观看黄色视频| 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 美女福利国产在线| 91字幕亚洲| 久久国产乱子伦精品免费另类| 亚洲片人在线观看| 久久中文字幕人妻熟女| 国产av又大| 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 国产一区有黄有色的免费视频| 深夜精品福利| 欧美午夜高清在线| 99riav亚洲国产免费| 国产高清国产精品国产三级| 日日爽夜夜爽网站| 国产精品1区2区在线观看. | 日本五十路高清| 国产91精品成人一区二区三区| 国产精品av久久久久免费| 免费在线观看黄色视频的| 看黄色毛片网站| 精品国产亚洲在线| 欧美 日韩 精品 国产| 日韩欧美在线二视频 | 日韩中文字幕欧美一区二区| 婷婷精品国产亚洲av在线 | 看免费av毛片| 欧美日韩国产mv在线观看视频| 老熟女久久久| 啪啪无遮挡十八禁网站| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 嫁个100分男人电影在线观看| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 久久中文字幕人妻熟女| 日韩大码丰满熟妇| 热99re8久久精品国产| 极品人妻少妇av视频| 久久久久精品国产欧美久久久| 欧美不卡视频在线免费观看 | 亚洲色图综合在线观看| 国产免费男女视频| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 国产精品久久久久成人av| 国产男靠女视频免费网站| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 日本精品一区二区三区蜜桃| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 精品久久蜜臀av无| 99国产精品一区二区三区| 亚洲国产看品久久| 视频区图区小说| 美女福利国产在线| 99国产极品粉嫩在线观看| 精品国产乱码久久久久久男人| 国产单亲对白刺激| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 男人舔女人的私密视频| 十八禁网站免费在线| 午夜亚洲福利在线播放| 后天国语完整版免费观看| 夜夜夜夜夜久久久久| 久久影院123| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 欧美日韩福利视频一区二区| 淫妇啪啪啪对白视频| 热99国产精品久久久久久7| 精品一区二区三卡| 国产91精品成人一区二区三区| a在线观看视频网站| 国产单亲对白刺激| 看黄色毛片网站| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品一区在线观看| 日韩大码丰满熟妇| 国产黄色免费在线视频| 嫁个100分男人电影在线观看| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 欧美不卡视频在线免费观看 | 水蜜桃什么品种好| 欧美激情久久久久久爽电影 | 人人澡人人妻人| 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲一级av第二区| 欧美日韩黄片免| 亚洲国产欧美日韩在线播放| 欧美黑人精品巨大| 一边摸一边抽搐一进一小说 | 两个人看的免费小视频| a级毛片黄视频| 一a级毛片在线观看| 精品一品国产午夜福利视频| 夜夜爽天天搞| 90打野战视频偷拍视频| 在线观看日韩欧美| 欧美日韩国产mv在线观看视频| 亚洲国产精品sss在线观看 | 一级a爱视频在线免费观看| 亚洲av成人av| 亚洲avbb在线观看| 天天影视国产精品| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区| 国产淫语在线视频| 欧美大码av| 丁香欧美五月| e午夜精品久久久久久久| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 久久婷婷成人综合色麻豆| 五月开心婷婷网| 日韩一卡2卡3卡4卡2021年| √禁漫天堂资源中文www| 国产1区2区3区精品| 午夜两性在线视频| 91麻豆精品激情在线观看国产 | 在线天堂中文资源库| 人妻 亚洲 视频| 视频在线观看一区二区三区| 久久热在线av| 在线观看免费午夜福利视频| 国产成人精品久久二区二区免费| 国产野战对白在线观看| 又大又爽又粗| 啦啦啦视频在线资源免费观看| 午夜91福利影院| 黄网站色视频无遮挡免费观看| 成年动漫av网址| 亚洲成av片中文字幕在线观看| 天天影视国产精品| 黄色视频不卡| 三级毛片av免费| 老司机亚洲免费影院| 一区二区三区激情视频| 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 电影成人av| 欧美日韩亚洲国产一区二区在线观看 | 90打野战视频偷拍视频| 欧美日韩瑟瑟在线播放| 美女午夜性视频免费| 久久精品91无色码中文字幕| 免费观看a级毛片全部| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av香蕉五月 | av超薄肉色丝袜交足视频| 正在播放国产对白刺激| 中文字幕制服av| av有码第一页| 三级毛片av免费| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 久久久久久免费高清国产稀缺| 黄色 视频免费看| 国产成人精品在线电影| 免费观看a级毛片全部| 色老头精品视频在线观看| 无遮挡黄片免费观看| 91麻豆精品激情在线观看国产 | 天堂俺去俺来也www色官网| 在线观看www视频免费| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 久久人妻熟女aⅴ| 夜夜躁狠狠躁天天躁| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区 | 久久久久国内视频| netflix在线观看网站| 80岁老熟妇乱子伦牲交| 无人区码免费观看不卡| 老汉色∧v一级毛片| 久久午夜亚洲精品久久| tube8黄色片| 国产av又大| 悠悠久久av| 一区二区三区精品91| 精品久久久精品久久久| 亚洲五月天丁香| 中文字幕精品免费在线观看视频| 日本a在线网址| 免费日韩欧美在线观看| 国产午夜精品久久久久久| 99久久综合精品五月天人人| 丝瓜视频免费看黄片| 久久久精品区二区三区| 丝袜人妻中文字幕| 国产99白浆流出| 亚洲av欧美aⅴ国产| 国产精品1区2区在线观看. | 在线播放国产精品三级| 久久亚洲精品不卡| svipshipincom国产片| 色在线成人网| 两人在一起打扑克的视频| 免费看a级黄色片| 精品熟女少妇八av免费久了| 亚洲全国av大片| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 久久人妻福利社区极品人妻图片| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 久久精品国产综合久久久| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 中国美女看黄片| 国产精品亚洲一级av第二区| 1024视频免费在线观看| 久久久久国产精品人妻aⅴ院 | 下体分泌物呈黄色| 一进一出抽搐动态| av视频免费观看在线观看| 中文字幕高清在线视频| 久久久久久久久久久久大奶| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频| 五月开心婷婷网| 亚洲精品一卡2卡三卡4卡5卡| 久99久视频精品免费| 欧美在线黄色| 免费在线观看日本一区| 男女免费视频国产| ponron亚洲| 法律面前人人平等表现在哪些方面| 日本黄色日本黄色录像| 亚洲色图av天堂| 在线观看免费午夜福利视频| 国产又色又爽无遮挡免费看| 精品国内亚洲2022精品成人 | 国产在视频线精品| 老司机影院毛片| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久av网站| 国精品久久久久久国模美| 男女床上黄色一级片免费看| 欧美人与性动交α欧美软件| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 18在线观看网站| 老司机在亚洲福利影院| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 青草久久国产| 九色亚洲精品在线播放| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 99久久综合精品五月天人人| av视频免费观看在线观看| 怎么达到女性高潮| 国产精品一区二区在线观看99| 变态另类成人亚洲欧美熟女 | 777久久人妻少妇嫩草av网站| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 国产区一区二久久| 高清视频免费观看一区二区| 精品高清国产在线一区| 黄片小视频在线播放| 久久人妻av系列| 热99久久久久精品小说推荐| 91老司机精品| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 国产xxxxx性猛交| 国产高清国产精品国产三级| 女人久久www免费人成看片| 黄色怎么调成土黄色| 99在线人妻在线中文字幕 | 视频区欧美日本亚洲| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 午夜福利影视在线免费观看| 亚洲九九香蕉| 国产精品亚洲一级av第二区| 视频在线观看一区二区三区| 欧美精品高潮呻吟av久久| 欧美最黄视频在线播放免费 | av国产精品久久久久影院| 精品乱码久久久久久99久播| 久久久久国产精品人妻aⅴ院 | 又紧又爽又黄一区二区| 超色免费av| 男人舔女人的私密视频| 亚洲精品国产色婷婷电影| 国产有黄有色有爽视频| av免费在线观看网站| 女人被狂操c到高潮| 一区二区日韩欧美中文字幕| 日韩免费高清中文字幕av| 在线天堂中文资源库| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 国产深夜福利视频在线观看|