• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A nucleotide substitution at the 5′splice site of intron 1 of rice HEADING DATE 1(HD1)gene homolog in foxtail millet,broadly found in landraces from Europe and Asia

    2015-12-21 07:47:34KenjiFukungNokoIzukTkehiroHchikenStoshiMizuguchiHidemiItoKtsuyukiIchitni
    The Crop Journal 2015年6期

    Kenji Fukung*,Noko IzukTkehiro HchikenStoshi Mizuguchi Hidemi ItoKtsuyuki Ichitni

    aFaculty of Life and Environmental Sciences,Prefectural University of Hiroshima,562 Nanatsuka-cho,Shobara,Hiroshima,Japan,727-0023

    bFaculty of Agriculture,Kagoshima University,1-21-24 Korimoto,Kagoshima,Japan,890-8580

    A nucleotide substitution at the 5′splice site of intron 1 of rice HEADING DATE 1(HD1)gene homolog in foxtail millet,broadly found in landraces from Europe and Asia

    Kenji Fukunagaa,*,Naoko Izukaa,Takehiro Hachikena,Satoshi Mizuguchia, Hidemi Itoa,Katsuyuki Ichitanib

    aFaculty of Life and Environmental Sciences,Prefectural University of Hiroshima,562 Nanatsuka-cho,Shobara,Hiroshima,Japan,727-0023

    bFaculty of Agriculture,Kagoshima University,1-21-24 Korimoto,Kagoshima,Japan,890-8580

    A R T I C L E I N F O

    Article history:

    Accepted 6 August 2015

    Available online 15 August 2015

    Foxtail millet Geographicaldistribution HD1(HEADING DATE 1)homolog Setaria italica Splice site

    We investigated genetic variation of a rice HEADING DATE 1(HD1)homolog in foxtail millet. First,we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene.We compared full HD1 gene sequences of 11 accessions(including Yugu 1,a Chinese cultivar used for genome sequencing)from various regions in Europe and Asia,found a nucleotide substitution at a putative splice site of intron 1,and designated the accessions with the nucleotide substitution as carrying a splicing variant.We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1.We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia.Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear.We also investigated variation in 13 accessions of ssp.viridis,the wild ancestor,and the results suggested that the wild type is predominant in the wild ancestor.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Foxtail millet[Setaria italica(L.)P.Beauv.]is one of the oldest cereals in the Old World.This millet adapts to various environmental conditions such as temperate and tropical climate and high-and low-altitude conditions,and its agronomic traits show large variation as a result of adaptation to local environments and cultivation under various cultural conditions.Given that foxtail millet has some advantages for genetic studies,such as diploidy with small chromosome numbers(2n=2x=18),small genome size(ca.500 Mb),inbreeding habit,and a relatively short growth period,it hasbecome a modelplantfor panicoid grass species such as biofuel grasses(switchgrass and Napier grass)and other millet species such as pearlmillet[1].The foxtailmillet genome sequence has recently been determined[2,3].Owing to its high variation in several agronomic traits as a result of adaptation to variable environmental condition and human selection,this millet will be also a good material for studying crop evolution.

    Heading time is one ofthe mostimportanttraits in adaptation to localenvironments.This trait has already been investigated in foxtail millet;landraces show high variability in heading time, and this trait is determined by a combination of length of the basic vegetative growth period and sensitivity to short-day conditions[4,5].A recent phylogenetic analysis has shown that heading time is associated with phylogenetic differentiation of foxtailmillet landraces[6].This trait is known to be variable also in other plant species and has been investigated in detail[7-9]. Recently,molecular mechanisms of this trait have been studied in severalplant species,particularly in model plants such as rice and Arabidopsis[10].Among the most important genes for flowering/heading are CONSTANS(CO)in Arabidopsis[11]and its ortholog HEADINGDATE 1(HD1)in rice[12],which are associated with sensitivity to photoperiod and regulate expression of FT in Arabidopsis and Hd3a in rice.In severalplant species,homologs of this gene have also been isolated and analyzed[13-17],revealing that the gene is important in flowering of all plant species. Although this gene(andalso other genes involvedin heading)has been investigated in detail in the context of domestication and adaptation to local conditions in rice[18,19],only a few genetic studies[20,21]of heading time of foxtail millet,which has been cultivated more broadly than rice since ancient times,have been performed.Ichitani et al.performed genetic analyses of heading time using progenies derived from a single cross and suggested that heading characteristics are controlled by polygenes[20]. Mauro-Herrera etal.performed QTL analyses for flowering time and genetic analyses of candidate genes and reported that HD1/ CO colocalized with one of the QTLs on chromosome 4[21]. More recently,Jia et al.performed genome-wide association mapping and suggested some candidate genes for this trait[6]. However,no detailed work on specific genes involved in heading time has yet been performed.

    In the present study,we performed sequencing analyses for the foxtail millet HD1(CO)gene homolog,identified a splicing variant of the gene,and investigated the geographical distribution of the variant.We also investigated the relationships between HD1 genotype and heading time.

    2.Materials and methods

    2.1.Plant materials and DNA extraction

    We used a total of 480 foxtail millet accessions and 13 accessions of S.italica ssp.viridis,the wild ancestor of foxtail millet,as shown in Table S1.Most of the foxtail millet accessions were landraces directly collected in fields,and some were obtained frominstitutes in other countries.These samples cover the entire traditional cultivation area of this millet fromeast Asia to western Europe and part of Africa.All of the foxtail millet samples are maintained at the National Institute of Agrobiological Sciences(NIAS)Genebank,Tsukuba, Japan.All of the ssp.viridis accessions were obtained from the United States Department of Agriculture(USDA)Genebank.The 13 accessions included three from Turkey,two each from Russia,Afghanistan,Iran and mainland China,and one each from Chile and Mongolia.As foxtail millet and ssp.viridis are predominantly self-pollinating species,a single plant for each accession was chosen for the analyses.DNAwas extracted from seedling leaves according to Murray and Thompson[22]with some modifications or using a Qiagen DNaeasy Plant Mini Kit according to the manufacturer's instructions.

    2.2.Search for an HD1 gene homolog in foxtail millet,PCR amplification,and comparison of the sequences

    A search was performed for a rice HEADING DATE 1(HD1) homolog in the foxtail millet genome database(http://www. plantdg.org/SiGDB/)by BLAST(http://www.plantgdb.org/SiGDB/ cgi-bin/blastGDB.pl,blastn with E-value=1e-20)using a rice HD1 gene sequence,AB041837,as a query.We designed a primer pair to amplify the entire coding sequence of the gene and primers for sequencing(Figs.1,and S1,and Table S2). Primers were designed with Primer3(http://primer3.wi.mit. edu/).We amplified 10 accessions of foxtail millet from various geographical areas of Europe and Asia(two from Japan(NIAS JP71626 and 71640),two from Taiwan of China(JP 73913,222588),one from the Philippines(JP 222569),one from Myanmar(JP 222570),two from India(JP 222981 and 222982), one from ex-Czechoslovakia(JP 222971),and one from France (JP 223004))and determined the sequences by direct sequencing using the primers listed in Table S2.Sequences of 10 landraces and one Chinese accession,Yugu 1,used for genome sequencing by Bennetzen et al.[2]were aligned with CLUSTALW (http://www.genome.jp/tools/clustalw/).Structures of the gene (positions ofexons and intron)were deduced by comparison with those in other plant species including rice,maize(EU302135), wheat(AB094487),and barley(AF490468).

    2.3.mRNA extraction,RT-PCR,and comparison between wild type and variant

    Sequence analysis indicated that some landraces carry a point mutation on the putative 5′splice site of intron 1resulting in loss of function of this gene(see results).To verify that this point mutation causes aberrant splicing,we performed RT-PCR of the gene including intron 1 in a variant type(AT type)of a landrace from Taiwan of China (JP 73913,see Table S1)and also a wild type(GTtype)from Japan (JP 71640).RNA was extracted from young leaves grown in naturalday conditions according to Wang et al.[23],and cDNA synthesis and RT-PCR were performed with a Takara Prime Script RT-PCR Kit according to manufacturer's instructions.The primer pair ConsNewF1(5′-CAGCAAGGATCCTGACAACA-3′) and ConsNewR2(5′-CTTGATCCT TGGTC GTGCTT-3′)was used for amplification(Figs.1,and S1,Table S2).PCRconditions were 5 min at 94°C;35 cycles of 1 min at 94°C,1 min at 56°C,and 2 min at 72°C;and 2 min at 72°C.After purification with a Wizard SV Gel and PCR Clean-Up System(Promega Co.Ltd.), PCR products were ligated into the pGEM vector(Promega Co. Ltd.)and transformed into JM108 Escherichia coli cells.Sequencing was performed with a BigDye terminator kit v3.1 accordingto the instructions of the manufacturer(Applied Biosystems) and M13 primers.Two clones for the wild type and seven clones for the splicing variant were sequenced.Samples were sequenced on an ABIPRISM 3130xl Genetic Analyzer/ABIPRISM 3500xl Genetic Analyzer at the Institute of Gene Research, Kagoshima University.

    Fig.1–Structure of the HD1 gene of foxtail millet,primers used for amplification/sequencing,and indels and SNPs found between accessions.Black boxes indicate exons.Horizontal arrows indicate primers and directions(Table S2).Verticalarrows indicate indels and SNPs.Accessions(Yugu 1,mainland China;JP 71626&71640,Japan;JP 222588&73913,Taiwan of China;JP 222569,the Philippines;JP 222981&222982,India;JP 222570,Myanmar;JP 222971,ex-Czechoslovakia;JP 223004,France)with indels and SNPs are indicated in parentheses(See details in Fig.S1).

    2.4.dCAPS analysis of landraces and assessment of geographicaldistribution

    After verifying that one nucleotide sequence substitution that occurs at the 5′splice site of intron 1 leads to loss of function of the gene by comparison with the sequence of the ortholog of rice and other grass species and sequencing of RT-PCR products(see results),we analyzed this point mutation in 480 accessions of foxtail millet from various cultivation areas.To detect this single-nucleotide polymorphism(SNP),we developed a dCAPS marker[24]for the SNP.dCAPS primers were designed with dCAPS Finder version 2.0(http://helix.wustl. edu/dcaps/dcaps.html).Primer sequences were HD1dCAPSF (5′-AGCAGTACCGAAGGCA AGAA-3′)and HD1dCAPSR(5′-AGCA TAGTAATAGATGAACGCA-3′)(Figs.1,S1,and S2 and Table S2). PCR was performed with TOYOBO 2×Quick Taq and PCR conditions were 5 min at 94°C;35 cycles of 1 min at 94°C, 1 min at 50°C,and 2 min at 72°C;and 5 min at 72°C.After digestion with Sph I,electrophoresis was performed on 2.0% agarose gel.Approximately 220-bp bands were scored as the wild-type allele and 200-bp bands as the splicing variant allele.

    2.5.Cultivation experiments

    Six individuals of each of97 accessions were cultivated in pots in a greenhouse in the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima,Shobara,Hiroshima(34°50′N,132°59′E).These 97 accessions cover a broad cultivation area from East Asia to Europe and fromhigh to low latitude(Table S3). Of the 97,16 carried the wild-type allele and 81 the splicing variant allele.Seeds were sown in pots on May 22,2011 under natural day-length conditions.Days to heading was defined as the number of days until the panicle on the main culm was first visible in the sheath of the flag leaf.

    3.Results

    3.1.Sequence of HD1 homolog in foxtail millet and sequence variation between landraces

    A homolog of rice HEADING DATE 1(HD1)was found on chromosome 4 of the foxtail millet genome sequence[21]. The collinearity of chromosome 4 of foxtail millet with rice chromosome 6[25],on which the rice HD1 gene is located[12], suggested that the gene on foxtail millet chromosome 4 is an ortholog of the rice HD1 gene.We also aligned the HD1 gene in the foxtailmillet genome with predicted Setaria italica zinc finger protein HD1-like(LOC101768789)(XM_004965163)as a query and confirmed that the gene on chromosome 4 is a foxtail millet HD1 homolog.We also found a gene showing much lower identity with the rice HD1 gene on foxtailmillet chromosome 1, but it may be a paralog of the gene.

    We determined 2835-2837 bp of the gene of 10 landraces from various regions of Eurasia(DDBJ:AB807720-AB807729) and compared the full gene sequences from Yugu 1 and the 10 landraces to identify polymorphisms in the gene.The most important polymorphism between accessions was a single-nucleotide substitution of GT by AT at the 5′end of intron 1(splice site)found in 7 of the 11 accessions,which may cause loss of function of the gene as shown in Fig.1. Other polymorphisms were also found.Two specific SNPs were found in the 5′region of the gene and in intron 1 in Yugu 1 and a Japanese landrace(JP 71640)(Fig.1).A landrace from Myanmar(JP 222570)had several nucleotide substitutions innon-coding sequences and also a substitution in the coding region leading to an amino acid substitution(Fig.1).This substitution may change the function of the product,but in this study,we focused on the SNP(single nucleotide polymorphism)in intron 1,which apparently causes loss of function of the gene.We designated the accessions with AT at the 5′end of intron 1 as“splicing variant”.

    3.2.Verification of splicing variation by RT-PCR

    We determined the sequences of two clones ofa wild type and seven clones of a splicing variant,and the results of sequencing are summarized in Fig.2.Expected splicing of intron 1 was observed in both of the two clones of the wild type(JP 71640),whereas three different aberrant splicing products were found in the variant(a Taiwanese accession,JP 73913),designated as types 1-3 as shown in Fig.2.Of the seven clones,four showed a type 1 splicing pattern,two showed a type 2 pattern,and one showed a type 3 pattern(Fig.2).In all three types,intron 1 was spliced at GT in exon 1(33 bp upstream of the 5′splice site of the wild type)instead of the end of intron 1 and also at a different AG instead of the 3′end of intron 1 in types 2-3(68 and 25 bp,respectively,upstream of the 3′splice site of the wild type)(Figs.2 and S1).

    3.3.Geographicaldistribution of the splicing variant in foxtail millet and variation in the wild ancestor revealed by dCAPS analysis

    Genotyping of wild type and splicing variant was successfully performed by dCAPS analysis as shown in Fig.3.We investigated the geographical distribution of the splicing variant allele in 480 accessions offoxtailmillet fromvarious areas of Europe and Asia and a part of Africa(Fig.4).We also confirmed that results of dCAPS are consistent with G-A substitution by sequencing the region including the 5′end of intron 1 of 8 randomly chosen accessions(data not shown).Surprisingly,of the 480 accessions, only 90 showed the wild-type allele(18.8%)and 390 showed the splicing variant allele(81.2%).The splicing variant allele is not evenly distributedin Europe and Asia:31(27.6%)ofthe accessions from Japan,11(26.8%)from Korea Peninsula,12(14.6%)from mainland China,one(11.1%)from the Philippines,2(28.6%)from Indonesia,1(50%)from Thailand,3(10%)from Myanmar,20 (45.5%)from India,5(83.3%)from Sri Lanka,2(40%)from Turkey, and one each from Primorskaya province of the ex-USSR and Poland.The wild-type allele was observed most frequently in accessions from India and Sri Lanka of south Asia and at lower frequencies in accessions from Japan,Korea Peninsula,and mainland China of east Asia but rarely in accessions from the Nansei Islands of Japan,Taiwan of China,the Philippines,Nepal, Central Asia,West Asia,Europe and Africa(Fig.3).

    As for ssp.viridis,2 accessions from Afghanistan had a variant allele,whereas the 11 other accessions from mainland China,Mongolia,Russia,Iran,Turkey and Chile,had a wild-type allele,suggesting that the wild type is predominant in ssp.viridis.

    3.4.Relationships between HD1 genotype and heading time

    A histogram of the distribution of heading time of accessions with the wild-type allele and those with the splicing variant allele is shown in Fig.5.One very late-heading accession from Halmahera Island,Indonesia(169 days),had the wild-type allele,and a few late heading accessions from Thailand, Myanmar,and Luzon island in the Philippines also had the wild-type allele.Most of the accessions with the wild-type and variant alleles showed early to late heading(34-119 days)but the average heading times of accessions with the wild-type allele and those with the splicing variant allele were 85.8 and 65.7 days,respectively.Comparison(by t-test)between accessions with the wild-type allele and those with the splicing variant allele with all 97 accessions showed a significant difference between the two alleles(P<0.01),but when the very late-heading accession from Halmahera Island wasexcluded,there was no significant difference between the two types.

    Fig.2–Results of sequencing of RT-PCR products of the wild-type and variant alleles.Sequences in boxes indicate cDNA sequences amplified by RT-PCR and sequences between boxes indicate spliced sequences.Stars indicate a nucleotide substitution at the 5′splice site of the intron 1.The wild-type allele was spliced at expected GT–AG sequences,whereas the variant allele was spliced at different GT and AGs.Three different RT-PCR products were obtained and designated as types 1–3. All three types were spliced at the same GT(33 bp upstream of the 5′splice site of the wild type)in exon 1.Type 1 was spliced at the same AG as the wild type,and types 2 and 3 were spliced at different AGs(68 and 25 bp upstream of the 3′splice site of the wild type)in intron 1.

    Fig.3–A gel image of the results of genotyping of wild-type and splicing variant type of HD1 gene in foxtail millet.M indicates a 100-bp ladder size marker.Number above photo indicates cultivation number of the samples(see Table S1) and“w”denotes wild type.The 220-and 200-bp bands correspond to wild type and splicing variant,respectively.

    4.Discussion

    4.1.Aberrant splicing at the 5′end of intron 1 of HD1 gene

    We identified a nucleotide substitution at the 5′end of the intron 1 of the HD1 gene by sequencing analysis(Fig.1)and confirmed the occurrence of aberrant splicing by sequencing of the RT-PCR products with the splicing variant(Fig.2).At least three types of splicing(types 1-3)occurred in the splicing variant of the HD1 gene(Fig.2).A nucleotide substitution at the 5′end of intron 1 leads to multiple different aberrant splicing products in the waxy gene of rice[26].Judging from the putative amino acid sequences deduced from these nucleotide sequences,a protein of type 1 lacks 11 amino acids from the HD1 protein compared with the wild type,and a frame shift and a premature stop codon occur in types 2 and 3(Fig.S3).Given that a zinc finger motif is encoded in exon 1 of the HD1 gene,whereas a nuclear localization signal is encoded in exon 2 ofthe gene[12],this nucleotide substitution likely leads to loss of function of the gene in types 2 and 3. However,it is possible that type 1 is functional despite the deletion of 11 amino acids.Given that a simple G-to-A transition in a splicing donor site leads to mis-spliced mRNA with a premature stop codon in the rice waxy gene[27,28]and the pea flower color(bHLH)gene[29],the results of RT-PCR in the present study strongly suggest that mis-splicing occurs in intron 1 because of a single nucleotide substitution at the 5′end of intron 1.

    4.2.Geographicaldistribution of the splicing variant in foxtail millet and variation in the wild ancestor

    As shown in Fig.4,the splicing variant is predominant in Europe and Asia and the wild type is frequently found in limited regions:east Asia including Japan,Korea Peninsula, and mainland China,south Asia including India and Sri Lanka,and Southeast Asia,and also sporadically in the ex-USSR and Europe.Takei and Sakamoto[5]reported that foxtail millet landraces from intermediate latitudes(between 27°N and 34°N)are sensitive to change in day length,and landraces from an intermediate latitude would be expected to carry the wild-type allele.However,the wild-type allele of the HD1 gene is distributed broadly from high latitudes in Primorskaya province,ex-USSR,and northeast China to low latitudes in Luzon island,Philippines and Halmahera Island, Indonesia.Mauro-Herrera et al.[21]reported that one of three maize candidate genes in the Setaria QTL intervals is an HD1 (CO)homolog,suggesting that the HD1 gene influences foxtail millet heading time.

    The results for the geographicaldistribution ofthe wild type of the HD1 gene in Asia,particularly in south and east Asia,are congruent with those of rDNA-RFLP analysis[30],suggesting that some genetic exchanges occurred between countries in east Asia such as Japan,Korea Peninsula,and mainland China and countries in south Asia such as India and Sri Lanka. However,another interpretation is also possible:that this point mutation arose and was selected at multiple times during the spread of this millet in Europe and Asia because of some advantage of the splicing variant in adaptation to local environments.Detailed phylogenetic studies of HD1 gene in foxtail millet will be helpful for determining how the mutant type arose and spread in Europe and Asia.

    As for ssp.viridis,two accessions from Afghanistan had the variant allele,whereas the other 11 accessions had the wild-type allele,suggesting that the wild type is predominantin ssp.viridis.Interestingly,our observations in the cultivation experiment showed that these two accessions from Afghanistan had morphological characteristics similar to those of Afghan landraces of foxtail millet(data not shown), which have morphological characteristics similar to ssp.viridis except for large grains and a non-shattering habit[31].These accessions may have been misclassified or may have arisen through introgression between foxtail millet and its wild ancestor.In these cases,the variant allele may have originated after domestication.However,further study of ssp.viridis accessions from a broader geographicalarea is needed.

    4.3.Relationships between HD1 genotype and heading time

    As shown in Fig.5,differences in heading between the wild type and variant are unclear.Regulation of heading time may be so complex that the effect of a single gene on heading time is masked by the effects of other genes influencing the trait, although the HD1 gene is colocalized with a QTL for heading time[21]and seems a likely candidate for control of heading time variation in foxtail millet.Ehd1 confers short-day promotion offlowering in the absence of a functionalallele of Hd1[32] and several other genes are also involved in heading time in rice[9,33].Recently,in sorghum,another gene,pseudoresponse regulator protein 37(PRR37),involved in regulation of heading time has also been identified[15].This gene is also importantin adaptation to different latitudes.In maize,the HD1 gene has been mapped and QTL analysis for flowering time has been performed[34],but the results do not provide evidence of theeffect ofthe gene on flowering time photoperiod responses.It appears that HD1(CONSTANS)does not always play an important role in latitudinal adaptation in sorghum and maize.Jia et al.[6]identified several genes including NF-YC9 (also known as HAP5C)and FIE1 that influence heading time in foxtail millet by genome-wide association studies.Comparative genetic studies of control of flowering time among multiple grass species willhelp in an understanding of grass evolution.

    Fig. 4 – Geographical distribution of the wild-type allele (indicated in black) and variant allele (indicated in white). “n” indicatesnumber of accessions investigated.

    Fig.5–Distribution of number of days to heading of 97 accessions.Accessions with the wild-type allele are indicated in gray and those with the variant allele are indicated in black.One very late-heading accession from Halmahera Island,Indonesia is indicated by an arrow.

    5.Conclusions

    Foxtail millet is cultivated over a broad area in Europe and Asia and is highly variable in heading time.Although heading/flowering is genetically controlled in a complex manner,an HD1(CO)gene homolog was analyzed in the present study as the first step for elucidating the genetic basis of this trait.We found that a splicing variant(putative non-functional)allele of the gene is broadly distributed in Europe and Asia but found no clear association between genotype and heading time,suggesting that several genes influence the trait,as reported in rice,maize,and sorghum. Given that not only conserved but also lineage-specific genes influence latitudinal adaptation in cereal species,it is desirable to analyze variation in other candidate genes influencing this trait in foxtail millet and also to evaluate the effects of genes in segregating populations under different photoperiods.We are also now developing recombinant inbred lines (RILs)from a cross between a landrace from a temperate area and one from a subtropical area[35]for this purpose.

    Acknowledgments

    We thank J.Bennetzen and R.Percifield for providing information on foxtailmillet genome sequence before publication.This work was partially supported by the NIAS Genebank Project, NIAS,Japan.

    Supplementary material

    Supplementary material to this article can be found online at http://dx.doi.org/10.1016/j.cj.2015.07.003.

    R E F E R E N C E S

    [1]A.N.Doust,E.A.Kellogg,K.M.Devos,J.L.Bennetzen,Foxtail millet:a sequence-driven grass model system,Plant Physiol. 149(2009)137-141.

    [2]J.L.Bennetzen,J.Schmutz,H.Wang,R.Percifield,J.Hawkins, A.C.Pontaroli,M.Estep,L.Feng,J.N.Vaughn,J.Grimwood,J. Jenkins,K.Barry,E.Lindquist,U.Hellsten,S.Deshpande,X. Wang,X.Wu,T.Mitros,J.Triplett,X.Yang,C.Y.Ye,M. Mauro-Herrera,L.Wang,P.Li,M.Sharma,R.Sharma,P.C. Ronald,O.Panaud,E.A.Kellogg,T.P.Brutnell,A.N.Doust,G.A. Tuskan,D.Rokhsar,K.M.Devos,Reference genome sequence of the model plant Setaria,Nat.Biotechnol.30(2012)555-561.

    [3]G.Zhang,X.Liu,Z.Quan,S.Cheng,X.Xu,S.Pan,M.Xie,P. Zeng,Z.Yue,W.Wang,Y.Tao,C.Bian,C.Han,Q.Xia,X.Peng, R.Cao,X.Yang,D.Zhan,J.Hu,Y.Zhang,H.Li,H.Li,N.Li,J. Wang,C.Wang,R.Wang,T.Guo,Y.Cai,C.Liu,H.Xiang,Q. Shi,P.Huang,Q.Chen,Y.Li,J.Wang,Z.Zhao,J.Wang, Genome sequence of foxtailmillet(Setaria italica)provides insights into grass evolution and biofuel potential,Nat. Biotechnol.30(2012)549-554.

    [4]E.Takei,S.Sakamoto,Geographical variation of heading response to daylength in foxtailmillet(Setaria italica P. Beauv.),Jpn.J.Breed.37(1987)150-158.

    [5]E.Takei,S.Sakamoto,Further analysis of geographical variation of heading response to daylength in foxtail millet (Setaria italica P.Beauv.),Jpn.J.Breed.39(1989)285-298.

    [6]G.Jia,X.Huang,H.Zhi,Y.Zhao,Q.Zhao,W.Li,Y.Chai,L. Yang,K.Liu,H.Lu,C.Zhu,Y.Lu,C.Zhou,D.Fan,Q.Weng,Y. Guo,T.Huang,L.Zhang,T.Lu,Q.Feng,H.Hao,H.Liu,P.Lu,N.Zhang,Y.Li,E.Guo,B.Zhang,W.Li,Y.Wang,H.Li,B.Zhao,J. Li,X.Diao,B.Han,A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet(Setaria italica),Nat.Genet.45(2013)957-961.

    [7]K.Ichitani,Y.Okumoto,T.Tanisaka,Photoperiod sensitivity of Se-1 locus found in photoperiod insensitivity rice cultivars of the northern limit region of rice cultivation,Breed.Sci.47 (1997)145-152.

    [8]M.Koornneef,C.Alonso-Blanco,D.Vreugdenhil,Naturally occurring genetic variation in Arabidopsis thaliana,Annu.Rev. Plant Biol.55(2004)141-172.

    [9]M.Yano,Genetic controlof flowering time in rice,a short-day plant,Plant Physiol.127(2000)1425-1429.

    [10]T.Izawa,Y.Takahashi,M.Yano,Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis,Curr.Opin.Plant Biol.6 (2003)113-120.

    [11]J.Putterill,F.Robson,K.Lee,R.Simon,G.Coupland,The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors,Cell 80(1995)847-857.

    [12]M.Yano,Y.Katayose,M.Ashikari,U.Yamanouchi,L.Monna, T.Fuse,T.Baba,K.Yamamoto,Y.Umehara,Y.Nagamura,T. Sasaki,Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS,Plant Cell12(2000)2473-2484.

    [13]J.Clotault,A.C.Thuillet,M.Buiron,S.De Mita,M.Couderc, B.I.G.Haussmann,C.Mariac,Y.Vigouroux,Evolutionary history of pearl millet(Pennisetum glaucum[L.]R.Br.)and selection on flowering genes since its domestication,Mol. Biol.Evol.29(2012)1199-1212.

    [14]T.A.Miller,E.H.Muslin,J.E.Dorweiler,Amaize CONSTANS-like gene,conz1,exhibits distinct diurnalexpression patterns in varied photoperiods,Planta 227(2008)1377-1388.

    [15]R.L.Murphy,R.R.Klein,D.T.Morishige,J.A.Brad,W.L.Rooney, F.R.Miller,D.V.Dugas,P.E.Klein,J.E.Mullet,Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37)controls photoperiodic flowering in sorghum,Proc. Natl.Acad.Sci.U.S.A.108(2011)16469-16474.

    [16]C.Navarro,J.A.Abelenda,E.Cruz-Oró,C.A.Cuéllar,S. Tamaki,J.Silva,K.Shimamoto,S.Prat,Control of flowering and storage organ formation in potato by FLOWERING LOCUS T,Nature 478(2011)119-122.

    [17]F.Valverde,CONSTANS and the evolutionary origin of photoperiodic timing of flowering,J.Exp.Bot.62(2011) 2453-2463.

    [18]Y.Takahashi,K.Shimamoto,Heading date 1(Hd1),an ortholog of Arabidopsis CONSTANS,is a possible target of human selection during domestication to diversify flowering times of cultivated rice,Genes Genet.Syst.86(2011)175-182.

    [19]Y.Takahashi,K.M.Teshima,S.Yokoi,H.Innan,K. Shimamoto,Variations in Hd1 proteins,Hd3a promoters,and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice,Proc.Natl.Acad.Sci.U.S.A.106(2009) 4555-4560.

    [20]K.Ichitani,K.Nagao,Y.Narita,K.Fujikawa,M.Samejima,S. Taura,M.Sato,Genetic analysis of heading characters in foxtail millet(Setaria italica(L.)P.Beauv.)using the progeny from the cross between the two diverse strains,Gai 53 and Kuromochi,Mem.Fac.Agr.Kagoshima Univ.38(2003)17-25.

    [21]M.Mauro-Herrera,X.W.Wang,H.Barbier,T.P.Brutnell,K.M. Devos,A.N.Doust,Genetic controland comparative genomic analysis of flowering time in Setaria(Poaceae),G3-Genes Genom,Genet.3(2013)283-295.

    [22]M.G.Murray,W.F.Thompson,Rapid isolation of high-molecular-weight plant DNA,Nucleic Acids Res.8(1980) 4321-4325.

    [23]Z.Y.Wang,F.Q.Zheng,G.Z.Shen,J.P.Gao,D.P.Snustad,M.G. Li,J.L.Zhang,M.M.Hong,The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene,Plant J.7(1995)613-622.

    [24]M.M.Neff,E.Turk,M.Kalishman,Web-based primer design for single nucleotide polymorphism analysis,Trends Genet. 18(2002)613-615.

    [25]K.M.Devos,Z.M.Wang,J.Beales,T.Sasaki,M.D.Gale, Comparative genetic maps of foxtailmillet(Setaria italica)and rice(Oryza sativa),Theor.Appl.Genet.96(1998)63-68.

    [26]X.L.Cai,Z.Y.Wang,Y.Y.Xing,J.L.Zhang,M.M.Hong,Aberrant splicing of intron 1 leads to the heterogeneous 5′UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content,Plant J.14(1998)459-465.

    [27]H.Y.Hirano,M.Eiguchi,Y.Sano,A single base change altered the regulation of the Waxy gene at the posttranscriptional levelduring the domestication of rice,Mol.Biol.Evol.15 (1998)978-987.

    [28]M.Isshiki,K.Morino,M.Nakajima,R.J.Okagaki,S.R.Wessler, T.Izawa,K.Shimamoto,A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′splice site of the first intron,Plant J.15(1998)133-138.

    [29]R.P.Hellens,C.Moreau,K.Lin-Wang,K.E.Schwinn,S.J. Thomson,M.W.E.J.Fiers,T.J.Frew,S.R.Murray,J.M.I.Hofer, J.M.E.Jacobs,K.M.Davies,A.C.Allan,A.Bendahmane,C.J. Coyne,G.M.Timmerman-Vaughan,T.H.N.Ellis, Identification of Mendel's white flower character,PLoS ONE 5 (2010),e13230http://dx.doi.org/10.1371/journal.pone.0013230.

    [30]M.Eda,A.Izumitani,K.Ichitani,M.Kawase,K.Fukunaga, Geographicalvariation of foxtail millet,Setaria italica(L.)P. Beauv.based on rDNAPCR-RFLP,Genet.Resour.Crop.Evol.60 (2013)265-274.

    [31]S.Sakamoto,Origin and phylogenetic differentiation of cereals in the Southwest Eurasia,in:S.Sakamoto(Ed.), Domesticated Plants and Animals of the Southwest Eurasian Agro-pastroral Culture Complex,Kyoto University,Kyoto 1987,pp.1-45.

    [32]K.Doi,T.Izawa,T.Fuse,U.Yamanouchi,T.Kubo,Z. Shimatani,M.Yano,A.Yoshimura,Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1, Gene Dev.18(2004)926-936.

    [33]K.Ebana,T.Shibaya,J.Wu,K.Matsubara,H.Kanamori,H. Yamane,U.Yamanouchi,T.Mizubayashi,I.Kono,A. Shomura,S.Ito,T.Ando,K.Hori,T.Matsumoto,M.Yano, Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars,Theor.Appl.Genet.122(2011)1199-1210.

    [34]N.D.Coles,M.D.McMullen,P.J.Balint-Kurti,R.C.Pratt,J.B. Holland,Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis,Genetics 184 (2010)799-812.

    [35]K.Sato,Y.Mukainari,K.Naito,K.Fukunaga,Construction ofa foxtailmillet linkage map and mapping spikelet-tipped bristles 1(stb1)with transposon display markers and simple sequence repeat markers with genome sequence information, Mol.Breed.31(2013)675-684.

    3 April 2015

    in revised form 4 July 2015

    .Tel./fax:+824 74 1714,+824 74 0191.

    E-mail address:fukunaga@pu-hiroshima.ac.jp(K.Fukunaga).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    精品卡一卡二卡四卡免费| 99re在线观看精品视频| 淫秽高清视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人欧美特级aaaaaa片| 亚洲三区欧美一区| 韩国精品一区二区三区| 嫩草影院精品99| 男人操女人黄网站| 久久国产亚洲av麻豆专区| 老司机在亚洲福利影院| 国产高清激情床上av| 免费女性裸体啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 两个人看的免费小视频| 热re99久久精品国产66热6| 国产蜜桃级精品一区二区三区| 久久人妻熟女aⅴ| 性少妇av在线| 一本大道久久a久久精品| 亚洲伊人色综图| 国产午夜精品久久久久久| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 成人av一区二区三区在线看| 国产精品爽爽va在线观看网站 | 免费高清视频大片| 午夜免费激情av| 国产精品永久免费网站| 亚洲熟女毛片儿| 欧美午夜高清在线| 香蕉国产在线看| 久久人妻av系列| 又紧又爽又黄一区二区| 88av欧美| 欧美日韩一级在线毛片| 亚洲在线自拍视频| 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 日本vs欧美在线观看视频| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费 | 色精品久久人妻99蜜桃| 一级片'在线观看视频| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 精品少妇一区二区三区视频日本电影| 亚洲,欧美精品.| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 超碰97精品在线观看| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 天堂俺去俺来也www色官网| 宅男免费午夜| 中文字幕人妻熟女乱码| 韩国av一区二区三区四区| 神马国产精品三级电影在线观看 | 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 国产一区二区三区在线臀色熟女 | 精品人妻在线不人妻| 久久久久久久久久久久大奶| 久久影院123| 国产亚洲av高清不卡| 91麻豆精品激情在线观看国产 | www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 国产免费男女视频| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 成人影院久久| 妹子高潮喷水视频| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 亚洲专区字幕在线| 男女下面进入的视频免费午夜 | 免费av毛片视频| 国产成人影院久久av| 国产成人啪精品午夜网站| 丝袜美足系列| 女同久久另类99精品国产91| 日本欧美视频一区| 久久中文字幕人妻熟女| 国产精品 欧美亚洲| 亚洲人成网站在线播放欧美日韩| 五月开心婷婷网| 精品国产一区二区久久| 热99国产精品久久久久久7| 亚洲国产看品久久| 国产精品成人在线| netflix在线观看网站| 18禁观看日本| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 麻豆成人av在线观看| 在线免费观看的www视频| 欧美日韩视频精品一区| 美国免费a级毛片| 美女大奶头视频| 免费搜索国产男女视频| 两个人看的免费小视频| 亚洲自拍偷在线| 久久久久久久精品吃奶| 91大片在线观看| 不卡一级毛片| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线美女| 90打野战视频偷拍视频| 可以免费在线观看a视频的电影网站| 久久久久国产精品人妻aⅴ院| av视频免费观看在线观看| 91国产中文字幕| 啦啦啦在线免费观看视频4| 久久久久亚洲av毛片大全| 日韩欧美免费精品| 黑人欧美特级aaaaaa片| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 久久人人爽av亚洲精品天堂| 男人舔女人的私密视频| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 一进一出好大好爽视频| 操美女的视频在线观看| 久久香蕉精品热| av有码第一页| 欧美日韩亚洲国产一区二区在线观看| 欧美亚洲日本最大视频资源| 欧美成人性av电影在线观看| 看免费av毛片| 久久狼人影院| av福利片在线| 女性被躁到高潮视频| a级片在线免费高清观看视频| 一级作爱视频免费观看| 老司机亚洲免费影院| 国产精品国产av在线观看| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 国产xxxxx性猛交| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 麻豆一二三区av精品| 亚洲欧美日韩另类电影网站| 国产精品一区二区三区四区久久 | 午夜影院日韩av| 老鸭窝网址在线观看| 成人影院久久| 乱人伦中国视频| 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 成年人黄色毛片网站| xxxhd国产人妻xxx| 久久狼人影院| 很黄的视频免费| 97人妻天天添夜夜摸| 天堂动漫精品| 夫妻午夜视频| 国产三级在线视频| 成人黄色视频免费在线看| 国产亚洲精品一区二区www| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码| 亚洲欧美激情在线| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 色在线成人网| 超色免费av| 亚洲中文日韩欧美视频| 精品国产美女av久久久久小说| 99久久国产精品久久久| 亚洲成人免费电影在线观看| 在线看a的网站| 久久久久久久久免费视频了| av在线播放免费不卡| 69精品国产乱码久久久| 欧美国产精品va在线观看不卡| 深夜精品福利| 国产精品久久电影中文字幕| 免费看a级黄色片| 在线观看午夜福利视频| 午夜福利影视在线免费观看| 久热这里只有精品99| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 | 免费在线观看亚洲国产| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 美女扒开内裤让男人捅视频| 亚洲少妇的诱惑av| 99精品久久久久人妻精品| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久亚洲精品国产蜜桃av| 国产成人欧美| 中国美女看黄片| 国产亚洲精品综合一区在线观看 | 色播在线永久视频| 国产精品一区二区三区四区久久 | 亚洲五月天丁香| 99国产精品99久久久久| 久久天堂一区二区三区四区| 精品日产1卡2卡| 丝袜在线中文字幕| 精品免费久久久久久久清纯| 精品高清国产在线一区| 99热只有精品国产| 成人亚洲精品av一区二区 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 久久久久国内视频| 亚洲国产精品合色在线| av在线天堂中文字幕 | 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 免费观看人在逋| 怎么达到女性高潮| 丰满的人妻完整版| 国产97色在线日韩免费| 999久久久国产精品视频| 啪啪无遮挡十八禁网站| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成伊人成综合网2020| 国产成人欧美| 91国产中文字幕| 欧美国产精品va在线观看不卡| 国产一区二区在线av高清观看| 日韩欧美在线二视频| 日韩精品青青久久久久久| 黄片大片在线免费观看| 九色亚洲精品在线播放| 大陆偷拍与自拍| 一级毛片女人18水好多| 国产91精品成人一区二区三区| 国产单亲对白刺激| 99久久人妻综合| 国产色视频综合| 手机成人av网站| 国产成人精品在线电影| xxxhd国产人妻xxx| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 一级a爱片免费观看的视频| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 亚洲精品一二三| 国产区一区二久久| 97碰自拍视频| 99香蕉大伊视频| 久久香蕉精品热| а√天堂www在线а√下载| 一级毛片高清免费大全| 亚洲精品国产精品久久久不卡| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 黄色 视频免费看| 色精品久久人妻99蜜桃| 老司机在亚洲福利影院| 男女下面插进去视频免费观看| 精品高清国产在线一区| 国产精品日韩av在线免费观看 | 精品国产超薄肉色丝袜足j| av网站免费在线观看视频| 美国免费a级毛片| 亚洲中文av在线| 搡老乐熟女国产| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 黄色 视频免费看| 在线观看午夜福利视频| 侵犯人妻中文字幕一二三四区| 日韩欧美免费精品| 国产伦一二天堂av在线观看| 女性生殖器流出的白浆| 亚洲色图综合在线观看| 亚洲熟妇中文字幕五十中出 | 视频区欧美日本亚洲| 最新美女视频免费是黄的| 午夜a级毛片| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 国产熟女xx| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 免费不卡黄色视频| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 日本黄色视频三级网站网址| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久久久九九精品影院| 女性被躁到高潮视频| 久久人妻福利社区极品人妻图片| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| av有码第一页| 精品高清国产在线一区| 亚洲人成77777在线视频| 啦啦啦在线免费观看视频4| 亚洲aⅴ乱码一区二区在线播放 | 十八禁人妻一区二区| 亚洲午夜精品一区,二区,三区| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 国产精品九九99| 亚洲精品久久午夜乱码| 久久精品影院6| 国产在线精品亚洲第一网站| 亚洲男人天堂网一区| 搡老乐熟女国产| 丰满的人妻完整版| 成人18禁高潮啪啪吃奶动态图| av视频免费观看在线观看| 亚洲男人的天堂狠狠| 国产又爽黄色视频| 国产精品久久电影中文字幕| 日韩欧美一区视频在线观看| 伦理电影免费视频| 精品一区二区三卡| 夫妻午夜视频| 18禁国产床啪视频网站| svipshipincom国产片| 国产又色又爽无遮挡免费看| 精品久久久久久成人av| 黄色女人牲交| 久久人妻av系列| 国产精品免费一区二区三区在线| 国产精品一区二区在线不卡| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 长腿黑丝高跟| 国产1区2区3区精品| 美女高潮到喷水免费观看| 一级毛片女人18水好多| 女性生殖器流出的白浆| 韩国av一区二区三区四区| 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片高清免费大全| 美女高潮到喷水免费观看| 脱女人内裤的视频| 午夜福利免费观看在线| 久久精品亚洲精品国产色婷小说| 久久99一区二区三区| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久| 91国产中文字幕| 不卡一级毛片| 三级毛片av免费| av天堂在线播放| 老司机午夜十八禁免费视频| 无遮挡黄片免费观看| 国产单亲对白刺激| 久久精品aⅴ一区二区三区四区| 久久伊人香网站| 男女做爰动态图高潮gif福利片 | 久久青草综合色| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 亚洲成av片中文字幕在线观看| 精品国产乱子伦一区二区三区| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频 | 亚洲成a人片在线一区二区| 精品久久久久久,| 大码成人一级视频| 国产精品国产av在线观看| 精品第一国产精品| 琪琪午夜伦伦电影理论片6080| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 俄罗斯特黄特色一大片| 亚洲国产精品合色在线| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 欧美激情极品国产一区二区三区| 美女福利国产在线| 日本黄色日本黄色录像| 制服人妻中文乱码| 久久精品影院6| 色综合婷婷激情| 中文字幕人妻丝袜制服| 黄色成人免费大全| 午夜精品在线福利| 亚洲伊人色综图| 久久精品国产99精品国产亚洲性色 | 欧美成人午夜精品| 亚洲人成电影免费在线| 波多野结衣av一区二区av| 老司机福利观看| 在线观看免费视频网站a站| av天堂久久9| www.999成人在线观看| 亚洲在线自拍视频| 亚洲狠狠婷婷综合久久图片| 亚洲一区中文字幕在线| 十八禁人妻一区二区| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| av天堂久久9| 在线天堂中文资源库| 亚洲国产欧美网| 午夜亚洲福利在线播放| 曰老女人黄片| 亚洲色图 男人天堂 中文字幕| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼 | 久久精品aⅴ一区二区三区四区| 久久影院123| 国产精品久久久av美女十八| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 久热爱精品视频在线9| 久久九九热精品免费| 成人国产一区最新在线观看| 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人| 国产av精品麻豆| 老熟妇乱子伦视频在线观看| tocl精华| 久久久国产欧美日韩av| 国产精品久久电影中文字幕| 国产欧美日韩精品亚洲av| 午夜91福利影院| 日日干狠狠操夜夜爽| 久久国产精品影院| 久99久视频精品免费| 亚洲 国产 在线| 久久草成人影院| 国产精品国产av在线观看| 国产亚洲精品第一综合不卡| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 久久亚洲真实| 亚洲精品国产区一区二| 免费不卡黄色视频| 国产精品国产av在线观看| 日日夜夜操网爽| 免费女性裸体啪啪无遮挡网站| 侵犯人妻中文字幕一二三四区| 99精品久久久久人妻精品| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 亚洲av成人av| 欧美 亚洲 国产 日韩一| 18禁裸乳无遮挡免费网站照片 | 高潮久久久久久久久久久不卡| 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 国产xxxxx性猛交| 久久久久久久久免费视频了| 久久中文字幕一级| 黑人巨大精品欧美一区二区mp4| 一进一出抽搐动态| 日本 av在线| 免费在线观看日本一区| 国产亚洲精品久久久久5区| 国产视频一区二区在线看| 视频区图区小说| 国产精品香港三级国产av潘金莲| 欧美最黄视频在线播放免费 | 一级毛片高清免费大全| 99国产精品一区二区蜜桃av| 12—13女人毛片做爰片一| 欧美丝袜亚洲另类 | 十八禁人妻一区二区| 嫩草影视91久久| 亚洲avbb在线观看| 亚洲精品国产精品久久久不卡| 免费日韩欧美在线观看| 中文欧美无线码| 色在线成人网| 亚洲在线自拍视频| 18禁美女被吸乳视频| 国产无遮挡羞羞视频在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品久久久人人做人人爽| 成人精品一区二区免费| 久久精品91无色码中文字幕| 乱人伦中国视频| 在线播放国产精品三级| 日韩视频一区二区在线观看| 亚洲五月色婷婷综合| 精品久久久久久电影网| 国产欧美日韩一区二区三| 看黄色毛片网站| 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| svipshipincom国产片| 久久久国产精品麻豆| 国产精品98久久久久久宅男小说| 无人区码免费观看不卡| 午夜福利一区二区在线看| 午夜日韩欧美国产| 十八禁人妻一区二区| 欧美日本亚洲视频在线播放| 丰满迷人的少妇在线观看| 国产有黄有色有爽视频| 超碰97精品在线观看| 中出人妻视频一区二区| 国产一区二区三区综合在线观看| 亚洲国产精品合色在线| 日本一区二区免费在线视频| 少妇被粗大的猛进出69影院| 午夜日韩欧美国产| 亚洲人成电影观看| 亚洲欧美日韩无卡精品| 久久青草综合色| 人成视频在线观看免费观看| 自线自在国产av| 色尼玛亚洲综合影院| 亚洲av日韩精品久久久久久密| 变态另类成人亚洲欧美熟女 | 一本大道久久a久久精品| 欧美精品一区二区免费开放| 欧美在线黄色| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 日韩免费av在线播放| 丰满人妻熟妇乱又伦精品不卡| 嫩草影院精品99| 动漫黄色视频在线观看| 色综合欧美亚洲国产小说| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 99久久国产精品久久久| 亚洲成人国产一区在线观看| 超碰成人久久| 99热国产这里只有精品6| 久久精品aⅴ一区二区三区四区| 色播在线永久视频| 91国产中文字幕| 啦啦啦免费观看视频1| 国产精品野战在线观看 | www.自偷自拍.com| 91大片在线观看| 狠狠狠狠99中文字幕| 久久久久久人人人人人| 欧美成人免费av一区二区三区| 国产一区二区三区综合在线观看| 777久久人妻少妇嫩草av网站| 日韩一卡2卡3卡4卡2021年| 人人妻人人爽人人添夜夜欢视频| 久久久久国产精品人妻aⅴ院| 99久久国产精品久久久| 欧美激情 高清一区二区三区| 欧美国产精品va在线观看不卡| 日本一区二区免费在线视频| 国产91精品成人一区二区三区| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 亚洲视频免费观看视频| 不卡av一区二区三区| 日韩有码中文字幕| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 香蕉国产在线看| 久热这里只有精品99| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 丰满的人妻完整版| 99国产精品一区二区三区| 国产国语露脸激情在线看| 宅男免费午夜| 色老头精品视频在线观看| 免费不卡黄色视频| 国产一区二区三区综合在线观看| 一级a爱视频在线免费观看| 亚洲成国产人片在线观看| 五月开心婷婷网| 成人特级黄色片久久久久久久| 美女扒开内裤让男人捅视频|