• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dysregulation of renal development: Congenital anomalies of the kidney and urinary tract

    2015-12-22 12:09:37MarkDanielWilson
    Asian Pacific Journal of Reproduction 2015年1期

    Mark Daniel Wilson

    3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia

    Molecular dysregulation of renal development: Congenital anomalies of the kidney and urinary tract

    Mark Daniel Wilson

    3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia

    ARTICLE INFO

    Article history:

    Received 15 September 2014

    Received in revised form 10 October 2014

    Accepted 4 November 2014

    Available online 20 March 2015

    Kidney

    Development

    Molecular regulation

    Urinary tract

    Anatomy

    Urology

    Nephrology

    Congenital anomalies of the kidney and urinary tract (CAKUT) occur in approximately 1 in 500 foetal ultrasound examinations. The CAKUT phenotype can involve varying degrees of renal dysplasia, renal hypoplasia, urinary tract obstruction, ureteropelvic anomalies such as megaureter, ureteral atresia, ectopic ureteral orifice, and duplex collecting system The nephrogenic (mesenchymal) and the ductogenic (ureteric) events are regulated by transcription factors, protooncogenes and growth factors in a complex fashion. Dysregulation of specific molecular pathways has been implicated as a primary mechanism for CAKUT. This review will attempt to clarify the molecular basis of CAKUT by focusing on these key developmental pathways. First, however, an examination of normal metanephric kidney development is necessary. Furthermore, clinical aspects of CAKUT, including prenatal diagnosis and current treatments, will be introduced. Through the critical evaluation of a range of diverse scientific literature, it is hoped that an overview of the current status of this important area of developmental anatomy is achieved.

    1. Development of the metanephros

    The development of the mammalian metanephric kidney begins at gestational week 4-5 in humans and at E11 in mice[1]. Metanephros formation is initiated by the ureteric bud, which sprouts out of the posterior end of the Wolffian duct and invades the surrounding metanephric mesenchyme [2]. The subsequent interaction between the two tissues induces the ureteric bud to branch, thus initiating the morphogenesis of the collecting duct system[3]. The metanephric mesenchyme then condenses at the tips of the ureteric buds, and mesenchymal cells form aggregates which epithelialise and form, in succession, the vesicle stage, the comma body stage, and the S body stage. Each S-shaped body, after fusion with the ureteric bud-derived collecting duct, differentiates into a definitive nephron. The branching pattern is the result of sequential ureteric bud arborisation, which proceeds from the deep cortex to the periphery in a process of induction, morphogenesis, and differentiation[1]. The underlying process of developing the subsequent stages of comma and S-shape is not fully understood, although many growth factors and molecular regulators, including glial cell-derived neurotrophic factor (GDNF), paired box genes (PAX2), Six1, Eya1, and the bone morphogenetic proteins (BMPs), among others, are implicated[4]. These stages of morphogenesis represent the onset of nephron differentiation[5].

    The nephrogenic (mesenchymal) and the ductogenic (ureteric) events are regulated by transcription factors, proto-oncogenes and growth factors. Cell adhesion molecules, or CAM complexes, and their associations with the cytoskeleton and extracellular matrix (ECM) glycoproteins facilitate normal development[6]. The proto-oncogenes that encode for receptor tyrosine kinases are involved in mesenchymal-epithelial interactions, in which the proto-oncogene encoded tyrosine or serine/threonine kinase is the ureteric receptor for signalling molecules secreted by the metanephric mesenchyme[7]. Figure 1 below illustrates the dynamic interaction between the metanephric mesenchyme and the Wolffian duct via GDNF, the c-ret/ GDNF complex and BMP4.

    Little has been known until recently for the mechanism of determining the specific site of the ureteral budding from the Wolffian duct. Although the tightly regulated expression pattern of c-ret and its ligand GDNF may be part of the mechanism to specify the site, both c-ret and GDNF are expressed surprisingly broadly throughout the branching ureter and metanephric mesoderm, respectively, at the time of budding. In this regard, Bmp4 antagonizes the function of GDNF from the metanephric blastema that would otherwise induce the budding from the Wolffian duct. Moreover, normally, Bmp4 is diffusely expressed in the mesenchymal cells surrounding the Wolffian duct except for the highly localized locus for the initial ureteral budding. Therefore, it is thought that Bmp4 serves as an inhibitory factor for GDNF-ret signaling along the stalk of the branching ureters, thereby limiting the site of ureteral bud formation. This inhibition of ureteral branching results from the antagonistic function of Bmp4 on GDNF signaling, as Bmp4 down-regulates the Wnt 11, a target molecule of GDNF-ret signaling[7,8].

    2. Defining CAKUT: a new molecular paradigm

    Congenital anomalies of the kidney and urinary tract are a family of diseases with a diverse range of phenotypes. The kidney is most frequently affected; however, the ureter, bladder and ureterovesical (UV) junction are also involved. Renal anomalies such as renal agenesis, multicystic dysplasia, and hypoplasticity result from growth failure of the metanephric cells[9]. Ureteropelvic anomalies such as megaureter, ureteric atresia, ectopic ureteral orifice, duplex collecting system, and anomalies of the bladder and urethra result from ureteral growth anomalies and abnormal ectopic budding[9,10]. The development of the common forms of human CAKUT is attributed to an accumulation of mutations in multiple genes, each of which has multiple ontogenic functions on the urinary system[11]. Figure 2 below illustrates the effect of genetic mutations on the structure of the renal and urinary systems.

    Pluripotentiality of the single gene mutation underlies the wide spectrum of clinical anomalies involving the ureterovesical (UV) junction, the ureter and the kidney. The loss-of-function mutation of the single gene can produce multiple anomalies due in part to its multiple biological actions on the morphogenesis of the three tissues of the excretory system, that is, the ureterovesical junction, the ureter and the kidney, at multiple developmental stages of these tissues. It is also due to the multipotentiality of the initial ectopic budding to produce three clinical entities, that is, ectopic ureteral orifice, anomalous ureter and hypo/ dysplastic kidney. Although urinary tract obstruction may cause anomalous ureter and dysplastic kidney, evidence is yet to be obtained to support the possibility that reflux can lead to those anomalies.

    Glial cell-derived neurotrophic factor (GDNF) is a member of the TGFβ superfamily. GDNF functions as a ligand secreted by the metanephric mesenchyme that binds to the Ret tyrosine kinase receptor and GFR 1 co-receptor, both of which are expressed within the ureteric epithelium [12]. Glial cellderived neurotrophic factor is responsible for the initiationof budding of the ureteric duct from the Wolffian duct, branching of the ureteric epithelium within the metanephric mesenchyme, and the development of new nephrons at the branch tips. At the tips of the branches of the ureteric duct, the mesenchyme is induced to form a mesenchymal condensate. Following this, the condensate forms an epithelial vesicle. Homozygous GDNF knockout mice die within the first 24 hours of postnatal life as the result of bilateral renal agenesis and the absence of an enteric nervous system[12].

    Heterozygous GDNF mice show varying degrees of renal abnormalities. These alternate phenotypes led to the discovery of new GDNF family receptors designated GDNF family receptor- (GDNFR- ) and GDNFR-[12]. GDNFR-is expressed in condensing mesenchyme, nephrons, and ureteric duct tips. Heterozygous GDNF knockout mice display an array of renal phenotypes, ranging from renal hypoplasia and cortical cysts, to unilateral renal agenesis. There is also a reduction in filtration surface area that leads to the development of glomerular hypertrophy and hypertension in order to maintain adequate renal function. These findings suggest that the GDNF heterozygous mice may prove to be useful in the elucidation of essential hypertension[13].

    BMP4 is also a member of the TGF-β superfamily. BMP4 is expressed in the metanephric mesenchyme, the ureteric epithelium, the collecting ducts, and the ureteric duct leading up to the nephrogenic zone[14]. In the cultured metanephros deprived of sulfated glycosaminoglycans (S-GAGs), BMP4-loaded beads promote growth and elongation of the ureter. When S-GAGs synthesis is not inhibited, however, BMP4 beads inhibit ureteric branching and expression of Wnt 11, a downstream target of GDNF signaling. BMP4 therefore has two main roles in kidney organogenesis: the inhibition of ectopic budding from the Wolffian duct and ureteric duct by antagonising inductive signals from the metanephric mesenchyme, and the maintenance of elongation of the branching ureter within the metanephros itself[14,15]. Homozygous BMP4 knockout mice die between E6.5 and E9.5[7]. The homozygous null genotype is therefore termed “embryonic lethal”.

    Homozygous BMP4 knockout is not compatible with life. Heterozygous BMP4 knockout mice display abnormalities that resemble human CAKUT, including hypoplastic and dysplastic kidneys, ectopic ureterovesical (UV) junction, and a duplicate collecting system[7,8]. Cases of hypoplasia and dysplasia result from reduced branching of the ureter, while the ectopic UV junction and duplicate collecting system are predominantly initiated by ectopic ureteral budding from the Wolffian duct[8]. Figure 3 below demonstrates the role of BMP4 in both heterozygous and homozygous states at E11 in a murine model (whole mount in situ hybridization). The position of the initial ureter budding from the Wolffian duct is shown by arrows, and the 24th, 25thand 26thsomite pairs are also labeled. The position of the initial budding in the wild type corresponds to the 26thsomite, whereas that in the mutant corresponds to the 25thsomite.

    In the metanephros, induction of nephrogenesis by the ureter is accompanied by an increase in expression levels of the PAX2 gene[3]. PAX2 is normally expressed in cells of the mesenchyme, as well as in the ureteric bud. PAX2 activates GDNF in metanephric mesenchyme[3]. High concentrations of PAX2 have been found in early nephrogenic epithelial cells, derived from metanephric mesenchyme, and in developing ureteric bud cells[16]. PAX2 is also involved with the expression or regulation of other renal growth factors or signals, including proper function of the c-ret pathway, and WNT4 factor expression in nephrogenesis [5]. Renal hypoplasia, a common form of CAKUT, is caused by inadequate ureteric bud arborisation as a result of increased ureteric bud apoptosis[7]. Although nephrons appear normal histologically, their numbers are reduced, leading to an increased risk of developing hypertension in adult life[13]. PAX2 haploinsufficiency occurs when there is only a single functional copy of the gene, as the other copy is inactivated by a mutation; this confers a heterozygous genotype for the condition. In humans, PAX2 haploinsufficiency causes renal-coloboma syndrome (RCS) involving eye abnormalities, renal hypoplasia, and renal failure in childhood. Overexpression of PAX2 can also cause problems. One group used immunochemistry to examine the extent of glomerulosclerosis seen in Denys-Drash syndrome (characterised by congenital kidney disease, Wilms tumour, malformation of gonads) caused by WT1 and persistent expression of PAX2 by podocytes[17].

    In the developing kidney, Six1 is expressed in the uninduced metanephric mesenchyme at E10.5 and in the induced mesenchyme around the ureteric bud at E11.5 [18]. At E17.5 to P0, Six1 expression is restricted to a subpopulation of collecting tubule epithelial cells. Indeed, this group generated Six1 mutant mice to elucidate the mechanisms implicated in this process. They found that loss of Six1 leads to a failure of ureteric bud invasion into the mesenchyme and subsequent apoptosis of the mesenchyme. These results indicate that Six1 plays an essential role in early kidney development, especially in relation to mesenchymal and ureteric interaction[18]. Another gene, Eya1, is implicated in branchio-oto-renal (BOR) syndrome, an autosomal dominant disorder characterised by varying combinations of branchial, otic and renal anomalies[19]. Individiduals with BOR may have hypoplastic or absent kidneys, with resultant renal insufficiency or renal failure.

    Furthermore, in Six1-/- kidney development, it has been found that PAX2 and Six2 expression was markedly reduced in the metanephric mesenchyme at E10.5, indicating that Six1 is required for the expression of these genes in the metanephric mesenchyme[18]. Again, these findings suggest that Six1 plays a significant role in early (i.e. pre-E10.5) kidney development. In contrast, Eya1 expression was unaffected in Six1-/- metanephric mesenchyme at E10.5, indicating that Eya1 may function upstream of Six1. Moreover, it has been suggested that both Eya1 and Six1 expression in the metanephric mesenchyme is preserved in PAX2-/- embryos at E10.5, further indicating that PAX2 functions downstream of both Eya1 and Six1 in the metanephric mesenchyme[19]. The epistatic relationship between PAX2, Eya1 and Six1/2 in the metanephric mesenchyme during early kidney development is essential for the initiation and maintenance of mesenchymal and ureteric interaction.

    3. Clinical considerations

    Congenital anomalies of the kidney and urinary tract involve renal dysplasia, renal hypoplasia, urinary tract obstruction, ureteropelvic anomalies, including megaureter, ureteral atresia, ectopic ureteral orifice, and duplex collecting system[20]. CAKUT can occur bilaterally or unilaterally. Children with CAKUT often have varying degrees of a reduced number of nephrons at birth (low nephron endowment), leaving them susceptible to adultonset diseases including hypertension. CAKUT are now the leading cause of renal failure in children[21]. Renal dysplasia and obstructive conditions lead to loss of water and sodium in urine because of abnormal tubulogenesis. Children with severe ureteric reflux often develop urinary tract infections and renal fibrosis. Renal fibrosis can further increase the risk of renal failure in children who already have other CAKUT, leading to a vicious cycle. Furthermore, hypertension and proteinuria may develop in children with renal dysplasia and further exacerbate renal function [19-21]. The majority of renal malformations are detected antenatally because of the widespread use and sensitivity of foetal ultrasound[22]. The optimal timing is between 16 to 20 weeks’ gestation because this period facilitates excellent visualisation of anatomy with a high sensitivity in detecting anomalies[23]. Furthermore, it is early enough in the pregnancy to allow completion of prenatal diagnostic procedures, including foetal karyotyping and additional imaging studies[10]. CAKUT are problems that often require surgical intervention, including ureter resections, debridement of fibrotic tissue, and, in some cases, kidney transplantation[21]. In addition to surgery, and often prior to it, dialysis can be an effective temporising measure until a donor organ becomes available or corrective surgery becomes a viable therapeutic alternative.

    4. Conclusion

    Glial cell-derived neurotrophic factor is responsible for the initiation of budding of the ureteric duct from the Wolffian duct and branching of the ureteric epithelium within the metanephric mesenchyme. BMP4 is expressed in the metanephric mesenchyme, the ureteric epithelium, and the collecting ducts. BMP4 plays a significant role in the inhibition of ectopic budding from the Wolffian duct and ureteric duct and the maintenance of elongation of the branching ureter within the metanephros itself. PAX2 is expressed in cells of the mesenchyme, as well as in the ureteric bud. PAX2 activates GDNF in the metanephric mesenchyme. Six1 also plays a significant role in early kidney development. The dynamic interplay between PAX2, Eya1 and Six1 in the metanephric mesenchyme during early kidney development is essential for the induction and maintenance of mesenchymal and ureteric interaction.

    An appreciation of the molecular basis of CAKUT facilitates an understanding of the pathogenesis of these myriad conditions and may assist the design of genetic screening tests for early diagnosis and management. Furthermore, an insight into the relationship between abnormal genes and their products in the pathogenesis of CAKUT will provide an aetiological classification of CAKUT.These insights will allow the coupling of molecular biology and classical epidemiologic methods, thus expanding our knowledge of the pathogenesis of CAKUT and deliver improved treatments for patients.

    Conflict of interest statement

    I declare that this article is entirely my own work, and any material from other sources is correctly acknowledged.

    [1] Challen GA, Martinez G, Davis MJ, Taylor DF, Crowe M, Teasdale RD, et al. Identifying the Molecular Phenotype of Renal Progenitor Cells. J the Am Soc Nephrol 2004; 15(9): 2344-2357.

    [2] Woolf AS. Do kidney tubules serve an angiogenic soup? Kidney Int 2004; 66(2): 862-863.

    [3] Narlis M, Grote D, Gaitan Y, Boualia SK, Bouchard M. Pax2 and Pax8 Regulate Branching Morphogenesis and Nephron Differentiation in the Developing Kidney. J Am Soc Nephrol 2004; 18(4): 1121-1129.

    [4] Sheng W, Wang G, La Pierre DP, Wen J, Deng Z, Wong CKA, et al. Versican mediates mesenchymal-epithelial transition. Mol Biol of the Cell 2006; 17(4): 2009-2020.

    [5] Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, et al. PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem 2006; 281(18): 12705-12712.

    [6] Li Y, Yang J, Luo JH, Dedhar S, Liu Y. Tubular epithelial cell dedifferentiation is driven by the Helix-Loop-Helix transcriptional inhibitor Id1. J Am Soc Nephrol 2007; 18(2): 449-460.

    [7] Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 2007; 134(10): 1967-1975.

    [8] Ichikawa I, Kuwayama F, Pope JC, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 2002; 61: 889-898.

    [9] Mackie GG, Stephens FD. Duplex kidneys: A correlation of renal dysplasia with position of the ureteral orifice. J Urol 1975; 114: 274-280.

    [10] Ismaili K, Hall M, Piepsz A, Wissing KM, Collier F, Schulman C, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr 2006; 148: 222-227.

    [11] Woolf A, Price KL, Scambler PJ, Winyard PJD. Evolving concepts in human renal dysplasia. J Am Soc Nephrol 2004; 15:998-1007.

    [12] Gerlai R, McNamara A, Choi-Lundberg DL, Armanini M, Ross J, Powell-Braxton L, et al. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci 2001; 14: 1153-1163.

    [13] Hoy WE, Douglas-Denton RN, Hughson M, Cass A, Johnson K, Bertram JF. A stereological study of glomerular number and volume: Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl 2003; 83: 31-37.

    [14] Miyazaki Y, Oshima K, Fogo A. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000; 105: 863-873.

    [15] Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 1999; 13: 1601-1613.

    [16] Davies JA, Ladomery M, Hohenstein P, Michael L, Shafe A, Spraggon L, et al. Development of a siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 2004; 13(2): 235-246.

    [17] Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, et al. Murine Denys-Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 2003; 12: 2379-2394.

    [18] Xu P, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development 2003; 130: 3085-3094.

    [19] Buller C, Xu X, Marquis V, Schwanke R, Xu P. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 2001; 10 (24): 2775-2781.

    [20] Pope JC, Brock JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: Classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract (CAKUT). J Am Soc Nephrol 1999; 10: 2018-2028.

    [21] Hiraoka M. Medical management of congenital anomalies of the kidney and urinary tract. Pedia Int 2003; 45(5): 624-633.

    [22] Tsuchiya M, Hayashida M, Yanagihara T, Yoshida J, Takeda S, Tatsuma N, et al. Ultrasound screening for renal and urinary tract anomalies in healthy infants. Pedia Int 2003; 45(5): 617-623.

    [23] Chang LW, Chang FM, Chang CH. Prenatal diagnosis of fetal multicystic dysplastic kidney with two-dimensional and threedimensional ultrasound. Ultrasound Med Biol 2002; 28(7): 853-858.

    *Corresponding author: Mark Daniel Wilson, 3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia.

    E-mail: mdwilson1604@gmail.com

    99国产精品免费福利视频| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 久久人人爽人人片av| 国产精品偷伦视频观看了| 五月开心婷婷网| 水蜜桃什么品种好| 久久久亚洲精品成人影院| 熟女av电影| 热re99久久精品国产66热6| 久久久久国产精品人妻一区二区| 色视频在线一区二区三区| 亚洲欧美成人综合另类久久久| 这个男人来自地球电影免费观看 | freevideosex欧美| 免费观看在线日韩| 另类亚洲欧美激情| videossex国产| 国产国拍精品亚洲av在线观看| 亚洲天堂av无毛| 汤姆久久久久久久影院中文字幕| 两个人免费观看高清视频 | 久久毛片免费看一区二区三区| 香蕉精品网在线| 欧美丝袜亚洲另类| 少妇熟女欧美另类| 国精品久久久久久国模美| 国产精品一区二区性色av| 在线播放无遮挡| 又爽又黄a免费视频| 最近的中文字幕免费完整| 国产免费视频播放在线视频| 精品午夜福利在线看| 日本av免费视频播放| 最近中文字幕2019免费版| 两个人免费观看高清视频 | 大话2 男鬼变身卡| 国产在线免费精品| 国产91av在线免费观看| 热re99久久精品国产66热6| 国产乱来视频区| a级毛色黄片| 国产成人a∨麻豆精品| 亚洲综合色惰| 精华霜和精华液先用哪个| 国产极品天堂在线| 国产精品久久久久久久电影| 久久亚洲国产成人精品v| 国产色婷婷99| 亚洲国产成人一精品久久久| 日韩亚洲欧美综合| 精品少妇久久久久久888优播| 2018国产大陆天天弄谢| 日本午夜av视频| 我的老师免费观看完整版| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花| 成人亚洲精品一区在线观看| 91成人精品电影| 久久99热6这里只有精品| 最后的刺客免费高清国语| 国国产精品蜜臀av免费| 亚洲欧美成人综合另类久久久| 美女大奶头黄色视频| 色94色欧美一区二区| 成人午夜精彩视频在线观看| 亚洲人成网站在线播| a 毛片基地| videossex国产| 人人澡人人妻人| 2018国产大陆天天弄谢| 视频区图区小说| 在线看a的网站| 伦理电影大哥的女人| 另类亚洲欧美激情| tube8黄色片| 国产色爽女视频免费观看| 狂野欧美激情性bbbbbb| 夜夜骑夜夜射夜夜干| 亚洲va在线va天堂va国产| 成人免费观看视频高清| 国产精品人妻久久久久久| 欧美人与善性xxx| 欧美老熟妇乱子伦牲交| 久久久精品免费免费高清| 欧美97在线视频| 一级毛片aaaaaa免费看小| 一级毛片aaaaaa免费看小| 日日啪夜夜爽| 九九爱精品视频在线观看| 青春草国产在线视频| 亚洲人与动物交配视频| av不卡在线播放| 午夜老司机福利剧场| 一区二区三区免费毛片| 午夜福利影视在线免费观看| 91久久精品国产一区二区成人| 91久久精品国产一区二区成人| 在线观看免费高清a一片| 一二三四中文在线观看免费高清| 精品久久国产蜜桃| 少妇丰满av| 2022亚洲国产成人精品| 国产精品久久久久久久电影| 九草在线视频观看| 亚洲精华国产精华液的使用体验| 国产色爽女视频免费观看| 熟妇人妻不卡中文字幕| 日本黄色片子视频| 国产成人aa在线观看| 一区二区三区乱码不卡18| 国产高清有码在线观看视频| 国模一区二区三区四区视频| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 国产亚洲欧美精品永久| 色婷婷av一区二区三区视频| 桃花免费在线播放| 精品一区二区免费观看| 亚洲欧美成人综合另类久久久| 日本vs欧美在线观看视频 | 高清欧美精品videossex| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 日本欧美视频一区| 久久精品熟女亚洲av麻豆精品| 午夜视频国产福利| 国产伦在线观看视频一区| 国产探花极品一区二区| 成人亚洲精品一区在线观看| av天堂中文字幕网| 人妻夜夜爽99麻豆av| 日产精品乱码卡一卡2卡三| 亚洲av欧美aⅴ国产| 人妻夜夜爽99麻豆av| 久久99一区二区三区| 日本黄大片高清| 美女大奶头黄色视频| 男女啪啪激烈高潮av片| 美女大奶头黄色视频| 久久99精品国语久久久| 亚洲真实伦在线观看| 少妇丰满av| 一区二区av电影网| 国产真实伦视频高清在线观看| 亚洲精品久久久久久婷婷小说| 日韩av在线免费看完整版不卡| 精品人妻偷拍中文字幕| 我的老师免费观看完整版| 日本黄大片高清| 男女免费视频国产| 深夜a级毛片| 日本av免费视频播放| 五月伊人婷婷丁香| 色婷婷av一区二区三区视频| 激情五月婷婷亚洲| 国产成人a∨麻豆精品| 日韩亚洲欧美综合| 国产精品久久久久久久久免| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看| 免费黄频网站在线观看国产| 欧美变态另类bdsm刘玥| 亚洲av二区三区四区| 纵有疾风起免费观看全集完整版| 男女啪啪激烈高潮av片| 少妇被粗大猛烈的视频| 国产一区二区在线观看av| 丰满人妻一区二区三区视频av| 亚州av有码| a级毛片免费高清观看在线播放| 免费av中文字幕在线| 久久6这里有精品| 久久久久网色| 国产精品一区www在线观看| 韩国av在线不卡| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 国产欧美日韩精品一区二区| 欧美精品高潮呻吟av久久| 亚洲国产毛片av蜜桃av| 免费播放大片免费观看视频在线观看| 国内揄拍国产精品人妻在线| 精品一区二区免费观看| 最近最新中文字幕免费大全7| 18禁裸乳无遮挡动漫免费视频| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 精品一区在线观看国产| 国产精品女同一区二区软件| 校园人妻丝袜中文字幕| 一二三四中文在线观看免费高清| 好男人视频免费观看在线| 一区二区三区乱码不卡18| 亚洲av免费高清在线观看| 国产片特级美女逼逼视频| 51国产日韩欧美| 欧美丝袜亚洲另类| 亚洲人成网站在线播| 丁香六月天网| 在线观看免费视频网站a站| 亚洲精华国产精华液的使用体验| 在线精品无人区一区二区三| 少妇高潮的动态图| 美女脱内裤让男人舔精品视频| 在线看a的网站| 午夜日本视频在线| 免费观看a级毛片全部| 成人国产麻豆网| 亚洲内射少妇av| 人人澡人人妻人| 国产精品久久久久久av不卡| 丝袜脚勾引网站| 丝瓜视频免费看黄片| 亚洲无线观看免费| av在线观看视频网站免费| 九色成人免费人妻av| 国产成人a∨麻豆精品| 午夜激情福利司机影院| av在线app专区| 亚洲人成网站在线观看播放| 人妻制服诱惑在线中文字幕| 男人舔奶头视频| 精品久久久久久久久亚洲| 国国产精品蜜臀av免费| 婷婷色综合www| 亚洲欧美一区二区三区国产| 极品教师在线视频| 免费黄频网站在线观看国产| 18+在线观看网站| 免费看光身美女| 国产熟女欧美一区二区| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 我的女老师完整版在线观看| 久久影院123| 中文字幕av电影在线播放| 色婷婷久久久亚洲欧美| 99久久人妻综合| 国产精品99久久久久久久久| 三级经典国产精品| 中文字幕人妻丝袜制服| 一级,二级,三级黄色视频| 69精品国产乱码久久久| 又大又黄又爽视频免费| 久久久国产一区二区| 9色porny在线观看| 在线观看免费高清a一片| 久久久久网色| 如何舔出高潮| 国产成人精品一,二区| 在线播放无遮挡| 成人亚洲欧美一区二区av| 日韩av在线免费看完整版不卡| 少妇丰满av| 色哟哟·www| 99久国产av精品国产电影| 久久久久精品性色| 男人狂女人下面高潮的视频| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 精品国产一区二区久久| 少妇裸体淫交视频免费看高清| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品| 欧美人与善性xxx| 制服丝袜香蕉在线| 少妇人妻 视频| 91在线精品国自产拍蜜月| 最近的中文字幕免费完整| 免费少妇av软件| 国产精品99久久久久久久久| 欧美精品一区二区大全| 中国三级夫妇交换| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 国产精品伦人一区二区| 免费看不卡的av| 欧美日韩一区二区视频在线观看视频在线| 国产精品福利在线免费观看| √禁漫天堂资源中文www| 免费观看的影片在线观看| 国产精品99久久99久久久不卡 | 国产精品国产三级专区第一集| 美女主播在线视频| 国产国拍精品亚洲av在线观看| 黄色毛片三级朝国网站 | 在线天堂最新版资源| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 少妇熟女欧美另类| 尾随美女入室| 一区在线观看完整版| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 日韩精品免费视频一区二区三区 | 国产精品福利在线免费观看| 亚洲国产欧美在线一区| 国产免费视频播放在线视频| 韩国av在线不卡| 午夜影院在线不卡| 国产精品.久久久| 国产极品天堂在线| 午夜激情久久久久久久| 美女福利国产在线| 秋霞在线观看毛片| 午夜影院在线不卡| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片 | 国产伦精品一区二区三区视频9| 亚洲国产精品一区三区| 老司机影院成人| 亚洲精品乱码久久久v下载方式| 中国美白少妇内射xxxbb| 国产成人精品无人区| 九九久久精品国产亚洲av麻豆| 成人18禁高潮啪啪吃奶动态图 | 女人精品久久久久毛片| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 蜜臀久久99精品久久宅男| 国产国拍精品亚洲av在线观看| 美女cb高潮喷水在线观看| 夜夜爽夜夜爽视频| 日本-黄色视频高清免费观看| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 久热久热在线精品观看| 亚洲国产日韩一区二区| 亚洲av成人精品一二三区| 嫩草影院入口| 91成人精品电影| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 97精品久久久久久久久久精品| 国产伦精品一区二区三区四那| 男女免费视频国产| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| √禁漫天堂资源中文www| 国产成人aa在线观看| 午夜免费观看性视频| 国产在线免费精品| 美女主播在线视频| 日本爱情动作片www.在线观看| 狂野欧美白嫩少妇大欣赏| 少妇被粗大的猛进出69影院 | 国产精品成人在线| 国国产精品蜜臀av免费| 欧美精品亚洲一区二区| 免费看不卡的av| 欧美精品一区二区免费开放| 免费观看性生交大片5| 日韩亚洲欧美综合| 熟妇人妻不卡中文字幕| 久久久久国产网址| 91aial.com中文字幕在线观看| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 久热这里只有精品99| 天天操日日干夜夜撸| 欧美精品国产亚洲| 最后的刺客免费高清国语| 黑人巨大精品欧美一区二区蜜桃 | 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 日韩av免费高清视频| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| 天堂中文最新版在线下载| 亚洲精品乱久久久久久| 国产亚洲精品久久久com| 欧美精品高潮呻吟av久久| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 久久国内精品自在自线图片| 国产高清三级在线| 永久网站在线| 又粗又硬又长又爽又黄的视频| 精品人妻熟女av久视频| 免费看不卡的av| 欧美亚洲 丝袜 人妻 在线| 日韩成人av中文字幕在线观看| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 成人国产麻豆网| 夜夜骑夜夜射夜夜干| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 久久午夜福利片| 精品亚洲成国产av| 欧美精品一区二区大全| 亚洲自偷自拍三级| 少妇人妻精品综合一区二区| 亚洲在久久综合| 亚洲av.av天堂| 一级毛片我不卡| 免费少妇av软件| a级毛片在线看网站| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女av久视频| 在线播放无遮挡| 精品人妻偷拍中文字幕| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说| 亚洲av成人精品一区久久| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 老女人水多毛片| 亚洲精品视频女| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 人体艺术视频欧美日本| 高清av免费在线| 99热这里只有是精品在线观看| 久久鲁丝午夜福利片| 极品人妻少妇av视频| 国产精品嫩草影院av在线观看| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| 久久97久久精品| 老女人水多毛片| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 色视频在线一区二区三区| av在线app专区| 亚洲精品视频女| 久久韩国三级中文字幕| 精品视频人人做人人爽| 亚洲天堂av无毛| 99久久精品国产国产毛片| 欧美日本中文国产一区发布| 久久久久久久久大av| 日韩亚洲欧美综合| 国产成人freesex在线| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频 | 一区二区三区精品91| 六月丁香七月| 亚洲第一av免费看| 国产真实伦视频高清在线观看| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 啦啦啦在线观看免费高清www| 国产91av在线免费观看| 美女大奶头黄色视频| 免费观看性生交大片5| 一个人免费看片子| 亚洲精品亚洲一区二区| 高清不卡的av网站| 免费少妇av软件| 深夜a级毛片| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 九九久久精品国产亚洲av麻豆| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 国产欧美另类精品又又久久亚洲欧美| 免费在线观看成人毛片| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三区在线 | 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 国产一级毛片在线| 制服丝袜香蕉在线| 天美传媒精品一区二区| 一级爰片在线观看| 亚洲天堂av无毛| 老司机影院成人| 久久久久国产网址| 精品久久久久久久久av| 中文字幕免费在线视频6| 伊人亚洲综合成人网| 亚洲成人手机| 日韩,欧美,国产一区二区三区| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 成人黄色视频免费在线看| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| xxx大片免费视频| 黑人巨大精品欧美一区二区蜜桃 | 午夜激情福利司机影院| 日本免费在线观看一区| 久久99热这里只频精品6学生| 中文字幕久久专区| 菩萨蛮人人尽说江南好唐韦庄| 超碰97精品在线观看| 伊人亚洲综合成人网| 一本大道久久a久久精品| www.av在线官网国产| 日韩强制内射视频| 久久国产精品男人的天堂亚洲 | a级毛色黄片| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片| 国产爽快片一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 26uuu在线亚洲综合色| 少妇人妻精品综合一区二区| 在线看a的网站| 午夜老司机福利剧场| 伦理电影大哥的女人| 观看美女的网站| 日韩成人伦理影院| 成人特级av手机在线观看| 日本91视频免费播放| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 久久 成人 亚洲| 午夜福利,免费看| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 99热国产这里只有精品6| 国产亚洲一区二区精品| 男的添女的下面高潮视频| 一本大道久久a久久精品| 伦理电影大哥的女人| 国产综合精华液| 在线播放无遮挡| 97在线视频观看| 亚洲第一av免费看| 亚洲av.av天堂| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 青春草国产在线视频| 男女边摸边吃奶| 下体分泌物呈黄色| 永久免费av网站大全| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线| 国产熟女欧美一区二区| 美女内射精品一级片tv| av福利片在线观看| 99久久综合免费| 国产精品.久久久| 国产免费视频播放在线视频| 国产在线免费精品| 高清不卡的av网站| 黄色一级大片看看| 亚洲色图综合在线观看| 国产一区二区三区综合在线观看 | 青春草视频在线免费观看| 精品午夜福利在线看| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 国产69精品久久久久777片| 日产精品乱码卡一卡2卡三| 狂野欧美激情性bbbbbb| av网站免费在线观看视频| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 亚洲国产最新在线播放| 成人免费观看视频高清| 大片免费播放器 马上看| 色94色欧美一区二区| 大片免费播放器 马上看| 亚洲成色77777| 精品国产国语对白av| av福利片在线观看| 午夜91福利影院| 在线天堂最新版资源| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 我要看黄色一级片免费的| 高清午夜精品一区二区三区| 一本久久精品| 亚洲电影在线观看av| 国产精品熟女久久久久浪| 高清黄色对白视频在线免费看 | 黄色配什么色好看| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 亚洲成人手机| 色网站视频免费| 免费观看的影片在线观看| 大话2 男鬼变身卡| 最近2019中文字幕mv第一页| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 亚洲欧美精品专区久久| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| xxx大片免费视频|