• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of permanent deformations of railway embankments under repeated vehicle loadings in permafrost regions

    2015-12-19 08:40:14WeiMaTuoChen
    Sciences in Cold and Arid Regions 2015年6期

    Wei Ma ,Tuo Chen

    State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Science,Lanzhou,Gansu 730000,China

    1 Introduction

    As a major representative project in cold regions,the Qinghai-Tibet Railway(QTR)is a landmark of implementation of the Western Development Strategy of China.As the highest and longest plateau railway in the world,the Golmud–Lhasa section of the QTR is 1,142 km in length,of which 550 km crosses large areas of continuous permafrost regions(the talik region of permafrost area is 101.68 km).The length of subgrade accounts for 72.3% of the total length in permafrost regions(Cheng,2002;Wang LMet al.,2009).The dynamic vibration and deformation of embankments due to high-speed trains is a key area of scientific investigation.For example,at some sections in permafrost regions,embankment subsidence and cracks in frozen soil occurred in less than two months after the opening of the QTR.Therefore,scientific and rational study of the dynamic response and deformation characteristics of embankments under train load vibration is important for the stability of railway embankments in permafrost regions.Our study of the characteristics of embankment deformation under train loadings,specifically the transient dynamic response and deformation mechanism,demonstrates that the deformation produced by repeated vehicle loads is permanent.The embankment creep effect under long-term train loads should therefore be the subject of more research.

    The dynamic response and deformation of railway embankments has been researched in many previous studies.For example,Liet al.(2008)studied the temperature field of the embankments of the QTR by applying the finite element method.The dynamic characteristics of vibration on pore water pressure,stress,and displacement were analyzed as well,combined with the distribution of the temperature field.A 3-D finite element model was developed by Shi(2011)to simulate the stability of train-track-embankment systems in permafrost regions along the QTR,under repeated loadings,and the influence of the temperature and ice content was discussed as well.Gu(2009)studied the influence of the soil temperature and train speed on the dynamic response of embankments in frozen regions.The dynamic system,including the sleepersballast-embankment-ground systems,was delineated by Yu(2006)to discuss the vibration response of embankments induced by train loading,and the main factors affecting the reaction.Wanget al.(2002)studied the stress and deformation distribution of an embankment caused by dynamic train loading using a 2-D numerical model,which took into account the influence of creep deformation,volumetric deformation,and instantaneous deformation of the frozen soil under different soil conditions.Wang LNet al.(2009)and Zhu(2009)monitored the vibration response of tracks,sleepers,embankments,and ground induced by train dynamic loading in permafrost areas on the Qinghai-Tibet Plateau and in the Daqing seasonal frozen ground areas.With their on-site monitoring and time data,they investigated the vibration response characteristics and the influence of the frozen soil layer.However,the study of the cumulative deformation of embankments under train loading based on the evaluation of the actual vibration loading is still in the exploratory stage.

    Based on these studies and taking the QTR as an example,we conducted a study of the permanent deformation of a railway embankment under repeated vehicle loads in a permafrost region.Using the strong-motion data obtained by real-time strong-motion tests,the train load was converted to an equivalent force.The creep effect of the plain fill embankment on permafrost was simulated using a creep model coupled with a time-hardening power function rule and the Drucker-Prager yield and failure criterion.The cumulative deformation of the embankment under train loading was obtained,and the impact of the dynamic train loading was added to obtain the total deformation of the embankment.

    2 Creep model of frozen soil

    The creep characteristics of frozen soil have been previously investigated(e.g.,Wu and Ma,1994).According to related research,the viscoplastic strain increment {dε}vpcan be expressed as follows(Li,2008):

    The stress in soil under train loading is small and the creep of the soil is mainly the viscoelastic creep,which can be obtained according to the following creep equation:

    whereC1,C2,C3,andC4are coefficients from the creep test,tstands for time,andTrefers to the soil temperature.

    The creep strain rate can be obtained by calculating the derivative of Equation(2)and can be expressed as follows(Zhenget al.,2009):

    3 Soil coupled creep model

    Geomaterials may creep under certain conditions.When the loading rate is of the same order of the creep time scale,the plasticity and creep equations must be solved using a coupled solution procedure.ABAQUS has a creep model that can be used to augment the Drucker-Prager plasticity for such problems.

    3.1 Time-hardening creep law

    The time-hardening model can be expressed by the creep rate as follows(Liao and Huang,2008):

    This creep law can be used when the stress in the material remains essentially constant.In finite element numerical calculations,the train loading should be considered as an equivalent force.Combining Equation(4)with the creep equation of permafrost(3),the frozen soil parameters of the time-hardening model can be converted as:

    3.2 Creep flow potential

    The Drucker-Prager creep model uses a hyperbolic creep flow potential which ensures that the creep(deformation)flow direction is always defined uniquely:

    where the initial yield stress,,is defined by the Drucker-Prager hardening option,ψrefers to the dilat ancy angle in thep-qplane,andεis the drift rate.

    4 Finite element numerical model and parameters

    4.1 Finite element numerical model

    A typical embankment along the QTR in a permafrost region was selected as the object of study.An analysis model was built based on the borehole data and the railway subgrade structure,as shown in Figure 1.According to the engineering geological conditions(Zhanget al.,2007),the soil layer distribution was determined to be silty sand,silty clay,and weathered mud stone from top to bottom,respectively,and the permafrost table located 3 m below the ground surface.The simulation was carried out assuming plane strain.The lateral boundary conditions used an infinite element boundary which diminished the influence of the boundary conditions;the reflection of the fluctuation at the boundary was reduced as well(Dassault,2010;Fei and Zhang,2010).The bottom boundary used an artificial boundary condition.The finite element model contained 2,220 elements and 2,328 nodes,and the size of the element was set as 1m×1m.

    Figure 1 The embankment models.(a)Solid model;(b)Finite element model(Unit:m.The letters A–F denote different positions)

    In finite element numerical calculations,the analysis of the creep characteristics of the embankment could not be coupled with the real-time temperature,due to the large difference between train loading time and the time involved in the actual study project.To solve the time-scale problem,the initial temperature conditions were assumed for this model.The temperature was set equal to the initial conditions under repeated train loadings.

    The temperature conditions of each soil layer in the model were defined according to the ground temperature curve of the borehole at the center of the embankment,shown in Figure 2.The temperature of the permafrost was set as-1 °C and the active layer was set as 2 °C,in the thawed state.In the numerical calculations,the soil mechanical parameters were given to the different soil layers based on the temperature.

    Figure 2 The ground temperature curve in the borehole at the center of the embankment

    4.2 Soil material parameters

    In the finite element numerical calculations,the soil mechanical parameters were selected on the basis of the results of a dynamic triaxial test at low temperatures(Xuet al.,1998).The soil was regarded as an elastic-plastic medium which was suitable for the Drucker-Prager criterion.The soil mechanical parameters of the numerical analysis are shown in Table 1,and the specific parameters tanβ,dandCwere calculated from Equations(10)and(11),based on the Mohr-Coulomb criterion(Zhaoet al.,2005).

    The soil creep parameters in the numerical calculations were determined from triaxial rheological experiments on the frozen soil(Zhenget al.,2006;Zhanget al.,2012).The parameters of the soils in the numerical analysis are shown in Table 2.

    5 Equivalent train load method

    The long-term settlements of embankments under train loads are not a transient problem in the kinetic theory,which can be attributed to the creep problem.The impact of train loading can be regarded as the equivalent static load in road engineering,converted to equivalent stress as well(Liao and Huang,2008).Analysis of the deformation of the frozen soil can be done using a creep model.

    Table 1 Soil mechanical parameters in the study area

    Table 2 Soil creep parameters in the study area

    Dynamic train loading is a complex issue.It involves many factors such as the axle weight,suspension system,traveling speed,track structure,and geometric irregularity of the lines.It was feasible in our numerical calculations to convert the train load to the force on the road surface,while neglecting the influence of the above factors.

    Based on the strong-motion data obtained by real-time strong-motion tests carried out at a typical embankment along the QTR in the warm season of 2009,the train load was converted to an equivalent force.Figure 3 shows the vertical acceleration waveform recorded at the shoulder of the embankment when a train was passing;the peak acceleration at the shoulder of the embankment was 220 m/s2.

    The acceleration curve can be regarded as the constant value,and the dynamic train load was converted into equivalent creep forceF,by using the equivalent static force method.Using Equation(12)in the numerical calculation,the direction ofFwas downward.

    whereFstands for the equivalent creep force,mrefers to the mass per unit volume of soil,andis the average value of the acceleration envelope.

    Figure 3 Vertical acceleration waveform recorded at a railway shoulder

    In the numerical analysis,the gravity stress field of the embankment was calculated first.The consolidation under the effect of gravity had been completed and did not generate creep.The gravity stress field was not added in subsequent creep computations.According to the equivalent force method,in the creep analysis stage a uniform loadFwas applied on top of the subgrade surface model.Based on the vertical acceleration waveform recorded at the shoulder when the trains passed,and ignoring the influence of train types,the time of train loading was considered as 30 s per trip,16 trips a day on the QTR.Based on this assumption,the deformation characteristics of the embankment under repeated train loadings were studied.

    6 The numerical results

    6.1 The displacement response

    In order to guarantee the stability and the safe operation of trains on the QTR,the embankment deformations should be rationally analyzed.The development of embankment settlement deformation,as well as the permanent deformation of the embankment,are analyzed here.

    For embankments,the vertical vibration displacement under repeated train loadings should be the subject of more research.Figure 4 shows the displacement-time curve after 292,000 trains passing of a point at the center of the top surface of the embankment;Figure 5 shows the displacement-time curve after 292,000 trains passing of a point at the center of the shoulder of the embankment.As can be seen,the creep deformation trends were similar.However,the amount of deformation varied depending on the position.The deformation at the center of the top surface of the embankment was much larger,reaching as much as 2.08 cm,than that at the road shoulder,which was just 1.42 cm.Moreover,the maximum deformation rate occurred in the first stage(within 10,000 trains passing),and the deformation rate decreased with the increasing time.

    In order to avoid repetition,the creep-time curves of points B to E at different depths below the embankment are not given here.They were the same as at point A,which was at the center of the top surface of the embankment;point B was located on the natural surface of the roadbed;and point C was located on the permafrost table.Figure 6 shows the distribution of vertical displacement along various depths within the embankment,and it can be seen that the influence of train load on the deformation of the subgrade gradually decreased with the increase in depth.The creep displacement of points A to E,after 292,000 trains loading(the cumulative traffic volume in 50 years),could reach 2.09 cm,1.30 cm,1.16 cm,0.52 cm,and 0.24 cm,respectively.The deformation characteristics of the different observation points indicated that after the railway was opened to traffic,the first embankment deformations were caused by its own weight and the train loads.With the increase in loading times,the deformation increased and then entered into the creep deformation stage.The deformation rate decreased gradually.

    Figure 4 Vertical displacement-time curve at the center of the embankment surface

    Figure 5 Vertical displacement-time curve at the shoulder of the embankment

    Figure 6 Distribution of displacement at various depths within the embankment

    From the embankment deformation process under repeated train loadings,the cumulative amount of deformation increased with the increase of train loading times.The greatest cumulative amount of deformation occurred at the center of the top surface of the embankment,reaching 2.1 cm.

    If our calculated results are correct,we can roughly analyze the share of permanent deformation induced by train load in the total deformation measured by other researchers.Figure 7 shows the total deformation process determined by Sunet al.(2013),which includes thawing settlement,compression deformation,and creep deformation from 2005 to 2013 in a typical subgrade section along the QTR.The maximum deformation of the embankment reached up to 12.2 cm.Based on the settlement and deformation calculation model put forward by Zhanget al.(2007),the total deformation can reach to about 10 cm,which is consistent with their field monitoring results.According to that model,the total subgrade settlement deformation after 50 years could reach 30 cm.Comparison of these results suggests that the deformation induced by train loads is less than 10% of the total deformation.

    6.2 The strain response

    Figure 8 shows the contour plot of shear strain of the embankment after 292,000 trains loading(the cumulative traffic volume in 50 years).In the figure,the largest shear strain occurs on both slope toes of the embankment under the long-term impact of train loading,the value of which can reach 0.186.Furthermore,the large strain zone which extended upwards from the slope toe gradually forms a continuous plane.Figure 9 shows the contour plot of equivalent creep strain(CEEQ)of the embankment after the same number of train loadings.The maximum cumulative creep strain occurs on both slope toes of the embankment and it is shown to be 7%.Figure 10 shows the creep strain-time curve of the embankment slope toe.With the increase of time,the creep strain increases while the rate decreases.This analysis shows that reinforcement on both sides of the slope toe should be considered in the QTR.

    Figure 7 Deformation process in a typical subgrade section of the QTR(data from Sun et al.,2013)

    Figure 8 Contour plot of shear strain of the embankment after 292,000 train loadings

    Figure 9 Contour plot of equivalent creep strain of the embankment after 292,000 train loadings

    Figure 10 The creep strain-time curve of the embankment slope toe

    7 Conclusions

    Based on real-time vibration tests which were carried out on a typical embankment at the Beilu River segment along the Qinghai-Tibet Railroad,the train loads were converted to equivalent creep stress using the acceleration waveforms at the shoulder when the trains passed.From the study of the rheological properties of frozen soil,a creep equation was introduced and a time-hardening power function rule and the Drucker-Prager yield and failure criterion were applied.A creep model was established to simulate the creep effect of a plain fill embankment at a permafrost area of the QTR.The main conclusions of this paper are as follows:

    1)A coupled creep model derived from a time-hardening power function rule and the Drucker-Prager yield and failure criterion could reflect the long-term effects of train loads on a QTR embankment.With the increase in time,the embankment had different deformation characteristics and the calculated values of the deformation also became larger.

    2)The effect of deformation under train loads accounted for about 10% of the total settlement of the embankment.In the vertical direction,the influence of train loads on the deformation of the subgrade gradually decreased with the increase in depth.The deformation at the center of the top surface of the embankment was much larger than that at the shoulders.The creep strain value of the slope toe was the greatest and increased gradually with time,while the strain rate decreased.

    3)Under the long-term impact of train loads,the maximum shear strain occurred at the bottom of both slopes,and the shear strain gradually extended upwards from the toe position.Moreover,the maximum creep strain occurred on both sides of the toe position,and a steady upward trend of creep strain was observed as well,which means that embankment reinforcement in the QTR should be considered.

    This work was supported by the National Key Basic Research Program of China(973 Program)(No.2012CB026106),the Program for the Innovative Research Group of the National Natural Science Foundation of China(No.41121061),and the Project for Excellence,State Key Laboratory of the National Natural Science Foundation of China(No.41023003).

    Cheng G,2002.The interacting of Qinghai-Tibet Railway and permafrost and the environmental effect.Publication of Chinese Academy of Sciences,17(1):21–25.

    Dassault Systèmes Simulia Corp.(Dassault),2010.ABAQUS Theory Manual:ABAQUS 6.10 Help Documentation.Available at:http://www.simulia.com(Cited in Mar.12,2013).

    Fei K,Zhang JW,2010.Application of ABAQUS to Geotechnogical Engineering.Beijing:China Water Power Press.

    Gu HD,2009.Numerical analysis of frozen soil foundation under traffic dynamic loads.Ph.D.dissertation,Harbin Institute of Technology,Harbin,China.

    Li SY,2008.Numerical study on the thermal-mechanical stability of railway subgrade in permafrost regions.Ph.D.dissertation,Graduate University of the Chinese Academy of Sciences,Beijing,China.

    Li SY,Zhang MY,Zhang SJ,et al.,2008.Analysis of the dynamic response of Qinghai-Tibetan Railway embankment in permafrost regions under train load.Journal of Glaciology and Geocryology,30(5):860–867.

    Liao GY,Huang XM,2008.ABAQUS finite element software application in road engineering.Ph.D.dissertation,Southeast University,Nanjing,China.

    Shi YH,2011.Study on stability of permafrost subgrade under train loading and freeze-thaw.Ph.D.dissertation,Beijing Jiaotong University,Beijing,China.

    Sun ZZ,Ma W,Dang HM,et al.,2013.Characteristics and causes of embankment deformation for Qinghai-Tibet Railway in permafrost regions.Rock and Soil Mechanics,34(9):2667–2671.

    Wang LN,Ling XC,Zhang F,et al.,2009.Field monitoring on vibration acceleration response of railway in seasonal frozen region of Daqing induced by train-steering in winter.Science Paper Online,4(7):507-511.

    Wang LM,Wu ZJ,Sun JJ,et al.,2009.Characteristics of ground motion at permafrost sites along the Qinghai-Tibet Railway.Soil Dynamics and Earthquake Engineering,29(6):974–981.DOI:10.1016/j.soildyn.2008.11.009.

    Wang TX,Hu CS,Li N,2002.Stress-strain numerical model for frozen soil subgrade.Chinese Journal of Geotechnical Engineering,24(2):193–197.

    Wu ZJ,Ma W,1994.Strength and Creep of Frozen Soil.Lanzhou,China:Lanzhou University Press.

    Xu XY,Zhong CL,Chen YM,et al.,1998.Research on dynamic characters of frozen soil and determination of its parameters.Chinese Journal of Geotechnical Engineering,20(5):80–84.

    Yu Y,2006.Study on dynamic response of frozen embankment under train vibration load.Ph.D.dissertation,Harbin Institute of Technology,Heilongjiang,China.

    Zhang JM,Liu D,Qi JL,2007.Estimation on the settlement and deformation of embankment along Qinghai-Tibet Railway in permafrost regions.China Railway Science,28(3):12–17.

    Zhang QL,Bai CG,Wang HF,2012.Test research of soil under triaxial impact loading.Laboratory Science,15(2):77–80.DOI:10.3969/j.issn.1672-4305.2012.02.026.

    Zhao SY,Zheng YR,Zhang YF,2005.Study on slope failure criterion in strength reduction finite element method.Rock and Soil Mechanics,26(2):332–336.

    Zheng B,Zhang JM,Ma XJ,et al.,2009.Study on compression deformation of warm and ice-rich frozen soil.Chinese Journal of Rock Mechanics and Engineering,28(Supp.1):3063–3069.

    Zheng B,Zhang JM,Ma XJ,2006.Studying and thinking on settlement of railway roadbed in permafrost regions.China Safety Science Journal,16(12):140–144.

    Zhu ZY,2009.Train-induced vibration response and subsidence prediction of permafrost subgrade along Qinghai-Tibet Railway.Ph.D.dissertation,Harbin Institute of Technology,Heilongjiang,China.

    欧美一级毛片孕妇| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀| 欧美精品人与动牲交sv欧美| e午夜精品久久久久久久| 制服人妻中文乱码| 国产成+人综合+亚洲专区| 9热在线视频观看99| 国产精品99久久99久久久不卡| 国产亚洲av高清不卡| 悠悠久久av| 日韩制服丝袜自拍偷拍| 色老头精品视频在线观看| 一二三四在线观看免费中文在| 国产一区二区三区视频了| 狠狠精品人妻久久久久久综合| 国产日韩欧美亚洲二区| 国产高清激情床上av| 亚洲,欧美精品.| 亚洲中文av在线| 岛国毛片在线播放| 亚洲中文av在线| 少妇裸体淫交视频免费看高清 | 在线观看舔阴道视频| 精品国内亚洲2022精品成人 | 黄频高清免费视频| 国产一区二区激情短视频| 欧美黑人精品巨大| 丁香欧美五月| 黑人巨大精品欧美一区二区蜜桃| 欧美在线黄色| 亚洲精品美女久久久久99蜜臀| 99re6热这里在线精品视频| 国产伦理片在线播放av一区| 亚洲av美国av| 19禁男女啪啪无遮挡网站| 亚洲性夜色夜夜综合| 夜夜爽天天搞| aaaaa片日本免费| 欧美久久黑人一区二区| 欧美乱码精品一区二区三区| 国产亚洲av高清不卡| netflix在线观看网站| 日本av免费视频播放| 午夜福利在线观看吧| 免费女性裸体啪啪无遮挡网站| 免费高清在线观看日韩| 亚洲精品美女久久av网站| 精品人妻熟女毛片av久久网站| 亚洲精品国产精品久久久不卡| av有码第一页| 99国产精品免费福利视频| 亚洲久久久国产精品| 男女床上黄色一级片免费看| 精品人妻熟女毛片av久久网站| 日本欧美视频一区| 午夜视频精品福利| 国产欧美日韩一区二区三区在线| 人人妻,人人澡人人爽秒播| 亚洲欧美色中文字幕在线| 日韩视频在线欧美| 国产免费av片在线观看野外av| 亚洲视频免费观看视频| 1024香蕉在线观看| 国产一区二区激情短视频| 亚洲男人天堂网一区| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 人人妻,人人澡人人爽秒播| 日韩 欧美 亚洲 中文字幕| 考比视频在线观看| 高清视频免费观看一区二区| 欧美激情极品国产一区二区三区| 成年人免费黄色播放视频| 国产精品一区二区在线观看99| 亚洲性夜色夜夜综合| 亚洲欧美一区二区三区黑人| 亚洲七黄色美女视频| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 丰满迷人的少妇在线观看| 日韩免费高清中文字幕av| 久久久精品区二区三区| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全电影3 | 欧美成人免费av一区二区三区 | 国产亚洲av高清不卡| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 变态另类成人亚洲欧美熟女 | 看免费av毛片| 久久国产精品人妻蜜桃| 一级毛片电影观看| 老司机福利观看| 国产精品久久电影中文字幕 | 欧美午夜高清在线| 日本精品一区二区三区蜜桃| 国产精品.久久久| 1024香蕉在线观看| 国产精品香港三级国产av潘金莲| 一个人免费看片子| 男女午夜视频在线观看| www.自偷自拍.com| 大型黄色视频在线免费观看| 精品国产超薄肉色丝袜足j| av免费在线观看网站| 亚洲专区国产一区二区| 九色亚洲精品在线播放| 一边摸一边做爽爽视频免费| 999久久久精品免费观看国产| 女同久久另类99精品国产91| 黄网站色视频无遮挡免费观看| 亚洲精品国产区一区二| 亚洲国产看品久久| 午夜免费成人在线视频| 国产欧美日韩一区二区三区在线| 久久久精品区二区三区| 免费在线观看影片大全网站| 免费看a级黄色片| 日本欧美视频一区| 久久久精品免费免费高清| 两个人免费观看高清视频| 久久久欧美国产精品| 美女午夜性视频免费| 成年动漫av网址| 国产一区有黄有色的免费视频| 日韩成人在线观看一区二区三区| 亚洲伊人色综图| 免费看a级黄色片| 免费看a级黄色片| 人妻 亚洲 视频| 亚洲,欧美精品.| 国产伦理片在线播放av一区| 中文字幕人妻丝袜一区二区| 国产男靠女视频免费网站| 国产欧美日韩一区二区三区在线| 午夜精品国产一区二区电影| 少妇精品久久久久久久| 一区福利在线观看| 国产欧美日韩精品亚洲av| 极品教师在线免费播放| 满18在线观看网站| 欧美精品人与动牲交sv欧美| 久久久精品国产亚洲av高清涩受| 精品熟女少妇八av免费久了| 极品人妻少妇av视频| 亚洲国产中文字幕在线视频| 高清在线国产一区| 丁香六月欧美| 五月天丁香电影| 亚洲欧美日韩另类电影网站| 一二三四在线观看免费中文在| 热re99久久精品国产66热6| 妹子高潮喷水视频| 成人av一区二区三区在线看| av天堂在线播放| 国产在线观看jvid| 少妇精品久久久久久久| 免费少妇av软件| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 视频区欧美日本亚洲| 免费观看av网站的网址| 在线看a的网站| 成人黄色视频免费在线看| 99久久精品国产亚洲精品| 国产一区二区 视频在线| 国产亚洲精品一区二区www | 在线观看66精品国产| 亚洲伊人色综图| 欧美午夜高清在线| 精品久久久久久久毛片微露脸| 青草久久国产| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 十八禁高潮呻吟视频| 国产在线免费精品| 一夜夜www| 国产黄色免费在线视频| 久久久国产一区二区| 男男h啪啪无遮挡| 激情视频va一区二区三区| 日韩视频在线欧美| 俄罗斯特黄特色一大片| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 中文亚洲av片在线观看爽 | 国产91精品成人一区二区三区 | 亚洲专区国产一区二区| 成年动漫av网址| 69av精品久久久久久 | 搡老岳熟女国产| 精品国产乱码久久久久久男人| 国产精品久久电影中文字幕 | 丝袜喷水一区| 久久九九热精品免费| 精品久久久精品久久久| 久久久久精品人妻al黑| svipshipincom国产片| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| 50天的宝宝边吃奶边哭怎么回事| 一区二区日韩欧美中文字幕| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 啪啪无遮挡十八禁网站| 窝窝影院91人妻| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 少妇 在线观看| 国产精品一区二区在线观看99| av一本久久久久| 国产在线一区二区三区精| 久久免费观看电影| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| 久久久久视频综合| 国产在线一区二区三区精| 国产黄色免费在线视频| 美国免费a级毛片| 久久av网站| 亚洲成国产人片在线观看| 成人特级黄色片久久久久久久 | 免费一级毛片在线播放高清视频 | 国产av国产精品国产| 精品国产一区二区三区四区第35| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 亚洲av欧美aⅴ国产| 99国产精品99久久久久| 一二三四社区在线视频社区8| 777米奇影视久久| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 亚洲午夜理论影院| 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 嫩草影视91久久| 欧美黑人欧美精品刺激| 日韩中文字幕欧美一区二区| 久久中文看片网| 国产精品美女特级片免费视频播放器 | 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 一级片免费观看大全| 亚洲情色 制服丝袜| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 日本av免费视频播放| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品二区激情视频| 免费不卡黄色视频| 热99国产精品久久久久久7| 国产91精品成人一区二区三区 | 婷婷成人精品国产| 丝袜美腿诱惑在线| 久久影院123| 建设人人有责人人尽责人人享有的| av有码第一页| 女人精品久久久久毛片| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 色婷婷av一区二区三区视频| 高潮久久久久久久久久久不卡| 不卡av一区二区三区| 国产成人系列免费观看| 男女之事视频高清在线观看| 一区在线观看完整版| 多毛熟女@视频| 97人妻天天添夜夜摸| 日本黄色视频三级网站网址 | 国产成人精品在线电影| 亚洲精品乱久久久久久| 曰老女人黄片| 久久中文看片网| 麻豆国产av国片精品| 9191精品国产免费久久| 99re在线观看精品视频| 电影成人av| 咕卡用的链子| 一个人免费在线观看的高清视频| 国产1区2区3区精品| 18禁国产床啪视频网站| 久久久精品94久久精品| 国产高清激情床上av| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 亚洲精品一卡2卡三卡4卡5卡| 黄频高清免费视频| 又黄又粗又硬又大视频| 国产精品av久久久久免费| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 国产免费av片在线观看野外av| 老司机午夜福利在线观看视频 | 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 男女免费视频国产| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰97精品在线观看| 久久精品91无色码中文字幕| 女性被躁到高潮视频| 亚洲av电影在线进入| 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 一级片'在线观看视频| 男女午夜视频在线观看| e午夜精品久久久久久久| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 男女之事视频高清在线观看| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 多毛熟女@视频| 精品亚洲成a人片在线观看| 18在线观看网站| 久久久精品94久久精品| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 久久亚洲精品不卡| 最黄视频免费看| 精品少妇久久久久久888优播| 悠悠久久av| 天堂中文最新版在线下载| 久久久精品94久久精品| 亚洲av成人不卡在线观看播放网| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 人人妻,人人澡人人爽秒播| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 亚洲精品国产精品久久久不卡| 成人国产av品久久久| 国产xxxxx性猛交| 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费现黄频在线看| 国产亚洲午夜精品一区二区久久| 免费在线观看影片大全网站| 精品免费久久久久久久清纯 | 色综合婷婷激情| 91麻豆精品激情在线观看国产 | 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久 | 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 欧美人与性动交α欧美软件| 久久精品国产亚洲av高清一级| 免费在线观看视频国产中文字幕亚洲| 久久99一区二区三区| 国产精品熟女久久久久浪| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 欧美激情高清一区二区三区| www日本在线高清视频| 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www | 国产精品久久电影中文字幕 | 19禁男女啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 老汉色av国产亚洲站长工具| 丁香六月欧美| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 国产男女超爽视频在线观看| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 国产精品熟女久久久久浪| 高清黄色对白视频在线免费看| 色老头精品视频在线观看| 人成视频在线观看免费观看| 亚洲精品成人av观看孕妇| 国产成人影院久久av| 激情视频va一区二区三区| 制服诱惑二区| 韩国精品一区二区三区| 亚洲精品乱久久久久久| 午夜福利乱码中文字幕| 久久人妻av系列| 一本一本久久a久久精品综合妖精| 国产成人av激情在线播放| 日本黄色日本黄色录像| 午夜日韩欧美国产| 一边摸一边抽搐一进一小说 | 一本一本久久a久久精品综合妖精| 91老司机精品| 久久毛片免费看一区二区三区| 成人国产av品久久久| 日本黄色日本黄色录像| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 1024视频免费在线观看| 99国产精品一区二区三区| 99在线人妻在线中文字幕 | 中亚洲国语对白在线视频| svipshipincom国产片| 精品人妻1区二区| 欧美日韩成人在线一区二区| 欧美 亚洲 国产 日韩一| 欧美黄色片欧美黄色片| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的| 欧美日韩中文字幕国产精品一区二区三区 | 天堂俺去俺来也www色官网| 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 99国产精品99久久久久| 久久天堂一区二区三区四区| 成人国语在线视频| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 不卡av一区二区三区| 久久亚洲真实| 国产一区二区三区视频了| 日韩有码中文字幕| 少妇精品久久久久久久| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 男女免费视频国产| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| 亚洲av成人不卡在线观看播放网| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 亚洲情色 制服丝袜| av有码第一页| 欧美国产精品va在线观看不卡| 亚洲国产欧美一区二区综合| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 丁香六月天网| 欧美中文综合在线视频| 91精品三级在线观看| 热re99久久国产66热| 国产亚洲精品久久久久5区| 97人妻天天添夜夜摸| 两性夫妻黄色片| 成人国产一区最新在线观看| 久久久久国产一级毛片高清牌| 日韩欧美一区二区三区在线观看 | 美女福利国产在线| 亚洲精品中文字幕一二三四区 | 两性夫妻黄色片| 嫩草影视91久久| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 国产免费视频播放在线视频| 狠狠狠狠99中文字幕| 亚洲欧美日韩另类电影网站| 99热国产这里只有精品6| 丁香六月天网| 正在播放国产对白刺激| 国产精品.久久久| av不卡在线播放| 汤姆久久久久久久影院中文字幕| 伊人久久大香线蕉亚洲五| 亚洲精品乱久久久久久| 亚洲精品一二三| 啦啦啦视频在线资源免费观看| 国产亚洲精品久久久久5区| 亚洲专区国产一区二区| 国产欧美日韩综合在线一区二区| 国产在线观看jvid| 两个人看的免费小视频| 天天添夜夜摸| 亚洲欧美精品综合一区二区三区| 日韩有码中文字幕| 国产又色又爽无遮挡免费看| 欧美久久黑人一区二区| 成在线人永久免费视频| 亚洲精品一卡2卡三卡4卡5卡| 久9热在线精品视频| 老司机靠b影院| 欧美日韩视频精品一区| 91字幕亚洲| 久久久国产一区二区| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 99riav亚洲国产免费| 黑人巨大精品欧美一区二区蜜桃| 国产成人啪精品午夜网站| 成年人免费黄色播放视频| 夜夜骑夜夜射夜夜干| 国产成人影院久久av| av线在线观看网站| 免费av中文字幕在线| 19禁男女啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 大香蕉久久成人网| 涩涩av久久男人的天堂| 最近最新中文字幕大全电影3 | 麻豆乱淫一区二区| 亚洲国产精品一区二区三区在线| 欧美国产精品va在线观看不卡| 男女免费视频国产| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影 | 国产主播在线观看一区二区| 国产aⅴ精品一区二区三区波| 欧美黄色片欧美黄色片| 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| 色婷婷久久久亚洲欧美| 日韩人妻精品一区2区三区| 超碰成人久久| 高清黄色对白视频在线免费看| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 日本a在线网址| 亚洲自偷自拍图片 自拍| 精品福利永久在线观看| 一级黄色大片毛片| 在线观看免费日韩欧美大片| 飞空精品影院首页| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| 日韩中文字幕视频在线看片| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 国产一卡二卡三卡精品| 91大片在线观看| 亚洲av美国av| 看免费av毛片| 国产三级黄色录像| 亚洲国产欧美网| 一个人免费在线观看的高清视频| www日本在线高清视频| 亚洲精华国产精华精| 欧美精品亚洲一区二区| 亚洲黑人精品在线| av免费在线观看网站| 国产精品成人在线| 午夜激情av网站| 男女边摸边吃奶| 女人被躁到高潮嗷嗷叫费观| 久久狼人影院| 成人三级做爰电影| 国产主播在线观看一区二区| 亚洲欧洲精品一区二区精品久久久| 一区二区日韩欧美中文字幕| 多毛熟女@视频| 国产精品国产av在线观看| 黄色a级毛片大全视频| 国产一区二区激情短视频| 热re99久久国产66热| 久久中文看片网| 我的亚洲天堂| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 香蕉丝袜av| 亚洲成人手机| 欧美激情高清一区二区三区| 一本大道久久a久久精品| 国产三级黄色录像| 亚洲av成人一区二区三| 色94色欧美一区二区| 91九色精品人成在线观看| 久久中文字幕人妻熟女| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 在线av久久热| 国产xxxxx性猛交| 国产精品 欧美亚洲| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 在线看a的网站| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 大型黄色视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 国产男靠女视频免费网站| 日本wwww免费看| 91成人精品电影| 免费久久久久久久精品成人欧美视频| 91成人精品电影| 成人影院久久| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 交换朋友夫妻互换小说| 欧美成人午夜精品| 日本wwww免费看| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 丁香六月欧美| 免费观看人在逋| 成年版毛片免费区| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 午夜久久久在线观看| 欧美日本中文国产一区发布| 天天躁日日躁夜夜躁夜夜| 精品福利永久在线观看| 国产精品久久久久久精品古装|