• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dysregulation of renal development: Congenital anomalies of the kidney and urinary tract

    2015-12-22 12:09:37MarkDanielWilson
    Asian Pacific Journal of Reproduction 2015年1期

    Mark Daniel Wilson

    3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia

    Molecular dysregulation of renal development: Congenital anomalies of the kidney and urinary tract

    Mark Daniel Wilson

    3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia

    ARTICLE INFO

    Article history:

    Received 15 September 2014

    Received in revised form 10 October 2014

    Accepted 4 November 2014

    Available online 20 March 2015

    Kidney

    Development

    Molecular regulation

    Urinary tract

    Anatomy

    Urology

    Nephrology

    Congenital anomalies of the kidney and urinary tract (CAKUT) occur in approximately 1 in 500 foetal ultrasound examinations. The CAKUT phenotype can involve varying degrees of renal dysplasia, renal hypoplasia, urinary tract obstruction, ureteropelvic anomalies such as megaureter, ureteral atresia, ectopic ureteral orifice, and duplex collecting system The nephrogenic (mesenchymal) and the ductogenic (ureteric) events are regulated by transcription factors, protooncogenes and growth factors in a complex fashion. Dysregulation of specific molecular pathways has been implicated as a primary mechanism for CAKUT. This review will attempt to clarify the molecular basis of CAKUT by focusing on these key developmental pathways. First, however, an examination of normal metanephric kidney development is necessary. Furthermore, clinical aspects of CAKUT, including prenatal diagnosis and current treatments, will be introduced. Through the critical evaluation of a range of diverse scientific literature, it is hoped that an overview of the current status of this important area of developmental anatomy is achieved.

    1. Development of the metanephros

    The development of the mammalian metanephric kidney begins at gestational week 4-5 in humans and at E11 in mice[1]. Metanephros formation is initiated by the ureteric bud, which sprouts out of the posterior end of the Wolffian duct and invades the surrounding metanephric mesenchyme [2]. The subsequent interaction between the two tissues induces the ureteric bud to branch, thus initiating the morphogenesis of the collecting duct system[3]. The metanephric mesenchyme then condenses at the tips of the ureteric buds, and mesenchymal cells form aggregates which epithelialise and form, in succession, the vesicle stage, the comma body stage, and the S body stage. Each S-shaped body, after fusion with the ureteric bud-derived collecting duct, differentiates into a definitive nephron. The branching pattern is the result of sequential ureteric bud arborisation, which proceeds from the deep cortex to the periphery in a process of induction, morphogenesis, and differentiation[1]. The underlying process of developing the subsequent stages of comma and S-shape is not fully understood, although many growth factors and molecular regulators, including glial cell-derived neurotrophic factor (GDNF), paired box genes (PAX2), Six1, Eya1, and the bone morphogenetic proteins (BMPs), among others, are implicated[4]. These stages of morphogenesis represent the onset of nephron differentiation[5].

    The nephrogenic (mesenchymal) and the ductogenic (ureteric) events are regulated by transcription factors, proto-oncogenes and growth factors. Cell adhesion molecules, or CAM complexes, and their associations with the cytoskeleton and extracellular matrix (ECM) glycoproteins facilitate normal development[6]. The proto-oncogenes that encode for receptor tyrosine kinases are involved in mesenchymal-epithelial interactions, in which the proto-oncogene encoded tyrosine or serine/threonine kinase is the ureteric receptor for signalling molecules secreted by the metanephric mesenchyme[7]. Figure 1 below illustrates the dynamic interaction between the metanephric mesenchyme and the Wolffian duct via GDNF, the c-ret/ GDNF complex and BMP4.

    Little has been known until recently for the mechanism of determining the specific site of the ureteral budding from the Wolffian duct. Although the tightly regulated expression pattern of c-ret and its ligand GDNF may be part of the mechanism to specify the site, both c-ret and GDNF are expressed surprisingly broadly throughout the branching ureter and metanephric mesoderm, respectively, at the time of budding. In this regard, Bmp4 antagonizes the function of GDNF from the metanephric blastema that would otherwise induce the budding from the Wolffian duct. Moreover, normally, Bmp4 is diffusely expressed in the mesenchymal cells surrounding the Wolffian duct except for the highly localized locus for the initial ureteral budding. Therefore, it is thought that Bmp4 serves as an inhibitory factor for GDNF-ret signaling along the stalk of the branching ureters, thereby limiting the site of ureteral bud formation. This inhibition of ureteral branching results from the antagonistic function of Bmp4 on GDNF signaling, as Bmp4 down-regulates the Wnt 11, a target molecule of GDNF-ret signaling[7,8].

    2. Defining CAKUT: a new molecular paradigm

    Congenital anomalies of the kidney and urinary tract are a family of diseases with a diverse range of phenotypes. The kidney is most frequently affected; however, the ureter, bladder and ureterovesical (UV) junction are also involved. Renal anomalies such as renal agenesis, multicystic dysplasia, and hypoplasticity result from growth failure of the metanephric cells[9]. Ureteropelvic anomalies such as megaureter, ureteric atresia, ectopic ureteral orifice, duplex collecting system, and anomalies of the bladder and urethra result from ureteral growth anomalies and abnormal ectopic budding[9,10]. The development of the common forms of human CAKUT is attributed to an accumulation of mutations in multiple genes, each of which has multiple ontogenic functions on the urinary system[11]. Figure 2 below illustrates the effect of genetic mutations on the structure of the renal and urinary systems.

    Pluripotentiality of the single gene mutation underlies the wide spectrum of clinical anomalies involving the ureterovesical (UV) junction, the ureter and the kidney. The loss-of-function mutation of the single gene can produce multiple anomalies due in part to its multiple biological actions on the morphogenesis of the three tissues of the excretory system, that is, the ureterovesical junction, the ureter and the kidney, at multiple developmental stages of these tissues. It is also due to the multipotentiality of the initial ectopic budding to produce three clinical entities, that is, ectopic ureteral orifice, anomalous ureter and hypo/ dysplastic kidney. Although urinary tract obstruction may cause anomalous ureter and dysplastic kidney, evidence is yet to be obtained to support the possibility that reflux can lead to those anomalies.

    Glial cell-derived neurotrophic factor (GDNF) is a member of the TGFβ superfamily. GDNF functions as a ligand secreted by the metanephric mesenchyme that binds to the Ret tyrosine kinase receptor and GFR 1 co-receptor, both of which are expressed within the ureteric epithelium [12]. Glial cellderived neurotrophic factor is responsible for the initiationof budding of the ureteric duct from the Wolffian duct, branching of the ureteric epithelium within the metanephric mesenchyme, and the development of new nephrons at the branch tips. At the tips of the branches of the ureteric duct, the mesenchyme is induced to form a mesenchymal condensate. Following this, the condensate forms an epithelial vesicle. Homozygous GDNF knockout mice die within the first 24 hours of postnatal life as the result of bilateral renal agenesis and the absence of an enteric nervous system[12].

    Heterozygous GDNF mice show varying degrees of renal abnormalities. These alternate phenotypes led to the discovery of new GDNF family receptors designated GDNF family receptor- (GDNFR- ) and GDNFR-[12]. GDNFR-is expressed in condensing mesenchyme, nephrons, and ureteric duct tips. Heterozygous GDNF knockout mice display an array of renal phenotypes, ranging from renal hypoplasia and cortical cysts, to unilateral renal agenesis. There is also a reduction in filtration surface area that leads to the development of glomerular hypertrophy and hypertension in order to maintain adequate renal function. These findings suggest that the GDNF heterozygous mice may prove to be useful in the elucidation of essential hypertension[13].

    BMP4 is also a member of the TGF-β superfamily. BMP4 is expressed in the metanephric mesenchyme, the ureteric epithelium, the collecting ducts, and the ureteric duct leading up to the nephrogenic zone[14]. In the cultured metanephros deprived of sulfated glycosaminoglycans (S-GAGs), BMP4-loaded beads promote growth and elongation of the ureter. When S-GAGs synthesis is not inhibited, however, BMP4 beads inhibit ureteric branching and expression of Wnt 11, a downstream target of GDNF signaling. BMP4 therefore has two main roles in kidney organogenesis: the inhibition of ectopic budding from the Wolffian duct and ureteric duct by antagonising inductive signals from the metanephric mesenchyme, and the maintenance of elongation of the branching ureter within the metanephros itself[14,15]. Homozygous BMP4 knockout mice die between E6.5 and E9.5[7]. The homozygous null genotype is therefore termed “embryonic lethal”.

    Homozygous BMP4 knockout is not compatible with life. Heterozygous BMP4 knockout mice display abnormalities that resemble human CAKUT, including hypoplastic and dysplastic kidneys, ectopic ureterovesical (UV) junction, and a duplicate collecting system[7,8]. Cases of hypoplasia and dysplasia result from reduced branching of the ureter, while the ectopic UV junction and duplicate collecting system are predominantly initiated by ectopic ureteral budding from the Wolffian duct[8]. Figure 3 below demonstrates the role of BMP4 in both heterozygous and homozygous states at E11 in a murine model (whole mount in situ hybridization). The position of the initial ureter budding from the Wolffian duct is shown by arrows, and the 24th, 25thand 26thsomite pairs are also labeled. The position of the initial budding in the wild type corresponds to the 26thsomite, whereas that in the mutant corresponds to the 25thsomite.

    In the metanephros, induction of nephrogenesis by the ureter is accompanied by an increase in expression levels of the PAX2 gene[3]. PAX2 is normally expressed in cells of the mesenchyme, as well as in the ureteric bud. PAX2 activates GDNF in metanephric mesenchyme[3]. High concentrations of PAX2 have been found in early nephrogenic epithelial cells, derived from metanephric mesenchyme, and in developing ureteric bud cells[16]. PAX2 is also involved with the expression or regulation of other renal growth factors or signals, including proper function of the c-ret pathway, and WNT4 factor expression in nephrogenesis [5]. Renal hypoplasia, a common form of CAKUT, is caused by inadequate ureteric bud arborisation as a result of increased ureteric bud apoptosis[7]. Although nephrons appear normal histologically, their numbers are reduced, leading to an increased risk of developing hypertension in adult life[13]. PAX2 haploinsufficiency occurs when there is only a single functional copy of the gene, as the other copy is inactivated by a mutation; this confers a heterozygous genotype for the condition. In humans, PAX2 haploinsufficiency causes renal-coloboma syndrome (RCS) involving eye abnormalities, renal hypoplasia, and renal failure in childhood. Overexpression of PAX2 can also cause problems. One group used immunochemistry to examine the extent of glomerulosclerosis seen in Denys-Drash syndrome (characterised by congenital kidney disease, Wilms tumour, malformation of gonads) caused by WT1 and persistent expression of PAX2 by podocytes[17].

    In the developing kidney, Six1 is expressed in the uninduced metanephric mesenchyme at E10.5 and in the induced mesenchyme around the ureteric bud at E11.5 [18]. At E17.5 to P0, Six1 expression is restricted to a subpopulation of collecting tubule epithelial cells. Indeed, this group generated Six1 mutant mice to elucidate the mechanisms implicated in this process. They found that loss of Six1 leads to a failure of ureteric bud invasion into the mesenchyme and subsequent apoptosis of the mesenchyme. These results indicate that Six1 plays an essential role in early kidney development, especially in relation to mesenchymal and ureteric interaction[18]. Another gene, Eya1, is implicated in branchio-oto-renal (BOR) syndrome, an autosomal dominant disorder characterised by varying combinations of branchial, otic and renal anomalies[19]. Individiduals with BOR may have hypoplastic or absent kidneys, with resultant renal insufficiency or renal failure.

    Furthermore, in Six1-/- kidney development, it has been found that PAX2 and Six2 expression was markedly reduced in the metanephric mesenchyme at E10.5, indicating that Six1 is required for the expression of these genes in the metanephric mesenchyme[18]. Again, these findings suggest that Six1 plays a significant role in early (i.e. pre-E10.5) kidney development. In contrast, Eya1 expression was unaffected in Six1-/- metanephric mesenchyme at E10.5, indicating that Eya1 may function upstream of Six1. Moreover, it has been suggested that both Eya1 and Six1 expression in the metanephric mesenchyme is preserved in PAX2-/- embryos at E10.5, further indicating that PAX2 functions downstream of both Eya1 and Six1 in the metanephric mesenchyme[19]. The epistatic relationship between PAX2, Eya1 and Six1/2 in the metanephric mesenchyme during early kidney development is essential for the initiation and maintenance of mesenchymal and ureteric interaction.

    3. Clinical considerations

    Congenital anomalies of the kidney and urinary tract involve renal dysplasia, renal hypoplasia, urinary tract obstruction, ureteropelvic anomalies, including megaureter, ureteral atresia, ectopic ureteral orifice, and duplex collecting system[20]. CAKUT can occur bilaterally or unilaterally. Children with CAKUT often have varying degrees of a reduced number of nephrons at birth (low nephron endowment), leaving them susceptible to adultonset diseases including hypertension. CAKUT are now the leading cause of renal failure in children[21]. Renal dysplasia and obstructive conditions lead to loss of water and sodium in urine because of abnormal tubulogenesis. Children with severe ureteric reflux often develop urinary tract infections and renal fibrosis. Renal fibrosis can further increase the risk of renal failure in children who already have other CAKUT, leading to a vicious cycle. Furthermore, hypertension and proteinuria may develop in children with renal dysplasia and further exacerbate renal function [19-21]. The majority of renal malformations are detected antenatally because of the widespread use and sensitivity of foetal ultrasound[22]. The optimal timing is between 16 to 20 weeks’ gestation because this period facilitates excellent visualisation of anatomy with a high sensitivity in detecting anomalies[23]. Furthermore, it is early enough in the pregnancy to allow completion of prenatal diagnostic procedures, including foetal karyotyping and additional imaging studies[10]. CAKUT are problems that often require surgical intervention, including ureter resections, debridement of fibrotic tissue, and, in some cases, kidney transplantation[21]. In addition to surgery, and often prior to it, dialysis can be an effective temporising measure until a donor organ becomes available or corrective surgery becomes a viable therapeutic alternative.

    4. Conclusion

    Glial cell-derived neurotrophic factor is responsible for the initiation of budding of the ureteric duct from the Wolffian duct and branching of the ureteric epithelium within the metanephric mesenchyme. BMP4 is expressed in the metanephric mesenchyme, the ureteric epithelium, and the collecting ducts. BMP4 plays a significant role in the inhibition of ectopic budding from the Wolffian duct and ureteric duct and the maintenance of elongation of the branching ureter within the metanephros itself. PAX2 is expressed in cells of the mesenchyme, as well as in the ureteric bud. PAX2 activates GDNF in the metanephric mesenchyme. Six1 also plays a significant role in early kidney development. The dynamic interplay between PAX2, Eya1 and Six1 in the metanephric mesenchyme during early kidney development is essential for the induction and maintenance of mesenchymal and ureteric interaction.

    An appreciation of the molecular basis of CAKUT facilitates an understanding of the pathogenesis of these myriad conditions and may assist the design of genetic screening tests for early diagnosis and management. Furthermore, an insight into the relationship between abnormal genes and their products in the pathogenesis of CAKUT will provide an aetiological classification of CAKUT.These insights will allow the coupling of molecular biology and classical epidemiologic methods, thus expanding our knowledge of the pathogenesis of CAKUT and deliver improved treatments for patients.

    Conflict of interest statement

    I declare that this article is entirely my own work, and any material from other sources is correctly acknowledged.

    [1] Challen GA, Martinez G, Davis MJ, Taylor DF, Crowe M, Teasdale RD, et al. Identifying the Molecular Phenotype of Renal Progenitor Cells. J the Am Soc Nephrol 2004; 15(9): 2344-2357.

    [2] Woolf AS. Do kidney tubules serve an angiogenic soup? Kidney Int 2004; 66(2): 862-863.

    [3] Narlis M, Grote D, Gaitan Y, Boualia SK, Bouchard M. Pax2 and Pax8 Regulate Branching Morphogenesis and Nephron Differentiation in the Developing Kidney. J Am Soc Nephrol 2004; 18(4): 1121-1129.

    [4] Sheng W, Wang G, La Pierre DP, Wen J, Deng Z, Wong CKA, et al. Versican mediates mesenchymal-epithelial transition. Mol Biol of the Cell 2006; 17(4): 2009-2020.

    [5] Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, et al. PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem 2006; 281(18): 12705-12712.

    [6] Li Y, Yang J, Luo JH, Dedhar S, Liu Y. Tubular epithelial cell dedifferentiation is driven by the Helix-Loop-Helix transcriptional inhibitor Id1. J Am Soc Nephrol 2007; 18(2): 449-460.

    [7] Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 2007; 134(10): 1967-1975.

    [8] Ichikawa I, Kuwayama F, Pope JC, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 2002; 61: 889-898.

    [9] Mackie GG, Stephens FD. Duplex kidneys: A correlation of renal dysplasia with position of the ureteral orifice. J Urol 1975; 114: 274-280.

    [10] Ismaili K, Hall M, Piepsz A, Wissing KM, Collier F, Schulman C, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr 2006; 148: 222-227.

    [11] Woolf A, Price KL, Scambler PJ, Winyard PJD. Evolving concepts in human renal dysplasia. J Am Soc Nephrol 2004; 15:998-1007.

    [12] Gerlai R, McNamara A, Choi-Lundberg DL, Armanini M, Ross J, Powell-Braxton L, et al. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci 2001; 14: 1153-1163.

    [13] Hoy WE, Douglas-Denton RN, Hughson M, Cass A, Johnson K, Bertram JF. A stereological study of glomerular number and volume: Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl 2003; 83: 31-37.

    [14] Miyazaki Y, Oshima K, Fogo A. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000; 105: 863-873.

    [15] Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 1999; 13: 1601-1613.

    [16] Davies JA, Ladomery M, Hohenstein P, Michael L, Shafe A, Spraggon L, et al. Development of a siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 2004; 13(2): 235-246.

    [17] Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, et al. Murine Denys-Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 2003; 12: 2379-2394.

    [18] Xu P, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development 2003; 130: 3085-3094.

    [19] Buller C, Xu X, Marquis V, Schwanke R, Xu P. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 2001; 10 (24): 2775-2781.

    [20] Pope JC, Brock JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: Classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract (CAKUT). J Am Soc Nephrol 1999; 10: 2018-2028.

    [21] Hiraoka M. Medical management of congenital anomalies of the kidney and urinary tract. Pedia Int 2003; 45(5): 624-633.

    [22] Tsuchiya M, Hayashida M, Yanagihara T, Yoshida J, Takeda S, Tatsuma N, et al. Ultrasound screening for renal and urinary tract anomalies in healthy infants. Pedia Int 2003; 45(5): 617-623.

    [23] Chang LW, Chang FM, Chang CH. Prenatal diagnosis of fetal multicystic dysplastic kidney with two-dimensional and threedimensional ultrasound. Ultrasound Med Biol 2002; 28(7): 853-858.

    *Corresponding author: Mark Daniel Wilson, 3 Monteath Ave, Hawthorn East, 3123, Victoria, Australia.

    E-mail: mdwilson1604@gmail.com

    精品人妻一区二区三区麻豆| 制服诱惑二区| 精品熟女少妇八av免费久了| 国产成人精品无人区| 亚洲精品久久成人aⅴ小说| 国产精品香港三级国产av潘金莲 | 日韩 欧美 亚洲 中文字幕| tube8黄色片| 国产日韩欧美在线精品| 亚洲国产精品国产精品| 国产高清视频在线播放一区 | 欧美成人午夜精品| 午夜福利乱码中文字幕| 久久久国产精品麻豆| 欧美亚洲 丝袜 人妻 在线| 在线看a的网站| 天堂中文最新版在线下载| 日韩制服丝袜自拍偷拍| 日韩中文字幕视频在线看片| 国产高清videossex| 亚洲,一卡二卡三卡| 无限看片的www在线观看| 亚洲一区中文字幕在线| 三上悠亚av全集在线观看| 波多野结衣av一区二区av| avwww免费| 久久av网站| 午夜免费男女啪啪视频观看| 亚洲精品美女久久av网站| 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 亚洲国产av影院在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 国精品久久久久久国模美| 99久久综合免费| 一级a爱视频在线免费观看| 在线 av 中文字幕| 亚洲图色成人| 精品一品国产午夜福利视频| 国产在线免费精品| 免费人妻精品一区二区三区视频| 日韩中文字幕视频在线看片| 国精品久久久久久国模美| 搡老乐熟女国产| 99久久99久久久精品蜜桃| 黄色视频在线播放观看不卡| www日本在线高清视频| 一区二区三区激情视频| 成年动漫av网址| 91精品三级在线观看| 少妇裸体淫交视频免费看高清 | 亚洲国产最新在线播放| 国产日韩欧美视频二区| 每晚都被弄得嗷嗷叫到高潮| 午夜福利一区二区在线看| 十八禁网站网址无遮挡| 天天躁夜夜躁狠狠久久av| 国产极品粉嫩免费观看在线| 叶爱在线成人免费视频播放| 日本色播在线视频| 亚洲国产欧美一区二区综合| 亚洲av成人精品一二三区| 丝袜人妻中文字幕| 国产一区二区在线观看av| 日本午夜av视频| e午夜精品久久久久久久| √禁漫天堂资源中文www| 91精品国产国语对白视频| 青春草亚洲视频在线观看| 又粗又硬又长又爽又黄的视频| 午夜免费鲁丝| 亚洲av片天天在线观看| 另类精品久久| 欧美在线黄色| 国产成人精品在线电影| 免费观看a级毛片全部| 欧美日韩成人在线一区二区| av又黄又爽大尺度在线免费看| 高清不卡的av网站| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 人体艺术视频欧美日本| 国产精品一国产av| 男女高潮啪啪啪动态图| 欧美国产精品va在线观看不卡| 精品少妇内射三级| 香蕉丝袜av| 精品熟女少妇八av免费久了| 少妇 在线观看| 涩涩av久久男人的天堂| 考比视频在线观看| 欧美激情高清一区二区三区| 欧美日韩视频精品一区| 又粗又硬又长又爽又黄的视频| 中文字幕高清在线视频| 老司机亚洲免费影院| 久久人人爽人人片av| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 少妇人妻久久综合中文| 黄色怎么调成土黄色| 久久人人爽人人片av| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 人妻人人澡人人爽人人| 国产爽快片一区二区三区| 深夜精品福利| 日韩大码丰满熟妇| av又黄又爽大尺度在线免费看| 女人爽到高潮嗷嗷叫在线视频| 国产一级毛片在线| av欧美777| 国产欧美亚洲国产| 久久人妻熟女aⅴ| 日本av免费视频播放| 日韩av免费高清视频| 啦啦啦在线免费观看视频4| 不卡av一区二区三区| 欧美成人精品欧美一级黄| 天天影视国产精品| www.999成人在线观看| 久久精品国产亚洲av高清一级| 亚洲美女黄色视频免费看| 久久久久国产一级毛片高清牌| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 午夜福利视频在线观看免费| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 性少妇av在线| 日本av手机在线免费观看| 三上悠亚av全集在线观看| 久久中文字幕一级| 在线观看国产h片| 国产一级毛片在线| 少妇裸体淫交视频免费看高清 | 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 在线观看国产h片| 国产欧美日韩一区二区三区在线| 大香蕉久久网| 91麻豆av在线| 三上悠亚av全集在线观看| 少妇裸体淫交视频免费看高清 | 又粗又硬又长又爽又黄的视频| 亚洲三区欧美一区| 亚洲中文av在线| 久久精品成人免费网站| 在线观看免费高清a一片| 波多野结衣av一区二区av| 亚洲av国产av综合av卡| netflix在线观看网站| 美女午夜性视频免费| 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 婷婷成人精品国产| 男女之事视频高清在线观看 | 少妇精品久久久久久久| 国产成人影院久久av| 欧美日韩视频高清一区二区三区二| 少妇粗大呻吟视频| 日韩av不卡免费在线播放| av国产精品久久久久影院| 新久久久久国产一级毛片| 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 国产av一区二区精品久久| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 嫁个100分男人电影在线观看 | 国产女主播在线喷水免费视频网站| 黄片播放在线免费| 亚洲第一av免费看| 国产在线观看jvid| 两性夫妻黄色片| 王馨瑶露胸无遮挡在线观看| 午夜免费男女啪啪视频观看| 在线av久久热| 侵犯人妻中文字幕一二三四区| 啦啦啦 在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产超薄肉色丝袜足j| 国产三级黄色录像| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 最新的欧美精品一区二区| 50天的宝宝边吃奶边哭怎么回事| 精品人妻1区二区| 一级,二级,三级黄色视频| 热re99久久国产66热| 国产精品香港三级国产av潘金莲 | 免费黄频网站在线观看国产| 亚洲人成电影免费在线| 日韩 亚洲 欧美在线| 啦啦啦 在线观看视频| 亚洲国产欧美在线一区| 飞空精品影院首页| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久| 国产av一区二区精品久久| 国产成人av教育| 下体分泌物呈黄色| 久久精品人人爽人人爽视色| 丰满迷人的少妇在线观看| 日本五十路高清| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三 | 可以免费在线观看a视频的电影网站| 国产黄色视频一区二区在线观看| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品国产精品| 丝袜人妻中文字幕| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 国产精品亚洲av一区麻豆| 国产日韩欧美视频二区| 欧美精品一区二区大全| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 婷婷色av中文字幕| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 亚洲中文av在线| 男女国产视频网站| 国产亚洲精品第一综合不卡| 视频区图区小说| 九色亚洲精品在线播放| 中文字幕另类日韩欧美亚洲嫩草| 丰满迷人的少妇在线观看| 国产精品久久久av美女十八| 亚洲国产av影院在线观看| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| 亚洲精品国产一区二区精华液| 丝瓜视频免费看黄片| 免费看十八禁软件| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 免费在线观看日本一区| kizo精华| 日本猛色少妇xxxxx猛交久久| 91字幕亚洲| 老鸭窝网址在线观看| 欧美久久黑人一区二区| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久99久久久不卡| 国产精品九九99| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 亚洲国产av新网站| 国产日韩欧美视频二区| 中国美女看黄片| 中文字幕精品免费在线观看视频| 五月开心婷婷网| 国产精品一区二区在线不卡| 赤兔流量卡办理| 可以免费在线观看a视频的电影网站| 中文字幕制服av| a级毛片在线看网站| 最近手机中文字幕大全| 波野结衣二区三区在线| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 亚洲成国产人片在线观看| 999精品在线视频| 1024视频免费在线观看| 天天躁日日躁夜夜躁夜夜| 中文字幕人妻丝袜一区二区| 男女边吃奶边做爰视频| 精品一品国产午夜福利视频| 午夜激情久久久久久久| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| www.熟女人妻精品国产| 国产av国产精品国产| 99久久综合免费| 少妇粗大呻吟视频| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 欧美精品高潮呻吟av久久| 国产伦人伦偷精品视频| 亚洲精品自拍成人| 国产在视频线精品| 精品一区二区三卡| 久久久久精品人妻al黑| e午夜精品久久久久久久| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 中文字幕高清在线视频| 97在线人人人人妻| 母亲3免费完整高清在线观看| 国产高清videossex| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 国产亚洲av高清不卡| 亚洲,欧美精品.| 精品国产一区二区久久| 国产精品99久久99久久久不卡| 十八禁网站网址无遮挡| 成人国产av品久久久| 国产精品久久久人人做人人爽| 最新的欧美精品一区二区| 精品高清国产在线一区| 欧美黑人精品巨大| a级毛片在线看网站| av国产精品久久久久影院| www.自偷自拍.com| 国产成人精品久久久久久| 国产精品 欧美亚洲| 在线 av 中文字幕| 日韩欧美一区视频在线观看| 99精品久久久久人妻精品| 欧美精品啪啪一区二区三区 | 一区福利在线观看| 一级片'在线观看视频| 欧美精品高潮呻吟av久久| 七月丁香在线播放| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产区一区二| cao死你这个sao货| 日本wwww免费看| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 亚洲成人国产一区在线观看 | 免费在线观看视频国产中文字幕亚洲 | 欧美成狂野欧美在线观看| 日日夜夜操网爽| 久久国产精品男人的天堂亚洲| 亚洲九九香蕉| 9色porny在线观看| 亚洲少妇的诱惑av| 青草久久国产| 咕卡用的链子| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 国产免费视频播放在线视频| 国产精品国产av在线观看| 亚洲美女黄色视频免费看| 女性被躁到高潮视频| 看免费成人av毛片| 如日韩欧美国产精品一区二区三区| av不卡在线播放| 久久av网站| 成年女人毛片免费观看观看9 | 在线观看www视频免费| 色网站视频免费| 91老司机精品| 欧美在线黄色| 最黄视频免费看| 国产精品熟女久久久久浪| 国产欧美日韩一区二区三 | 亚洲精品自拍成人| 亚洲精品日本国产第一区| 亚洲成色77777| 丰满迷人的少妇在线观看| 中文字幕亚洲精品专区| 狠狠精品人妻久久久久久综合| 五月开心婷婷网| 亚洲欧美一区二区三区黑人| 精品国产国语对白av| 在线天堂中文资源库| av一本久久久久| 欧美日韩黄片免| 18在线观看网站| 五月天丁香电影| 国产精品av久久久久免费| 看免费av毛片| av视频免费观看在线观看| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 男女免费视频国产| 中文字幕av电影在线播放| 国产主播在线观看一区二区 | 欧美精品亚洲一区二区| 亚洲av美国av| 久久久久视频综合| 免费看av在线观看网站| 国产精品久久久久久人妻精品电影 | 亚洲精品国产av蜜桃| 日韩av在线免费看完整版不卡| 精品少妇内射三级| 亚洲,欧美精品.| 大片电影免费在线观看免费| 韩国高清视频一区二区三区| 亚洲av日韩在线播放| 国产99久久九九免费精品| 欧美变态另类bdsm刘玥| 国产成人av教育| 蜜桃国产av成人99| 日韩一本色道免费dvd| 久久青草综合色| 国产欧美日韩一区二区三 | 免费观看a级毛片全部| 亚洲精品一卡2卡三卡4卡5卡 | 欧美激情 高清一区二区三区| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 国产国语露脸激情在线看| 精品福利观看| 久久99一区二区三区| 亚洲专区国产一区二区| 亚洲熟女精品中文字幕| av天堂在线播放| 国产精品亚洲av一区麻豆| 久久狼人影院| svipshipincom国产片| 亚洲,欧美精品.| 精品一区在线观看国产| 黑人巨大精品欧美一区二区蜜桃| 777久久人妻少妇嫩草av网站| 亚洲成av片中文字幕在线观看| e午夜精品久久久久久久| 飞空精品影院首页| 日韩人妻精品一区2区三区| 丝袜美足系列| 久久久欧美国产精品| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 国产av精品麻豆| 亚洲,一卡二卡三卡| 考比视频在线观看| 国产男人的电影天堂91| videos熟女内射| 国产成人av教育| 老司机靠b影院| 超色免费av| 久久国产精品影院| 高清黄色对白视频在线免费看| 人妻人人澡人人爽人人| videosex国产| 校园人妻丝袜中文字幕| 精品一品国产午夜福利视频| 欧美黄色淫秽网站| 男人舔女人的私密视频| 超色免费av| 三上悠亚av全集在线观看| 桃花免费在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 99国产精品免费福利视频| 亚洲av片天天在线观看| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 观看av在线不卡| 新久久久久国产一级毛片| 国产精品免费大片| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 少妇裸体淫交视频免费看高清 | 欧美亚洲 丝袜 人妻 在线| 婷婷丁香在线五月| 午夜影院在线不卡| 国产一区二区 视频在线| 国产欧美亚洲国产| 欧美精品啪啪一区二区三区 | 亚洲欧美成人综合另类久久久| 国产野战对白在线观看| 国产激情久久老熟女| 男女床上黄色一级片免费看| 美女福利国产在线| 精品福利永久在线观看| 另类精品久久| 少妇人妻 视频| 欧美97在线视频| 9色porny在线观看| 国产精品av久久久久免费| 一二三四在线观看免费中文在| 久久九九热精品免费| 日本五十路高清| 国产成人啪精品午夜网站| 亚洲av美国av| 一本综合久久免费| 十八禁人妻一区二区| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 另类亚洲欧美激情| av国产精品久久久久影院| 免费观看av网站的网址| 激情视频va一区二区三区| 国产成人91sexporn| 成人午夜精彩视频在线观看| 亚洲精品av麻豆狂野| 国产成人精品久久久久久| 久久久精品区二区三区| 桃花免费在线播放| 欧美老熟妇乱子伦牲交| 99久久综合免费| 老鸭窝网址在线观看| 午夜视频精品福利| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 成人黄色视频免费在线看| 波多野结衣av一区二区av| 国产日韩一区二区三区精品不卡| 久久国产精品大桥未久av| 亚洲专区国产一区二区| 日本wwww免费看| 午夜免费观看性视频| 日日摸夜夜添夜夜爱| 亚洲七黄色美女视频| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 高清视频免费观看一区二区| 亚洲欧美清纯卡通| 只有这里有精品99| 一个人免费看片子| 色视频在线一区二区三区| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 国产91精品成人一区二区三区 | 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区黑人| 999精品在线视频| 777米奇影视久久| 精品人妻熟女毛片av久久网站| 欧美性长视频在线观看| 麻豆国产av国片精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄片播放在线免费| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 精品欧美一区二区三区在线| 老汉色av国产亚洲站长工具| 成年人午夜在线观看视频| 中文字幕人妻熟女乱码| 久久亚洲精品不卡| 午夜日韩欧美国产| 亚洲av国产av综合av卡| videos熟女内射| 国产男女内射视频| 在线精品无人区一区二区三| 亚洲精品日本国产第一区| 亚洲人成电影免费在线| 欧美精品高潮呻吟av久久| 高潮久久久久久久久久久不卡| 成人亚洲欧美一区二区av| 建设人人有责人人尽责人人享有的| 免费在线观看黄色视频的| 自线自在国产av| 最新的欧美精品一区二区| videos熟女内射| 天堂8中文在线网| 香蕉丝袜av| 国产一级毛片在线| 国产精品免费大片| 亚洲人成77777在线视频| 黄网站色视频无遮挡免费观看| 亚洲成国产人片在线观看| 一二三四社区在线视频社区8| 99国产精品一区二区三区| 最黄视频免费看| 国产av一区二区精品久久| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 亚洲av在线观看美女高潮| 亚洲av电影在线观看一区二区三区| 黄频高清免费视频| 三上悠亚av全集在线观看| 精品一区在线观看国产| 欧美激情高清一区二区三区| 免费在线观看影片大全网站 | 天天躁狠狠躁夜夜躁狠狠躁| 久久精品久久精品一区二区三区| 老鸭窝网址在线观看| www.自偷自拍.com| 久久热在线av| 国产成人精品久久二区二区91| 自线自在国产av| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区黑人| 成年av动漫网址| 国产日韩一区二区三区精品不卡| 男女免费视频国产| 伊人久久大香线蕉亚洲五| 久久影院123| 久久99一区二区三区| 国产深夜福利视频在线观看| 9色porny在线观看| 欧美在线一区亚洲| 欧美日韩亚洲高清精品| av一本久久久久| 欧美xxⅹ黑人| 午夜精品国产一区二区电影| 国产高清国产精品国产三级| 国产熟女欧美一区二区| 亚洲国产成人一精品久久久| 搡老乐熟女国产| 高清黄色对白视频在线免费看| av线在线观看网站| 亚洲欧美日韩高清在线视频 | 中文字幕人妻丝袜制服| 亚洲精品国产av蜜桃| 青春草亚洲视频在线观看| 国产成人精品久久二区二区91| 亚洲国产精品国产精品|