• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lauric acid abolishes interferon-gamma (IFN-γ)-induction of Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) expression in human macrophages

    2015-12-26 07:49:35WeiSiongLimMaryShiYingGanMelissaHuiLingOngChoyHoongChew
    Asian Pacific Journal of Reproduction 2015年3期

    Wei-Siong Lim, Mary-Shi-Ying Gan, Melissa-Hui-Ling Ong, Choy-Hoong Chew

    Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

    Document heading

    Lauric acid abolishes interferon-gamma (IFN-γ)-induction of Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) expression in human macrophages

    Wei-Siong Lim▽, Mary-Shi-Ying Gan▽, Melissa-Hui-Ling Ong, Choy-Hoong Chew*

    Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

    ARTICLE INFO

    Article history:

    Received 5 March 2015

    Received in revised form 16 May 2015

    Accepted 25 May 2015

    Available online 20 September 2015

    IFN-γ

    ICAM-1

    VCAM-1

    THP-1 cells

    Lauric acid

    Objective: To investigate the effect of different concentrations of lauric acid on Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) expression in IFN-γ stimulated human monocytic THP-1 cell line. Methods: THP-1 cell were cultured using Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum. THP-1 monocytes were firstly differentiated into macrophages by using phorbol-12-myristate-13-acetate. IFN-γ response test was perfomed and total cellular RNA was extracted using TRI Reagent?LS before q-RT-PCR was carried out. Subsequently, IFN-γ treated THP-1 macrophages were stimulated with increasing doses of lauric acid for another 24 hour, before q-RT-PCR. MTT assay was carried out to investigate the effect of lauric acid on undifferentiated and differentiated THP-1 cells. Results: The mRNA expression levels of ICAM-1 and VCAM-1 were normalized to β-actin and relatived to the untreated cells. The expressions of ICAM-1 and VCAM-1 were significantly induced in cells treated with 10 ng/mL of IFN-γ. This showed that IFN-γ could up-regulate inflammatory process and may cause atheroma formation. Although lauric acid did not have any significant impact on undifferentiated and differentiated THP-1 cell viability, the normalized fold expressions of ICAM-1 and VCAM-1 in IFN-γ-treated THP-1 macrophages were decreased significantly in a dose dependent manner with the presence of increasing doses of lauric acid. Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an antiinflammatory therapeutic and prophylaxis agent for atherosclerosis.

    1. Introduction

    Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are classified in Immunoglobulin gene superfamily (IgSF). ICAM-1 is a cell surface glycoprotein receptor that expressed constitutively at basal levels on the surface of different types of cells, which includes endothelial cells, macrophages, fibroblasts, epithelial cells and vascular smoothmuscle cells[1]. In contrast, VCAM-1 is expressed on surface of activated endothelium cells, bone marrow fibroblasts, dendritic cells and macrophages[2]. These immunoglobulin supergene family members can be up-regulated in response to the stimulation with phorbol ester or various inflammatory mediators such as immuneregulatory cytokines: Tumor Necrosis Factor-alpha(TNF-alpha) or interferon-gamma (IFN-γ), hormones, virus infection, and cellular stresses[3]. ICAM-1 and VCAM-1 is vastly expressed in atherosclerotic lesions and they function in promoting leukocytes adhesion and development of inflammatory diseases[4]. Thus, ICAM-1 and VCAM-1 could be the potential therapeutic targets for atherosclerosis[5].

    IFN-γ is a T-helper cell 1 produced cytokine that serves as a potent activator of macrophages during the innate and acquired immune response[6]. JAK-STAT signaling pathway is activated by the binding of IFN-γ to its receptor. Upon binding, tyrosine kinases are activated and this phosphorylates Signal Transducerand Activator of Transcription-1 (STAT1). Activated STAT1 then dimerizes to regulate the expression of various genes, for instance VCAM-1 and ICAM-1[7, 9-11]. Besides, in various inflammatory and granulomatous conditions, IFN-γ is critical in up-regulating ICAM-1 expression in mRNA levels, amplifying inflammatory cytokine production and enhancing monocytes or macrophages anti-microbial and anti-tumor activity[8].

    Lauric acid is a natural saturated fatty acid with 12 carbon atom chain. This medium-chain triglyceride is claimed to have greater anti-viral and anti-bacterial properties[12]. Studies have shown that palm kernel oil, coconut oil and laurel oil are composed of approximately 50 percent of the lauric acid[13]. Lauric acid has been shown to be associated with deleterious effect in atherosclerosis[14]. However, the high content of lauric acid in coconut oil can significantly increase the high-density lipoprotein (HDL) cholesterol level, thus reducing the risk of developing cardiovascular diseases. Therefore, lauric acid is widely used in nutritional and medical applications due to its lack of hypercholesterolemic effects properties[13].

    Human monocytic THP-1 cell line is extensively established as a valuable model system for the investigation of macrophages differentiation from monocytes and the regulatory mechanisms of specific genes in macrophages due to the similarities in biological behavior of monocytes or macrophage derived from peripheral blood[15]. Based on these characteristics, the molecular mechanisms regarding the physiological functions of macrophages and monocytes in cardiovascular system as well as the developmental etiology and pathogenesis of the cardiovascular diseases can be widely studied in this cell line[16]. The non-adherent THP-1 cells can be differentiated into adherent macrophages in the stimulation of phorbol-12-myristate-13-acetate (PMA)[8].

    Owing to the evidences above, it is hypothesized that lauric acid could relieve the inflammatory effect of IFN-γ and consequently delay or cease the atheroma formation. Therefore, this study was designed to investigate the impact of lauric acid in atheroma formation, particularly investigating the expression of ICAM-1 and VCAM-1 in differentiated THP-1 macrophages, and also to investigate the effect of lauric acid on the cell’s viability.

    2. Materials and methods

    2.1. Cell culture and differentiation

    THP-1 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma Aldrich, USA) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Gibco, USA), 2 nM L-glutamine, 10 000 U/mL penicillin and 10 000 μg/mL streptomycin (Milipore, USA) and 2.2 g/L of sodium bicarbonate. The cells were then incubated in a humid incubator with 5% (v/v) CO2at 37 ℃ . Cell culture was performed with 75 cm2tissue culture flasks (Techno Plastic Products, Switzerland). The cultures were maintained by addition of fresh medium supplemented with 10% (v/v) of FBS or replacement of medium every two or three days of incubation period. Subculture of cells was performed when cell density of 8×105cells/mL was achieved. The cell suspension was then split into (2-4) ×105viable cells/mL for each flask.

    Prior to cell treatment, differentiation of THP-1 cells was carried out by incubating 1×106cells/mL in 6-well culture plate (Techno Plastic Products) in a final volume of 3 mL of RPMI 1640 medium supplemented with 100 ng/mL of Phorbol Myristate Acetate (PMA) (Sigma Aldrich, USA) and 10% (v/v) of FBS. The six-well plate was incubated for 24 hours at 37 ℃ in a humid incubator with 5% (v/v) CO2.

    2.2. Cell treatment and RNA extraction

    The differentiated THP-1 cells were treated with 10 ng/mL of IFN-γ (Milipore) and placed in a humid incubator at a temperature of 37 ℃ with 5% (v/v) CO2for 24 hours. Subsequently, the cells were treated with different concentrations of lauric acid (Sigma Aldrich, USA), which were 1 μM, 5 μM, 10 μM, 20 μM, respectively, for another 24 hours. For vehicle control experiment, cells were treated with absolute ethanol (Copens Scientific, Germany). Treatments with 20 μM of lauric acid alone and 10 ng/mL IFN-γ alone for 24 hours, respectively, were used as experimental controls. Total cellular RNA was then isolated from differentiated THP-1 cells using TRI-Reagent?LS (Molecular Research Centre, USA) according to the manufacturer’s instructions. Spectrophotometric measurement of total cellular RNA at the ratio of A260/A280 was performed to access the concentration and purity of total cellular RNA. Besides, 1.0% (w/v) agarose-formamide gel electrophoresis was performed to assess the integrity of isolated total cellular RNA.

    2.3. Quantitative Reverse Transcription Polymerase Chain Reaction (q-RT-PCR)

    Quantitative PCR (qPCR) was conducted by using QuantiTect SYBR Green RT-PCR Kit (QIAGEN) based on the protocol provided by the manufacturer using MyIQ Real-Time PCR Detection System (Bio-Rad). The reactions were assembled on ice to prevent RNA degradation. VCAM-1 qPCR was carried out following a specific protocol, which consists of 1 cycle of 20 minutes at 58°℃to synthesis cDNA, followed by 5 minutes at 95°℃ to inactivate the reverse transcriptase. This was followed by 35 cycles of denaturing at 94°℃ for 30 seconds, annealing at 63°℃ for 30 seconds and primer extension at 72°℃ for 30 seconds. The qPCR protocol for ICAM-1 gene amplification was similar except for the slight change in the annealing temperature to 58°℃. At the end of each qPCR, melt curve analysis was performed under the following conditions: 1 minute denaturation at 95°℃, 1 minute annealing at 65°℃, 81 cycles of 0.5°℃ increments (10 seconds each) beginning at 65℃ (data collection step). The expression of the target genes was normalized to the housekeeping gene, β-actin, which was used as an internal control to obtain the relative mRNA expression of the VCAM-1 and ICAM-1. Relative quantification of the expression of targeted genes to β-actin was carried out using Pfaffl method[17]. Furthermore, the experiments were carried out in triplicates for each RNA sample to determine the precision of q-RT-PCR results and to minimize technical errors that would cause differences in expression. The primers which were used for q-RT-PCR were taken from Parket al.[18].

    2.4. Statistical analysis

    Results were presented as means and standard deviations of triplicate determination. IBM’s Statistical Package for the Social Sciences (SPSS) Statistics (IBM Corporation) was used for statistical analysis. Statistical significance was determined using studentpairedt-test asP-value (p) less than 0.05 (P<0.05) was considered statistically significant.

    3. Results

    3.1. Effect of IFN-γ, lauric acid alone or combined treatment on undifferentiated and differentiated THP-1 cell viability

    Figure 1 depicts the undifferentiated THP-1 monocytes’ viability under effects of different doses of IFN-γ and lauric acid. The cell viability of undifferentiated THP-1 cells remained in a stable pattern when IFN-γ doses were increased. Increasing concentration of lauric acid from 1 μM to 20 μM also did not affect the undifferentiated THP-1 cells’ viabilities. Interestingly, the cell viability was decreased insignificantly to 79.3% when the THP-1 cells were treated in both 20 μM of lauric acid and 10 μM of IFN-γ, despite the viability of the cells was fairly stable in the co-stimulation of IFN-γ with other doses of lauric acid.

    An insignificant decline in the cell viability of THP-1 macrophages treated with increasing doses of IFN-γ (Figure 2a) and varied concentrations of lauric acid (Figure 2b), in relative to the untreated sample. The cell viability percentage in THP-1 macrophages treated with the same amount of absolute ethanol used to dissolve lauric acid for 20 μM treatment as a control. Although an increasing trend in cell viability was observed in IFN-γ-stimulated THP-1 macrophages with increasing concentrations of lauric acid, statistical analysis showed no significant cell viability change under these treatments (Figure 2c).

    3.2. Effect of IFN-γ, lauric acid alone or combined treatment on ICAM-1 and VCAM-1 expression

    Figure 3a depicts the expression profile of VCAM-1 after the cells were treated with different doses of lauric acid. IFN-γ induced the expression of VCAM-1 gene to 1.28-fold. The expression of VCAM-1 gene was suppressed to 0.30-fold by 20 μM lauric acid treatment without IFN-γ. Besides, VCAM-1 expression was also suppressed to 0.66-fold, 0.72-fold and 0.67-fold in post-treatment of IFN-γ pre-stimulated cells with 5 μM, 10 μM and 20 μM of lauric acid, respectively.

    The normalized fold expression of ICAM-1 under the treatment of 10 ng/mL of IFN-γ (1.32-fold) was used as a control to investigate the effect of post-stimulation with lauric acid on IFN-γ-induced ICAM-1 mRNA expression (Figure 3b). Similar to VCAM-1, ICAM-1 mRNA expression with only 20 μM of lauric acid was down-regulated to 0.63-fold as compared to the untreated sample. Although ICAM-1 expression was induced in the presence of IFN-γ, the induction was decreased to 0.93-fold, 0.55-fold, 0.57-fold and 0.57-fold after the stimulation with 1 μM, 5 μM, 10 μM and 20 μM of lauric acid, respectively. This result shows that lauric acid suppressed the IFN-γ induction of ICAM-1 and VCAM-1 expression in THP-1 macrophages. The degree of reduction in ICAM-1 and VCAM-1 expression remained rather constant after post-treatment with 5 μM of lauric acid, and thus, this indicates the optimal dosage of lauric acid.

    4. Discussion

    In this study, IFN-γ up-regulated VCAM-1 and ICAM-1 mRNA expressions were significantly reduced by lauric acid. IFN-γ has been shown to increase the expression of VCAM-1 and ICAM-1. Induction of VCAM-1 gene expression by IFN-γ could happen due to activation of nuclear factor kappa B (NF-κB) and interferon regulatory factor-1 (IRF-1) expression in response to IFN-γ stimulation. Both NF-κB and IRF-1 are transcription factors which bind to VCAM-1 promoter and induce VCAM-1 gene transcription [19].

    Lauric acid is a fatty acid with anti-oxidant and anti-inflammatory effects[20]. Lauric acid has been shown to reduce the expression of transcription factor, NF-κB[21]. NF-κB is a pro-inflammatory transcription factor that activates immune and inflammatory response by controlling the genes expression of a wide spectrum of inflammatory cytokines and cell adhesion molecules[22-24]. Hence, the reduction of IFN-γ induced VCAM-1 and ICAM-1 expression might be caused by the diminished cellular NF-κB concentration after the treatment of lauric acid.

    Lauric acid has been proven to possess anti-oxidative activity[20]. Hence, lauric acid could scavenge reactive oxygen species (ROS) [29]. ROS is inflammatory mediators which could induce the up-regulation of VCAM-1 expression in endothelial cells during inflammation[20]. Also, free fatty acid was proven to affect the production of mtROS which act as signaling molecules to induce the production of proinflammatory cytokines and increase expression of VCAM-1 during cellular injury[25-26]. Therefore, lauric acid is hypothesized to reduce the expression of IFN-γ induced expression of VCAM-1 by removing ROS during inflammation.

    Here we show that lauric acid down-regulated the expression of VCAM-1 and ICAM-1. The mechanism involved could be due to its ability to inhibit cyclooxygenase-II (COX-II) isoform expression [27-28]. Cyclooxygenase (COX-I and COX-II) are enzymes which function to convert arachidonic acid to prostaglandins which control the inflammation process in the body. Furthermore, COX-II has been shown to limit the expression of the adhesion molecules in human vascular smooth muscle cells[29]. One possible mechanism is for lauric acid to act through COX-II induction. However, this possibility remains to be examined.

    In conclusion, lauric acid was able to alleviate the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expression at transcriptional level in THP-1 macrophages, without affecting the cell viability. This may be important for the control of inflammatory diseases, for instance atherosclerosis. Thus, lauric acid could be a potential therapeutic agent for inflammatory related diseases.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    This work was supported by Ministry of Education's Fundamental Research Grant Scheme (FRGS/2/2013/SKK01/UTAR/02/3) and the Department of Biomedical Science (UTAR).

    [1] Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression.J Leukoc Biol1999; 66(6): 876-888.

    [2] Golias CH, Tsoutsi E, Matziridis A, Makridis P, Batistatou A, Charalabopoulos K. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease.In vivo2007; 21(5): 757-770.

    [3] Ruetten H, Thiemermann C, Perretti M. Upregulation of ICAM-1 expression on J774.2 macrophages by endotoxin involves activation of NF-κB but not protein tyrosine kinase:comparison to induction of iNOS.Mediators Inflamm1999; 8(2): 77-84.

    [4] Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process.Exp Clin Cardiol2002; 7(1): 40-53.

    [5] Klein RM, Breuer R, Mundhenke M, Schwartzkopff B, Strauer BE. Circulating adhesion molecules (cICAM-1, lcVCAM-1) in patients with suspected inflammatory heart muscle disease.Z Kardiol1998; 87(2): 84-93.

    [6] Biron CA. Interferons alpha and beta as immune regulators--a new look.Immunity2001;14:661–664.

    [7] Jaruga B, Hong F, Kim WH, Gao B. IFN-γ/STAT1 acts as a proinflammatory signal in T cell-mediated hepatitis via induction of multiple chemokines and adhesion molecules: a critical role of IRF-1.Am J Physiol Gastrointest Liver Physiol2004; 287(5): 1044-1052.

    [8] Kurihara Y, Furue M. Interferon-γ enhance phorbol myristate acetateinduced cell attachment and tumor necrosis factor production via the NF-κB pathway in THP-1 human monocytic cells.Mol Med Rep2013; 7(6): 1739-1744.

    [9] Gough DJ, Levy DE, Johnston RW, Clarke CJ. IFN-gamma signalingdoes it mean JAK-STAT?Cytokine Growth Factor Rev2008;19(5-6): 383–394.

    [10] Wang X, Michie SA, Xu B, Suzuki Y. Importance of IFN-γ-mediated expression of endothelial VCAM-1 on recruitment of CD8+T Cells into the brain during chronic infection with Toxoplasma gondii.J Interferon Cytokine Res2007; 27(4): 329-338.

    [11] Wuthrich RP. Vascular cell adhesion molecule-1 (VCAM-1) expression in murine lupus nephritis.Kidney Int1992; 42(4): 903-914.

    [12] Enig MG. Nutrients and Foods in AIDS. 1st ed. Boca Raton: CRC; 1998.

    [13] Fife B. Health properties of coconut oil.Agro Food Industry Hi Tech2013; 24(3): 5-7.

    [14] Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients.CurrAtheroscler Rep2010; 12(6): 384-390.

    [15] Auwerx J. The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation.Experientia1991; 47(1): 22-31.

    [16] Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature.Atherosclerosis2012; 221(1): 2-11.

    [17] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods2001; 25(4): 402-408.

    [18] Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli.Inflamm Res2007; 56(1): 45-50.

    [19] Shuai K, Schindler C, Prezioso VR, Darnell JE. Activation of transcription by IFN-gamma: tyrosine phosphorylation of 91-kD DNA binding protein.Science1992; 258(5089): 1808–1812.

    [20] Pengseng N, Siripongvutikorn S, Usawakesmanee W, Wattanachant S, Sutthirak P. Effect of lipids and thermal processing on antioxidant activities of tested antioxidants and Tom-Kha paste extract.Food Nutr Sci2013; 4: 229-243.

    [21] Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells.Biochim Biophys Acta2008; 1783(5): 886-895.

    [22] Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-κ B and cytokine-inducible enhancers.FASEB J1995; 9(10): 899-909.

    [23] Pahl HL. Activators and target genes of Rel/NF-κB transcription factors.Oncogene1999; 18(49) 6853-6866.

    [24] Zhu YP, Shen T, Lin YJ, Chen BD, Ruan Y, Cao Y, et al. Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF-α -treated human vascular endothelial cells by blocking NF-κB activation.Acta Pharmacol Sin2013; 34(8): 1036-1042.

    [25] Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome.Nat Immunol2011; 12(3): 222–230.

    [26] Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation.Nature2011; 469(7329): 221–225.

    [27] Laneuville O, Breuer DK, DeWitt DL, Hla T, Funk CD, Smith WL. Differential inhibition of human prostaglandin endoperoxide H Synthases-1 and -2 by non-steroidal anti-inflammatory drugs.J Pharmacol Exp Ther1994; 271: 927-934.

    [28] Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4.J Biol Chem2001; 276(20): 16683-16689.

    [29] Bishop-Bailey D, Burke-Gaffney A, Hellewell PG, Pepper JR, Mitchell JA. Cyclo-oxygenase-2 regulates inducible ICAM-1 and VCAM-1 expression in human vascular smooth muscle cells.Biochem Biophys Res Commun1998; 249(1):44-47.

    10.1016/j.apjr.2015.06.005

    *Corresponding author: Dr. Chew Choy Hoong, PhD, Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.

    ▽Both authors have equal contributions to the article.

    Tel: + 605-4688888 ext. 4426

    Fax: + 605-4661676

    E-mail: chewch@utar.edu.my

    Foundation project: This work was supported by Ministry of Education's Fundamental Research Grant Scheme (FRGS/2/2013/SKK01/UTAR/02/3) and the Department of Biomedical Science (UTAR).

    十八禁网站免费在线| 久久久久久久午夜电影| 成人午夜高清在线视频| 国产伦人伦偷精品视频| 亚洲18禁久久av| 老女人水多毛片| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 三级国产精品欧美在线观看| 99国产精品一区二区蜜桃av| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件 | 性插视频无遮挡在线免费观看| 日本五十路高清| 亚洲av中文av极速乱 | 男插女下体视频免费在线播放| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区免费观看 | 色av中文字幕| 精品一区二区三区av网在线观看| 国产在线男女| 麻豆成人av在线观看| 日本免费一区二区三区高清不卡| 2021天堂中文幕一二区在线观| 精品人妻视频免费看| 久久婷婷人人爽人人干人人爱| 久久精品国产清高在天天线| 欧美bdsm另类| 欧美日韩精品成人综合77777| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 亚洲四区av| 一卡2卡三卡四卡精品乱码亚洲| 国产久久久一区二区三区| 国产大屁股一区二区在线视频| 欧美成人免费av一区二区三区| 天堂影院成人在线观看| 伦理电影大哥的女人| 久久精品国产自在天天线| 最近中文字幕高清免费大全6 | 三级毛片av免费| 人妻丰满熟妇av一区二区三区| 女同久久另类99精品国产91| 亚洲自偷自拍三级| 国产成人av教育| 成人欧美大片| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| 熟女电影av网| 亚洲av成人av| 国产成人影院久久av| 国产av一区在线观看免费| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久 | 国产午夜精品久久久久久一区二区三区 | 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 久久精品国产亚洲av天美| 婷婷精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 99久久无色码亚洲精品果冻| 国产成人a区在线观看| 欧美日韩综合久久久久久 | 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 十八禁网站免费在线| 在线天堂最新版资源| 少妇丰满av| 国产精品无大码| 女生性感内裤真人,穿戴方法视频| 色播亚洲综合网| 夜夜夜夜夜久久久久| 联通29元200g的流量卡| 国产亚洲精品久久久久久毛片| 成人三级黄色视频| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人| a在线观看视频网站| 欧美3d第一页| 免费av不卡在线播放| 国产91精品成人一区二区三区| 久久久久国内视频| av专区在线播放| 久久热精品热| 国产黄色小视频在线观看| 色综合色国产| www.www免费av| 乱码一卡2卡4卡精品| 久久香蕉精品热| 久久久久久久久久黄片| 亚洲,欧美,日韩| 97碰自拍视频| 久久久久久久精品吃奶| 久久人妻av系列| 不卡一级毛片| 超碰av人人做人人爽久久| 亚洲精品456在线播放app | 久久九九热精品免费| 精品久久久久久久久久免费视频| 久久热精品热| 九九爱精品视频在线观看| 女同久久另类99精品国产91| 成人特级av手机在线观看| 两人在一起打扑克的视频| 亚洲无线观看免费| 亚洲精品日韩av片在线观看| 欧美成人a在线观看| 中文在线观看免费www的网站| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区免费观看| 国产成人福利小说| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 大型黄色视频在线免费观看| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 中文字幕av成人在线电影| 嫩草影院精品99| 久久草成人影院| 亚洲经典国产精华液单| 久久中文看片网| 1024手机看黄色片| 内射极品少妇av片p| 精品久久久久久久久亚洲 | 成人av一区二区三区在线看| 性欧美人与动物交配| 老熟妇乱子伦视频在线观看| 久久精品影院6| 亚洲无线观看免费| 国产高清激情床上av| 午夜老司机福利剧场| 精品一区二区三区av网在线观看| 国产真实伦视频高清在线观看 | 1000部很黄的大片| 成人午夜高清在线视频| 免费人成在线观看视频色| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| 精品人妻一区二区三区麻豆 | 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 日韩一区二区视频免费看| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 淫妇啪啪啪对白视频| 22中文网久久字幕| or卡值多少钱| 国产大屁股一区二区在线视频| 国内少妇人妻偷人精品xxx网站| 日韩欧美免费精品| 亚洲在线自拍视频| 午夜福利欧美成人| 亚洲成人久久爱视频| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 美女高潮的动态| 国产精品1区2区在线观看.| 国产精品一区二区三区四区久久| 久99久视频精品免费| 伦精品一区二区三区| 婷婷六月久久综合丁香| 国产视频内射| 一级黄色大片毛片| 免费观看人在逋| 级片在线观看| 日本与韩国留学比较| 欧美成人a在线观看| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人av| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 欧美黑人巨大hd| 日韩大尺度精品在线看网址| 国产午夜精品久久久久久一区二区三区 | 我要搜黄色片| 性色avwww在线观看| 中文字幕高清在线视频| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 国产午夜精品论理片| 色综合亚洲欧美另类图片| 成人av在线播放网站| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美人成| 天堂影院成人在线观看| 精华霜和精华液先用哪个| 黄色丝袜av网址大全| 22中文网久久字幕| 国产精品亚洲一级av第二区| 99九九线精品视频在线观看视频| 亚洲在线观看片| 国产男靠女视频免费网站| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 国产精品乱码一区二三区的特点| 久久精品影院6| 欧美成人免费av一区二区三区| av在线蜜桃| 69人妻影院| 精品久久久噜噜| 深夜a级毛片| 午夜福利视频1000在线观看| 老熟妇乱子伦视频在线观看| 18禁在线播放成人免费| 级片在线观看| 男人舔女人下体高潮全视频| xxxwww97欧美| 国产午夜福利久久久久久| 国产真实伦视频高清在线观看 | 成人av一区二区三区在线看| 精品一区二区免费观看| 久久精品综合一区二区三区| 国产成人影院久久av| 午夜福利成人在线免费观看| 日韩一区二区视频免费看| 日本熟妇午夜| 国产免费一级a男人的天堂| av国产免费在线观看| 九九久久精品国产亚洲av麻豆| 国产成年人精品一区二区| 亚洲无线在线观看| 一本一本综合久久| 如何舔出高潮| netflix在线观看网站| 日本黄大片高清| 精品午夜福利在线看| 久久草成人影院| 悠悠久久av| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 日本熟妇午夜| 有码 亚洲区| 一级av片app| 久久久精品大字幕| 亚洲中文字幕一区二区三区有码在线看| 国产私拍福利视频在线观看| 欧美zozozo另类| 国内精品久久久久久久电影| 九色国产91popny在线| 又紧又爽又黄一区二区| 亚洲av第一区精品v没综合| 99热精品在线国产| 88av欧美| 天堂影院成人在线观看| 国产主播在线观看一区二区| 麻豆av噜噜一区二区三区| 日本-黄色视频高清免费观看| 少妇裸体淫交视频免费看高清| 99热精品在线国产| 88av欧美| 观看免费一级毛片| 久久久成人免费电影| 国产视频内射| 波多野结衣高清无吗| 一本久久中文字幕| 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 真人做人爱边吃奶动态| 国产男人的电影天堂91| 真实男女啪啪啪动态图| 久久久久久久久大av| 性欧美人与动物交配| 一进一出抽搐gif免费好疼| 日本 欧美在线| 亚洲性久久影院| 国产精品三级大全| 成人美女网站在线观看视频| 在线免费观看的www视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| av女优亚洲男人天堂| 在线观看66精品国产| 精品免费久久久久久久清纯| 美女被艹到高潮喷水动态| 99热网站在线观看| 久久精品国产亚洲av天美| 深夜a级毛片| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 夜夜爽天天搞| 婷婷亚洲欧美| 69av精品久久久久久| 亚洲午夜理论影院| 久久精品综合一区二区三区| 精品一区二区三区av网在线观看| 亚洲av美国av| 十八禁国产超污无遮挡网站| 97超视频在线观看视频| 国产 一区 欧美 日韩| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 成人毛片a级毛片在线播放| 久久久久国内视频| 在线观看免费视频日本深夜| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 美女xxoo啪啪120秒动态图| 天堂av国产一区二区熟女人妻| 亚洲自偷自拍三级| 精品久久久噜噜| 国产私拍福利视频在线观看| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片 | 国产精品永久免费网站| 国产伦精品一区二区三区视频9| 精品人妻一区二区三区麻豆 | 久久久久久伊人网av| 中文字幕精品亚洲无线码一区| 内射极品少妇av片p| 99久久精品热视频| 成人无遮挡网站| 99热这里只有是精品50| 日韩一本色道免费dvd| 嫩草影院精品99| 精品日产1卡2卡| 国产熟女欧美一区二区| 色哟哟·www| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 国产av一区在线观看免费| 男女啪啪激烈高潮av片| 久久久久久久精品吃奶| 国产精品电影一区二区三区| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 最新在线观看一区二区三区| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 欧美日韩黄片免| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 国产探花极品一区二区| 最近中文字幕高清免费大全6 | 3wmmmm亚洲av在线观看| 国产欧美日韩一区二区精品| 在线看三级毛片| 亚洲欧美日韩高清在线视频| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 国产精品久久久久久精品电影| 色视频www国产| 999久久久精品免费观看国产| 国产午夜精品久久久久久一区二区三区 | 欧美精品啪啪一区二区三区| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 深爱激情五月婷婷| 久久国产精品人妻蜜桃| 色在线成人网| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片 | 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 久久久久久大精品| 精品99又大又爽又粗少妇毛片 | 午夜激情福利司机影院| 18+在线观看网站| avwww免费| 亚洲国产色片| 亚洲经典国产精华液单| 亚洲精品国产成人久久av| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 国产成人a区在线观看| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 欧美精品啪啪一区二区三区| 九色成人免费人妻av| 欧美高清性xxxxhd video| 人人妻,人人澡人人爽秒播| 日本 欧美在线| 中文资源天堂在线| 久久精品国产自在天天线| 国产欧美日韩一区二区精品| 久久久久久久久久成人| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久久久| 午夜福利18| av女优亚洲男人天堂| h日本视频在线播放| 欧美性感艳星| 淫妇啪啪啪对白视频| 久久这里只有精品中国| 很黄的视频免费| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 国产精品一区二区性色av| 能在线免费观看的黄片| 日本与韩国留学比较| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 国产探花极品一区二区| 欧美xxxx黑人xx丫x性爽| 久久精品91蜜桃| 简卡轻食公司| 亚洲av中文av极速乱 | 久久亚洲精品不卡| 国产成人a区在线观看| 国产成人福利小说| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 999久久久精品免费观看国产| 可以在线观看的亚洲视频| 国产av在哪里看| 久久草成人影院| 国产精品av视频在线免费观看| 国产色爽女视频免费观看| 九色成人免费人妻av| 免费观看精品视频网站| 亚洲国产欧美人成| 久久精品国产亚洲av涩爱 | 少妇裸体淫交视频免费看高清| 少妇人妻精品综合一区二区 | 真人做人爱边吃奶动态| 观看美女的网站| 国产乱人伦免费视频| 亚洲欧美清纯卡通| 男女啪啪激烈高潮av片| 精品午夜福利视频在线观看一区| 美女黄网站色视频| 午夜免费男女啪啪视频观看 | 婷婷丁香在线五月| 99久久中文字幕三级久久日本| 联通29元200g的流量卡| 日韩欧美免费精品| 在线a可以看的网站| 免费观看的影片在线观看| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 亚州av有码| 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 免费观看在线日韩| 久久久久九九精品影院| 成年版毛片免费区| 69人妻影院| 国产精品99久久久久久久久| 日韩强制内射视频| 国产欧美日韩精品一区二区| 久久久久久久久久黄片| 又爽又黄a免费视频| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 亚洲精品一区av在线观看| 欧美xxxx性猛交bbbb| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 欧美日韩瑟瑟在线播放| 最近中文字幕高清免费大全6 | 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 99精品久久久久人妻精品| 国产午夜精品久久久久久一区二区三区 | 亚洲人与动物交配视频| 3wmmmm亚洲av在线观看| 午夜精品一区二区三区免费看| 国产精品自产拍在线观看55亚洲| 波野结衣二区三区在线| 亚洲成人久久爱视频| 五月伊人婷婷丁香| 午夜精品一区二区三区免费看| 99九九线精品视频在线观看视频| 一级黄色大片毛片| 国产中年淑女户外野战色| avwww免费| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 在线天堂最新版资源| x7x7x7水蜜桃| 色综合亚洲欧美另类图片| 亚洲av中文字字幕乱码综合| 啪啪无遮挡十八禁网站| 麻豆久久精品国产亚洲av| 成人二区视频| 亚洲av美国av| 特级一级黄色大片| 美女cb高潮喷水在线观看| 精品人妻1区二区| 亚洲第一电影网av| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 99精品久久久久人妻精品| 亚洲精品成人久久久久久| 精品久久久久久久久久免费视频| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播放欧美日韩| 非洲黑人性xxxx精品又粗又长| 少妇丰满av| 日日夜夜操网爽| 欧美成人性av电影在线观看| 免费在线观看影片大全网站| 色av中文字幕| 国产一区二区激情短视频| 婷婷亚洲欧美| bbb黄色大片| 日本 av在线| 日日摸夜夜添夜夜添小说| 搡老妇女老女人老熟妇| av在线蜜桃| 女的被弄到高潮叫床怎么办 | 国产伦在线观看视频一区| 国产成人影院久久av| 三级国产精品欧美在线观看| 99精品久久久久人妻精品| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产 | 三级毛片av免费| 欧美又色又爽又黄视频| 韩国av在线不卡| 日本五十路高清| 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 18禁黄网站禁片午夜丰满| 国产乱人视频| 最新在线观看一区二区三区| 精品人妻视频免费看| 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 美女高潮的动态| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 波多野结衣高清无吗| 亚洲av免费在线观看| 久久久国产成人免费| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 国模一区二区三区四区视频| 黄色配什么色好看| 日本a在线网址| 99热这里只有是精品在线观看| 午夜影院日韩av| 夜夜夜夜夜久久久久| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 99久久精品热视频| 国产高清三级在线| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添av毛片 | 国产探花在线观看一区二区| 久久久久久大精品| 不卡视频在线观看欧美| 日本 欧美在线| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 久久精品国产鲁丝片午夜精品 | 啦啦啦观看免费观看视频高清| 91久久精品国产一区二区三区| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久 | 成人精品一区二区免费| 天美传媒精品一区二区| 亚洲av二区三区四区| 最近在线观看免费完整版| 国产精品久久久久久亚洲av鲁大| 国产v大片淫在线免费观看| 成人国产麻豆网| 久久久久久久久久久丰满 | 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| bbb黄色大片| 国产三级在线视频| 免费看日本二区| 久久精品国产自在天天线| 亚洲图色成人| 深夜精品福利| 免费人成在线观看视频色| 成人特级av手机在线观看| 内射极品少妇av片p| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 午夜爱爱视频在线播放| 波多野结衣高清无吗| 色av中文字幕| 美女黄网站色视频| 成人欧美大片| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 国产淫片久久久久久久久| 精品人妻1区二区|