• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    2015-12-29 02:33:00涂喆研王文亮
    物理化學(xué)學(xué)報(bào) 2015年6期
    關(guān)鍵詞:聚物角動(dòng)量常數(shù)

    涂喆研 王文亮

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    涂喆研1,2,*王文亮1

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    在二分量相對(duì)論有效勢和與之匹配的基組aug-cc-pv n z-pp(n=Q,5)的基礎(chǔ)上,結(jié)合電子相關(guān)能的完備基組外推和四階多項(xiàng)式擬合,我們用含自旋軌道角動(dòng)量耦合的耦合簇方法研究了Zn2和Cd2的結(jié)構(gòu)和光譜常數(shù).盡管Zn2和Cd2的自旋軌道角動(dòng)量耦合效應(yīng)不及Hg2的明顯,但還是把自旋軌道角動(dòng)量耦合放在耦合簇迭代計(jì)算中,以獲得更加合理的理論結(jié)果.通過比較,理論結(jié)果與最新發(fā)表的實(shí)驗(yàn)結(jié)果或其他課題組的理論結(jié)果吻合得較好,因此我們的理論計(jì)算將有助于豐富對(duì)Zn2和Cd2光譜性質(zhì)的認(rèn)識(shí).

    光譜常數(shù);自旋軌道角動(dòng)量耦合;二聚物;耦合簇方法

    1 In troduction

    Both relativistic effects and electron correlation are critical to provide reliable theoreticalestimates for propertiesofmolecules containing heavy elements.1Coupled-cluster theory has been shown to providean efficientand accurate treatmentof electron correlation.2One of themostpopularmethods nowadays to treat relativistic effects in an approximatemanner is the use of relativistic effective core potentials(ECPs).The interaction of core electronsw ith the valence electrons is replaced by an effective potentialand the core electrons are not longer treated explicitly. Furthermore,when spin-orbitcoupling isneglected,it isstraightforward to implementscalar relativistic ECPs in the framework ofnon-relativistic calculations since relativity isaccounted for only through the parametersof the ECPs.However,spin-orbitcoupling has a visible influence on the properties of heavy-element coumpouds.3Spin-orbitcoupling can also be included using ECPs and such treatments result in two componentapproachesw ith the additional advantage that the spin-orbitoperator can be represented as a one-electron operator4which can reduce the computational costverymuch.

    A both efficientand high-precision treatment of spin-orbit coupling based on two componentECPs is to consider the spinorbit coupling only at coupled cluster level.By including spinorbit coupling only in the electron correlation part,the Hartree-Fock partand the integral transformationwillbeexactly the same as in nonrelativistic or scalar relativistic calculations.4It isworthy tomention thatcoupled cluster theory isable to account formost of the orbital relaxation effects via single excitations in the cluster operator.5The advantage of putting the spin-orbit coupling in the postHartree-Fock part is that themolecularorbitals(MOs)aswell as the two-electron integrals in theMO representation remain real and can be classified according to the irreducible representation of themolecular single pointgroup.4This issue can be explored to reduce the computational effort significantly w ith respect to fully relativistic four component coupled cluster calculations. Therefore,two component ECPs based coupled-cluster theory w ith spin-orbitcoupling isused to study Zn2and Cd2in thiswork.

    Diatomicmolecule formed from two closed shellatoms is van derWaalsmolecule,Zn2and Cd2should belong to this category though some authors think that they are notpure van derWaals molecules.6-8Theground statesof Zn2and Cd2areweakly bounded w ith a large equilibrium distances.

    Experimentally,Zn2and Cd2are lessextensively studied than Hg2due to theirhigher vaporization temperatures.9,10Though recent laser spectroscopies of Zn2and Cd2seem to give reliable values of harmonic frequency(ωe)and dissociation energy(De)of theelectronic ground states,the equilibrium distances(Re)of Zn2and Cd2are less certain.10

    Theoretically,statement such as“the full consistency w ith spectroscopic constants com ing from experimenthas been given up because of the computational demands”appeared in a relativistic calculation paper.11In recent three years,we find“accurate potentialenergy curves”calculatedwith relativistic effects,which considerably narrowed the gapsbetween theory and experiment,12but the discrepancies still remain.It isworthy tomention that Li etal.10provided the latest theoretical results,but their results relied on potential functionalw ithmany parameters.

    Most researchers think that the spin-orbitcoupling effectsof Zn and Cd elements are small13-16and the perturbationmethod is exact enough to treat the spin-orbit coupling effect of Zn2and Cd2.17-19However,if accurate valuesof spectroscopic constantsare wanted,one would better use iterativemethod instead of perturbation method to treat spin-orbit coupling.In fact,Kullie has already used a relativistic four-component Dirac-Coulomb Ham iltonian w ith spin-orbitcoupling in the framework of timedependent density functional theory and linear response approximation to calculate the electronic state of Zn220and Cd2.21However,it is w idely known that the results of spectroscopic constants are very dependent of the choice of functional.The more generaland high-precision ab initio calculations are desired and w illbe helpful to understand the spectral character of these two dimers.

    2 Basic equations

    The nonrelativistic one-component CCSD(coupled-cluster approachw ith singlesand doubles level)energy equation is then4and the amplitude equationsare22

    w ith the F and W intermediates defined as

    theτamplitudesare defined as

    the permutation operator P-isgiven by

    and theorbitalenergy denominatorsare defined as

    The two-componentCCSD equationsare exactly the same as theabove nonrelativistic one component counterpartsexcept that the Fockmatrix has contributions from the spin-orbitcoupling due to the use of two-componentECPs.

    Thus,in the above equations,EHFis the scalar relativisticHartree-Fock energy w ithoutspin-obitcoupling,i,j,k,…are the indices for occupied spin orbits,a,b,c,…denote virtue spin orbits,and p,q,r,…are for general spin orbits,fpqis the Fock matrix elementw ith the contribution of spin-orbit coupling included.The Fockmatrix elements can bew ritten as

    where F0is the Fock operatorwithoutspin-orbitcoupling and hSOCis the spin-orbit coupling operator which is reduced to oneelectron operator due to the use of two-componentECPs.4

    Furthermore,consideration of triple excitationshasbeen shown to be important in order to achieve highly accurate results in coupled cluster calculations.23The most popular noniteration scheme to account for triple excitations is the CCSD(T)approach.24Theenergy correction due to tripleexcitation correction is then given by25

    w ith the cyclic permutation operator

    Itshould be pointed out that the occupied-virtue block of the Fockmatrix in the second term on the righthand side of Eq.(13) solely comes from spin-orbit coupling.Spin-orbit coupling thus contributes directly to the triple excitation.With respect to the other denominators in Eqs.(1-16),one can find the details in the corresponding literature.

    3 Com pu tationaldetails

    CFOUR is a program package for perform ing high-level quantum chemical calculations on atoms and molecules.26Our coupled cluster calculations in thiswork are performed in CFOUR package.Both CCSD(T)w ithout spin-orbit coup ling and CCSD(T)including spin-orbit coupling(SOC-CCSD(T))27methodsare used to calculate the energiesof atomsaswellas9 single pointenergies of around equilibrium position of these two dimers.The intervalof the 9 points isdefined to be 0.005 nm.The two-componentECPs,ECP10MDF,andmatched basissets,augccpv n z-pp(n=Q,5)28,are used in the calculations.The electron correlation energies from CCSD(T)and SOC-CCSD(T)are extrapolated to the results of completed basis set(CBS).The formula of CBS forelectron correlation energy can bew ritten as

    In theabove equation,n is the same to the n in thebasisset,the valueof n can bedefined to be4,5 in thiswork;represents the calculated electronic correlation energies from aug-ccpv n z-pp basis sets;the values of c andcan be obtained through solving equation sets in Mathematica software package.The Hartree-Fock limit is taken from theaug-ccpv5z-pp basisset.The basis setsuperposition error(BSSE)isnotcorrected in thiswork because of the use of high level basis sets.And the four order polynomial fitting technique isused to calculate the bond lengths and spectroscopic constantsof these two dimersand the related fitting formula can be found in the reference29and references therein.

    Table1 Calculated bond lengthsand spectroscopic constantsof Zn2com pared to the latestexperimental and other group's theoretical resu lts

    4 Resu lts and d iscussion

    4.1Zn2

    The calculated bond lengthsand spectroscopic constants,the latestexperimental resultsand othergroup's theoretical results9,10,12are listed in Table 1.For thebond length,our result from CBS+SOCCCSD(T)is closest to the result from Pahl etal.12In Pahl etal.'s work,the spin-orbitcontributionwasobtained from Dirac-Fock calculations and the spin-orbitenergieswere then added to the scalarenergies.For Zn2whose spin-orbitcoupling effectisweakest, both Pahl etal.'s calculated method and our present calculated method are reasonable.With respect to Li etal.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length isabit longer than Pahl etal.'sand oursbond length,much shorter than theexperimentalvalue.9Perhaps,becauseof themultireference character in Zn2,both Pahl etal.'sand ours ab initio's resultsare smaller than the experimental value.9In otherwords,the noniterative triple excitation in single-reference coupledcluster procedure may not fully describe the multi-reference characterof Zn2.On the otherhand,from our calculated valuesof bond length,asone can expect,the spin-orbitcoupling effectdoes notchange bond length toomuch,about just0.001 nm.Forother spectroscopic constants in Table1,all the theoretical resultsagree with the corresponding experimental resultsverywell.Though the experimental rotational constantand vibrational-rotational coupling constantareabsent,all the theoreticalvaluesagreew ith each other verywell.

    Table2 Calcu lated bond lengthsand spectroscopic constantsof Cd2compared to the latest experim entaland other group's theoretical resu lts

    4.2Cd2

    The calculated bond lengthsand spectroscopic constants,the latest experimental results,and other group's theoretical results10,12,30for Cd2are listed in Table 2.For the bond length,our result from CBS+SOC-CCSD(T)is closest to the experimental result.The theoreticalbond length from Pahl etal.'swork isabit longer than the experimental value.The treatmentof spin-orbit coupling in Pahl etal.'sworkmentioned abovemay notbe the mostsuitable approach for Cd2whose spin-orbit coupling effect ismore visible than Zn2.With respect to Li et al.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length ismuch longer than the experimentalvalue.On the other hand,from our calculated values of bond length,the spin-orbit coupling effectmakes the bond length abitshorter,about0.002 nm.For other spectroscopic constants in Table 2,all the theoretical results agreew ith the corresponding experimental results very well.Though the experimental rotational constant and vibrational-rotational coupling constant are absent,all the theoreticalvaluesagreew ith each other very well.

    5 Summ ary

    In thiswork,the two-component coupled-cluster theory w ith spin-orbit coupling,the completed basis setsextrapolation,and the four-order polynomial fitting technique are used to study the structuresand spectroscopic constantsof Zn2and Cd2.The results from CBS+SOC-CCSD(T)calculations are themost reliable values in comparisonw ith the latestexperimentalorothergroup's theoretical results.The spin-orbitcouplingmainly affects thebond length of Cd2,and other valuesare almostnotaffected by spinorbit coupling.Our theoretical resultsw ill be helpful to understand the spectral characterof these two dimersand CBS+SOCCCSD(T)method is suitable for studying the electronic structures of these van derWaalsdimers containing heavy elements.

    With respect to Hg2whose spin-orbitcoupling ismostvisible, the results of Hg2w ill be reported in the near future due to its complexity.

    (1)Pyykko,P.Chem.Rev.1988,88,563.doi:10.1021/cr00085a006

    (2)Bartlett,R.J.;Musial,M.Rev.Mod.Phys.2007,79,291.doi: 10.1103/RevModPhys.79.291

    (3)Liu,W.;VanWullen,C.J.Chem.Phys.1999,110,3730.doi: 10.1063/1.478237

    (4)Wang,F.;Gauss,J.;vanWullen,C.J.Chem.Phys.2008,129, 064113.doi:10.1063/1.2968136

    (5)Christiansen,O.;Hattig,C.;Gauss,J.J.Chem.Phys.1998,109, 4745.doi:10.1063/1.477086

    (6)Yu,M.;Dolg,M.Chemical Physics Letters1997,273,329.doi: 10.1016/S0009-2614(97)00609-X

    (7)Schautz,F.;Flad,H.J.;Dolg,M.TheoreticalChemistry Accounts1998,99,231.doi:10.1007/s002140050331

    (8)Strojecki,M.;Ruszczak,M.;?ukomski,M.;Koperski,J. ChemicalPhysics2007,340,171.doi:10.1016/j. chemphys.2007.08.016

    (9)Strojecki,M.;Ruszczak,M.;Kro?nicki,M.;?ukomski,M.; Koperski,J.Chemical Physics2006,327,229.doi:10.1016/j. chemphys.2006.04.008

    (10)Wei,L.M.;Li,P.;Qiao,L.W.;Tang,K.T.J.Chem.Phys.2013, 139,154306.doi:10.1063/1.4824889

    (11)Bucinsky,L.;Biskupic,S.;Ilcin,M.;Lukes,V.;Laurinc,V. JournalofComputationalChemistry 2009,30,65.doi:10.1002/ jcc.v30:1

    (12)Pahl,E.;Figgen,D.;Borschevsky,A.;Peterson,K.A.; Schwerdtfeger,P.TheoreticalChemistry Accounts2011,129, 651.doi:10.1007/s00214-011-0912-1

    (13)Bera,N.C.;Das,A.K.Chemical Physics Letters2007,437,257.doi:10.1016/j.cplett.2007.02.010

    (14)Bender,C.F.;Rescigno,T.N.;Schaefer,H.F.,III;Orel,A.E. J.Chem.Phys.1979,71,1122.doi:10.1063/1.438456

    (15)Takewaki,H.;Tomonari,M.;Nakamura,T.J.Chem.Phys. 1985,82,5608.doi:10.1063/1.448596

    (16)Czuchaj,E.;Rebentrost,F.;Stoll,H.;Preuss,H.Chemical Physics Letters1996,255,203.doi:10.1016/0009-2614(96) 00336-3

    (17)Ellingsen,K.;Saue,T.;Pouchan,C.;Gropen,O.Chemical Physics2005,311,35.doi:10.1016/j.chemphys.2004.09.038

    (18)Hay,P.J.;Dunning,T.H.,Jr.;Raffenetti,R.C.J.Chem.Phys. 1976,65,2679.doi:10.1063/1.433411

    (19)Figgen,D.;Rauhut,G.;Dolg,M.;Stoll,H.Chemical Physics 2005,311,227.doi:10.1016/j.chemphys.2004.10.005

    (20)Kullie,O.JournalofAtomic,Molecular,and OpticalPhysics 2012,2012,361974.doi:10.1155/2012/361947

    (21)Kullie,O.Chemical Physics2013,415,112.doi:10.1016/j. chemphys.2012.12.020

    (22)Stanton,J.F.;Gauss,J.;Watts,J.D.;Bartlett,R.J.J.Chem. Phys.1991,94,4334.doi:10.1063/1.460620

    (23)Kucharski,S.A.;Bartlett,R.J.J.Chem.Phys.1992,97, 4282.doi:10.1063/1.463930

    (24)Raghavachari,K.;Trucks,G.W.;Pople,J.A.;Head-Gordon,M. Chemical Physics Letters1989,157,479.doi:10.1016/S0009-2614(89)87395-6

    (25)Watts,J.D.;Gauss,J.;Bartlett,R.J.J.Chem.Phys.1993,98, 8718.doi:10.1063/1.464480

    (26)CFOUR,aquantum chem icalprogram packagew ritten by Stanton,J.F.;Gauss,J.;Harding,M.E.;Szalay,P.G.w ith contributions from Auer,A.A.;Bartlett,R.J.;Benedikt,U.; Berger,C.;Bernholdt,D.E.;Bomble,Y.J.;Cheng,L.; Christiansen,O.;Heckert,M.;Heun,O.;Huber,C.;Jagau,T. C.;Jonsson,D.;Jusélius,J.;K lein,K.;Lauderdale,W.J.; Matthews,D.A.;Metzroth,T.;Mück,L.A.;O'Neill,D.P.; Price,D.R.;Prochnow,E.;Puzzarini,C.;Ruud,K.; Schiffmann,F.;Schwalbach,W.;Simmons,C.;Stopkow icz,S.; Tajti,A.;Vázquez,J.;Wang,F.;Watts,J.D.and the integral packages MOLECULE(A lm l?f,J.;Taylor,P.R.),PROPS (Taylor,P.R.),ABACUS(Helgaker,T.;Jensen,H.J.A.; J?rgensen,P.;Olsen,J.),and ECP routinesby M itin,A.V.;van Wüllen,C.For the currentversion,seehttp://www.cfour.de.

    (27)Tu,Z.Y.;Yang,D.D.;Wang,F.;Guo,J.W.J.Chem.Phys. 2011,135,034115.doi:10.1063/1.3611052

    (28)Peterson,K.A.;Puzzarini,C.TheoreticalChemistry Accounts 2005,114,283.doi:10.1007/s00214-005-0681-9

    (29)Yang,D.D.;Wang,F.TheoreticalChemistry Accounts2012, 131,1117.doi:10.1007/s00214-012-1117-y

    (30)Strojecki,M.;Kro?nicki,M.;Zgoda,P.;Koperski,J.Chemical Physics Letters2010,489,20.doi:10.1016/j.cplett.2010.02.039

    Coup led-Cluster Theo retical Study o f Struc tu res and Spec troscop ic Constan ts o f Dim ers Zn2and Cd2w ith Sp in-Orbit Coup ling

    TU Zhe-Yan1,2,*WANGWen-Liang1
    (1Key Laboratory forMacromolecular Science ofShaanxiProvince,SchoolofChemistry and Chemical Engineering,Shaanxi NormalUniversity,Xi'an 710062,P.R.China;2SchoolofScience,Xi'an Polytechnic University,Xi'an 710048,P.R.China)

    The structures and spectroscopic constants of Zn2and Cd2were studied using the coup led-cluster theory w ith spin-orbitcoup ling based on the two-component relativistic effective core potentialandmatched basis sets aug-cc-pv n z-pp(n=Q,5),combining com p lete basis setextrapolation of the electronic correlation energy and fourth-order polynom ial fitting technique.Spin-orbitcoupling was included in the post-Hartree-Fock p rocedure,i.e.,in the coup led-cluster iteration,to obtainm ore reasonab le results,although the spin-orbit coup ling effectobserved in Zn2and Cd2is notvisible as it is in Hg2.Our theoretical results agree wellw ith the latestexperimentalvalues and othergroups'theoreticalresults,and willbe helpfulin understanding the spectral characteristics of these two dimers.

    Spectroscopic constant;Spin-orbitcoup ling;Dimer;Coup led-cluster theory

    O641

    icle]

    10.3866/PKU.WHXB201503261 www.whxb.pku.edu.cn

    Received:November 14,2014;Revised:March 24,2015;Published onWeb:March 26,2015.

    ?Corresponding author.Email:tuzheyan@126.com;Tel:+86-18392679232.

    The projectwassupported by the Start-up Fundsof Xi'an Polytechnic University,China(BS1211)and Scientific Research Program Funded by ShaanxiProvincial Education Department,China(2013JK0679).

    西安工程大學(xué)博士科研啟動(dòng)基金(BS1211)和陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(2013JK0679)資助

    ?Editorialoffice of Acta Physico-Chimica Sinica

    猜你喜歡
    聚物角動(dòng)量常數(shù)
    對(duì)經(jīng)典力學(xué)中的軌道角動(dòng)量和自轉(zhuǎn)角動(dòng)量的探討
    丁二烯二聚物精制及脫氫制乙苯技術(shù)研究
    關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級(jí)數(shù)的系數(shù)
    基于角動(dòng)量模型的流場渦旋提取方法
    用角動(dòng)量的方法解決并推廣一個(gè)功能關(guān)系問題
    夏季角動(dòng)量輸送變化與中國東部降水的關(guān)系
    含二苯并噻吩-S,S-二氧化物的給-受型齊聚噻吩衍生物的合成與表征
    幾個(gè)常數(shù)項(xiàng)級(jí)數(shù)的和
    萬有引力常數(shù)的測量
    丁二烯自聚物的危害、成因及防控措施
    国产精品女同一区二区软件| 国产成人freesex在线 | 亚洲七黄色美女视频| 日本爱情动作片www.在线观看 | 中文字幕av成人在线电影| 久久99热这里只有精品18| 日本免费a在线| 99在线视频只有这里精品首页| 欧美国产日韩亚洲一区| 伊人久久精品亚洲午夜| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 日韩av在线大香蕉| 又爽又黄无遮挡网站| 99久久精品一区二区三区| 波野结衣二区三区在线| 国产 一区精品| a级毛片免费高清观看在线播放| 给我免费播放毛片高清在线观看| 日韩欧美国产在线观看| 婷婷精品国产亚洲av| 亚洲美女黄片视频| 欧美性猛交黑人性爽| 亚洲av免费高清在线观看| 久久久久久久久久久丰满| 少妇熟女aⅴ在线视频| 亚洲精品一区av在线观看| 国国产精品蜜臀av免费| 麻豆国产av国片精品| 又爽又黄a免费视频| 三级经典国产精品| 午夜影院日韩av| or卡值多少钱| 成人鲁丝片一二三区免费| 午夜视频国产福利| 国产高潮美女av| 精品午夜福利在线看| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 亚洲真实伦在线观看| 女生性感内裤真人,穿戴方法视频| 日韩高清综合在线| 九九爱精品视频在线观看| 国产成人freesex在线 | 又黄又爽又刺激的免费视频.| 黄色日韩在线| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 精品99又大又爽又粗少妇毛片| 伊人久久精品亚洲午夜| 亚洲欧美日韩无卡精品| 偷拍熟女少妇极品色| 夜夜夜夜夜久久久久| 真人做人爱边吃奶动态| 一区二区三区高清视频在线| 长腿黑丝高跟| 乱系列少妇在线播放| 成人综合一区亚洲| h日本视频在线播放| 国产精品亚洲一级av第二区| 小说图片视频综合网站| 亚洲电影在线观看av| 男女啪啪激烈高潮av片| 自拍偷自拍亚洲精品老妇| av国产免费在线观看| av免费在线看不卡| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 性插视频无遮挡在线免费观看| 插阴视频在线观看视频| 亚洲欧美日韩高清专用| 干丝袜人妻中文字幕| 午夜久久久久精精品| 亚洲精华国产精华液的使用体验 | 丰满的人妻完整版| 欧美成人a在线观看| 成年av动漫网址| h日本视频在线播放| 国产高清激情床上av| 久久韩国三级中文字幕| 别揉我奶头 嗯啊视频| 一个人看的www免费观看视频| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 午夜福利在线观看吧| 亚洲美女搞黄在线观看 | 99热只有精品国产| 偷拍熟女少妇极品色| 性色avwww在线观看| 51国产日韩欧美| 国产精品久久久久久久久免| 国产精品一区二区免费欧美| 午夜免费男女啪啪视频观看 | 夜夜爽天天搞| 亚洲图色成人| 国产精品国产高清国产av| 1000部很黄的大片| 亚洲自偷自拍三级| 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 久久亚洲精品不卡| 国产精品久久视频播放| 精品人妻一区二区三区麻豆 | 69人妻影院| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 99热网站在线观看| 亚洲最大成人手机在线| 免费观看精品视频网站| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 久久久久久久久大av| 午夜福利视频1000在线观看| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 成人漫画全彩无遮挡| 又爽又黄无遮挡网站| 黄色配什么色好看| 日韩制服骚丝袜av| 男插女下体视频免费在线播放| 久久久精品大字幕| 又粗又爽又猛毛片免费看| 成人特级av手机在线观看| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 男女下面进入的视频免费午夜| 六月丁香七月| 成人欧美大片| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 九色成人免费人妻av| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 美女免费视频网站| videossex国产| 亚洲三级黄色毛片| 久久久午夜欧美精品| 日韩成人av中文字幕在线观看 | 国产精品人妻久久久影院| 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 亚洲精品成人久久久久久| 国产成人a∨麻豆精品| 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 91在线精品国自产拍蜜月| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 精品午夜福利在线看| 午夜激情福利司机影院| 亚洲,欧美,日韩| 草草在线视频免费看| 日本一二三区视频观看| 免费观看精品视频网站| av在线观看视频网站免费| 69av精品久久久久久| 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 免费看美女性在线毛片视频| 国产色爽女视频免费观看| 国产精品一区二区性色av| 男女边吃奶边做爰视频| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 97碰自拍视频| a级毛片免费高清观看在线播放| 午夜免费激情av| 免费在线观看成人毛片| 免费黄网站久久成人精品| av专区在线播放| 亚洲中文字幕日韩| 日本色播在线视频| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久人妻蜜臀av| 精品福利观看| 国产爱豆传媒在线观看| 丰满的人妻完整版| 欧美激情在线99| 欧美3d第一页| 可以在线观看毛片的网站| 国产成人精品久久久久久| 搡女人真爽免费视频火全软件 | 18+在线观看网站| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 最新中文字幕久久久久| 国产成人aa在线观看| 少妇熟女aⅴ在线视频| 亚州av有码| 美女 人体艺术 gogo| 免费看光身美女| 高清日韩中文字幕在线| 国产黄色视频一区二区在线观看 | 午夜免费男女啪啪视频观看 | 大又大粗又爽又黄少妇毛片口| av天堂在线播放| 夜夜爽天天搞| 成人精品一区二区免费| 在线观看一区二区三区| 亚洲欧美日韩高清专用| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 精品无人区乱码1区二区| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久午夜电影| 欧美极品一区二区三区四区| 国产成人精品久久久久久| 日韩欧美免费精品| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久| av专区在线播放| 久久精品久久久久久噜噜老黄 | 一个人观看的视频www高清免费观看| 精品久久久噜噜| 一级a爱片免费观看的视频| 亚洲精品国产av成人精品 | 男女视频在线观看网站免费| 成人精品一区二区免费| 午夜a级毛片| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 国产av不卡久久| 晚上一个人看的免费电影| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 亚洲第一电影网av| 亚洲精品亚洲一区二区| 一本久久中文字幕| 亚洲精华国产精华液的使用体验 | 亚洲欧美清纯卡通| 特级一级黄色大片| 国产一区亚洲一区在线观看| 国产91av在线免费观看| 亚洲最大成人中文| 日韩欧美精品v在线| 亚洲国产欧美人成| 成人无遮挡网站| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 日本五十路高清| 男女边吃奶边做爰视频| 欧美xxxx性猛交bbbb| 国产在线男女| 成人毛片a级毛片在线播放| 亚洲国产欧美人成| 久久久久性生活片| 国产精品不卡视频一区二区| 日韩av不卡免费在线播放| 亚洲无线在线观看| 99热这里只有是精品在线观看| 欧美日本视频| 亚洲av免费在线观看| 如何舔出高潮| 亚洲精品在线观看二区| 美女cb高潮喷水在线观看| 国产精品亚洲美女久久久| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 国产成人福利小说| av黄色大香蕉| 久久亚洲精品不卡| 国产亚洲欧美98| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频 | 国产男靠女视频免费网站| 99久久精品国产国产毛片| 欧美激情久久久久久爽电影| 一级毛片久久久久久久久女| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 国内精品美女久久久久久| 成人午夜高清在线视频| 久久久欧美国产精品| 国产精品国产三级国产av玫瑰| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 亚洲av第一区精品v没综合| 欧美潮喷喷水| 国产亚洲91精品色在线| 99久久成人亚洲精品观看| 国产午夜精品久久久久久一区二区三区 | 男女那种视频在线观看| 精品国产三级普通话版| 久久久国产成人精品二区| 久久精品91蜜桃| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 国产成人一区二区在线| 五月伊人婷婷丁香| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| 成人av一区二区三区在线看| 国产一区二区激情短视频| 欧美色视频一区免费| 91在线观看av| av国产免费在线观看| 成人无遮挡网站| 久久久精品大字幕| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 高清毛片免费看| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| av在线老鸭窝| www.色视频.com| 内地一区二区视频在线| 久久国产乱子免费精品| 欧美3d第一页| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 国产精品综合久久久久久久免费| 久久久国产成人免费| 精品一区二区三区视频在线观看免费| 国产精品女同一区二区软件| 国产久久久一区二区三区| 亚洲国产高清在线一区二区三| 国产精品国产三级国产av玫瑰| 老司机影院成人| 免费av观看视频| 亚洲精品成人久久久久久| 夜夜爽天天搞| 亚洲三级黄色毛片| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 中文字幕人妻熟人妻熟丝袜美| 麻豆久久精品国产亚洲av| 日本a在线网址| 老司机福利观看| 欧美激情久久久久久爽电影| 菩萨蛮人人尽说江南好唐韦庄 | 精品一区二区三区视频在线观看免费| 免费人成视频x8x8入口观看| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 国产精品无大码| 午夜爱爱视频在线播放| 人人妻人人澡人人爽人人夜夜 | 在线看三级毛片| 亚洲18禁久久av| 久久久久性生活片| 我的老师免费观看完整版| 久久6这里有精品| 丝袜喷水一区| 12—13女人毛片做爰片一| 亚洲av成人av| 岛国在线免费视频观看| 女人被狂操c到高潮| 男女那种视频在线观看| 亚洲人成网站在线播放欧美日韩| www日本黄色视频网| 99九九线精品视频在线观看视频| 国产成人a∨麻豆精品| 色尼玛亚洲综合影院| 99久久精品一区二区三区| 亚洲欧美日韩高清在线视频| 成人特级黄色片久久久久久久| 欧美bdsm另类| 美女xxoo啪啪120秒动态图| 国产精品久久视频播放| 国产精品永久免费网站| 插逼视频在线观看| 看非洲黑人一级黄片| 亚洲av美国av| av女优亚洲男人天堂| 99热精品在线国产| 日日啪夜夜撸| 亚洲成人久久爱视频| 亚洲经典国产精华液单| 少妇的逼好多水| 一级黄片播放器| 日韩大尺度精品在线看网址| 欧美三级亚洲精品| 久久这里只有精品中国| 日本欧美国产在线视频| 性欧美人与动物交配| 国产免费男女视频| 无遮挡黄片免费观看| 综合色丁香网| 麻豆乱淫一区二区| 国内精品一区二区在线观看| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 在线观看午夜福利视频| 99久久精品一区二区三区| av天堂在线播放| 波多野结衣高清作品| 日本a在线网址| 中出人妻视频一区二区| 国产欧美日韩精品一区二区| 国产精品99久久久久久久久| 日韩中字成人| 99久久精品热视频| 日韩欧美精品免费久久| 国产精品野战在线观看| av天堂中文字幕网| 国产一区二区激情短视频| 日韩欧美国产在线观看| 日本精品一区二区三区蜜桃| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 国产精品一区二区三区四区免费观看 | 淫秽高清视频在线观看| 精品人妻熟女av久视频| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 国产女主播在线喷水免费视频网站 | 毛片女人毛片| 午夜视频国产福利| 波多野结衣高清作品| 最近的中文字幕免费完整| 日韩成人伦理影院| 22中文网久久字幕| 99国产精品一区二区蜜桃av| 午夜激情欧美在线| av.在线天堂| 日本 av在线| 成人午夜高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久中文| 99热网站在线观看| 色视频www国产| 亚洲乱码一区二区免费版| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 简卡轻食公司| 欧美高清性xxxxhd video| 色综合色国产| 99热网站在线观看| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 亚洲精品在线观看二区| 国产精品女同一区二区软件| 国产一区二区激情短视频| 一本久久中文字幕| 99久久成人亚洲精品观看| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 在线观看午夜福利视频| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 亚洲在线观看片| 精品一区二区三区视频在线观看免费| 黄片wwwwww| 两个人视频免费观看高清| 久久久精品大字幕| 亚洲精品日韩在线中文字幕 | 国产午夜精品论理片| 国产一区二区在线观看日韩| 国产91av在线免费观看| 国产不卡一卡二| 午夜久久久久精精品| 久久精品国产清高在天天线| av专区在线播放| 欧美日韩乱码在线| 两性午夜刺激爽爽歪歪视频在线观看| 中国美女看黄片| 一级黄色大片毛片| 51国产日韩欧美| 国产精品无大码| 三级毛片av免费| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 日本五十路高清| 校园人妻丝袜中文字幕| 午夜激情欧美在线| 国产黄片美女视频| 国产一区二区在线av高清观看| 亚洲久久久久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 99九九线精品视频在线观看视频| 国产美女午夜福利| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 少妇的逼好多水| 美女高潮的动态| 在线观看免费视频日本深夜| 激情 狠狠 欧美| 久久草成人影院| 悠悠久久av| 六月丁香七月| 99久久九九国产精品国产免费| eeuss影院久久| 偷拍熟女少妇极品色| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 国产精品爽爽va在线观看网站| 精品一区二区三区av网在线观看| 久久这里只有精品中国| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 亚洲av二区三区四区| 亚洲熟妇熟女久久| 极品教师在线视频| 欧美又色又爽又黄视频| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩| 热99re8久久精品国产| 国产精品1区2区在线观看.| 一级毛片我不卡| 国内精品一区二区在线观看| 久久韩国三级中文字幕| 国产免费男女视频| 欧美日韩乱码在线| 淫妇啪啪啪对白视频| 国产成人91sexporn| 在线免费十八禁| 免费无遮挡裸体视频| 91麻豆精品激情在线观看国产| 性欧美人与动物交配| 日本黄大片高清| 久久午夜福利片| 在线播放无遮挡| 精品一区二区免费观看| 桃色一区二区三区在线观看| 国内精品美女久久久久久| 亚洲精品国产av成人精品 | www.色视频.com| 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 一本一本综合久久| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 久久久国产成人免费| 寂寞人妻少妇视频99o| 欧美成人a在线观看| 亚洲性久久影院| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 亚洲精品国产av成人精品 | 欧美一区二区国产精品久久精品| 国内久久婷婷六月综合欲色啪| 国产真实伦视频高清在线观看| 卡戴珊不雅视频在线播放| 日韩精品中文字幕看吧| a级毛片免费高清观看在线播放| 极品教师在线视频| 国产爱豆传媒在线观看| 成人av在线播放网站| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区精品| 久久久久国产网址| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片| 亚洲欧美日韩卡通动漫| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 亚洲精品日韩在线中文字幕 | 成人毛片a级毛片在线播放| 欧美日韩乱码在线| 欧美人与善性xxx| 一级毛片电影观看 | 天美传媒精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 日韩国内少妇激情av| 免费看美女性在线毛片视频| 特级一级黄色大片| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 国产一级毛片七仙女欲春2| 少妇猛男粗大的猛烈进出视频 | 国产一级毛片七仙女欲春2| 春色校园在线视频观看| 国产高清不卡午夜福利| 精品久久久久久久末码| 赤兔流量卡办理| 搡女人真爽免费视频火全软件 | 国产欧美日韩精品一区二区| 亚洲精品粉嫩美女一区| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 真人做人爱边吃奶动态| 免费高清视频大片| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 免费黄网站久久成人精品|