董靜 秦丹丹 許甫超 李梅芳 徐晴 葛雙桃 周偉樂
摘要:小麥(Triticum aestivum Linn.)穗發(fā)芽(PHS)是世界性的氣象危害,嚴重影響小麥產(chǎn)量和品質(zhì)。小麥穗發(fā)芽抗性復(fù)雜,影響因素眾多。大量與PHS相關(guān)的QTLs已被定位,但僅有少數(shù)的基因被確定和深入研究,如R、Vp-1、MET和Sdr。重點綜述了穗發(fā)芽抗性位點定位,及上述基因調(diào)控穗發(fā)芽的進展,并對目前研究中存在的問題和未來方向進行了討論。
關(guān)鍵詞:小麥(Triticum aestivum Linn.);穗發(fā)芽;抗性;分子機制;育種
中圖分類號:S512.1 文獻標識碼:A 文章編號:0439-8114(2015)22-5509-06
DOI:10.14088/j.cnki.issn0439-8114.2015.22.004
Abstract: Pre-harvest sprouting (PHS) of wheat is a worldwide climate disaster, which has severe effects on grain yield and quality. The genetics of PHS resistance of wheat is complex and many factors are involved. A lot of quantitative trait loci (QTLs) that associated with PHS have been mapped, but only a few major genes have been identified and deeply studied, such as R(red grain color gene),Vp-1(viviparous-1),MFT(MOTHER OF FT AND TFL1) and Sdr (seed dormancy resistance gene).Progress on mapping of QTLs, molecular mechanism of genes above and breeding for PHS resistance were reviewed. Furthermore,deficiencies existing in current researches and the future direction of improving PHS resistance were discussed.
Key words: wheat(Triticum aestivum Linn.);pre-harvest sprouting;resistance;molecular mechanism;breeding
小麥穗發(fā)芽(pre-harvest sprouting,PHS)是指小麥(Triticum aestivum Linn.)在收獲前遇到陰雨或在潮濕環(huán)境下的穗上發(fā)芽。穗發(fā)芽不僅影響產(chǎn)量,而且嚴重降低小麥的加工品質(zhì)和種用價值[1]。日本、英國、德國、瑞典、美國、加拿大、巴西、澳大利亞等國均曾遭受到穗發(fā)芽危害,加拿大和澳大利亞尤為嚴重[2]。中國長江中下游冬麥區(qū)、西南冬麥區(qū)和東北春麥區(qū)頻繁發(fā)生,黃淮冬麥區(qū)和北方冬麥區(qū)也時有發(fā)生[3]。最近的小麥穗發(fā)芽災(zāi)害暴發(fā)于2008、2009和2010年,造成河北、河南、山東、江蘇、安徽、湖北和四川等省份商品麥質(zhì)量大幅度下降、種源緊缺,損失嚴重[4]。其中,僅2009年湖北省襄陽市就有約20.53萬hm2小麥發(fā)生穗發(fā)芽,占當(dāng)?shù)匦←準斋@面積的66%,約12億kg小麥質(zhì)量劣化。培育和種植抗穗發(fā)芽品種是解決小麥穗發(fā)芽危害的根本途徑。對近年來小麥穗發(fā)芽基因發(fā)掘、育種研究領(lǐng)域的進展的總結(jié),對未來小麥抗穗發(fā)芽育種將起到一定的促進作用。
1 小麥穗發(fā)芽的影響因素
穗發(fā)芽抗性受基因型、環(huán)境及二者互作影響[5]。外部環(huán)境因素光、溫、水和營養(yǎng)從多方面影響a-淀粉酶活性和其他水解酶活性及植物激素含量,從而影響子粒發(fā)芽[6,7]。內(nèi)在因素中,子粒休眠特性和種皮顏色被認為是影響穗發(fā)芽的重要因子,子粒和穗部其他物理因素如種皮厚度、莖稈堅韌度、小穗疏密度、有無絨毛、小花開放程度、穗子蠟粉程度、芒長、彎曲程度、穎殼堅韌度、包裹子粒緊實度和子粒在穗子上的部位等也對穗發(fā)芽有一定影響[8-11]。而參與的生理生化因子包括α-淀粉酶、α-淀粉酶抑制劑、遲熟α-淀粉酶、赤霉素(GA)和脫落酸(ABA)、硫氧還蛋白h(Trxh)、多酚氧化酶等[1,3,12-16]。
2 小麥穗發(fā)芽抗性的分子機制
2.1 小麥穗發(fā)芽QTLs定位
小麥穗發(fā)芽是多基因調(diào)控的數(shù)量性狀,表型受環(huán)境影響較大,通過分子標記輔助選擇(MAS),為穗發(fā)芽數(shù)量性狀位點的確定和利用提供了便利條件。早在1993年,Anderson等[17]利用衍生于兩個白粒小麥的F5代RIL(Recombinant inbred lines)群體進行數(shù)量性狀分析,定位了10個與穗發(fā)芽抗性相關(guān)的RFLP標記。迄今,基于雙親DH(Double haploid)或RIL等人工作圖群體,在小麥的21條染色體上均發(fā)現(xiàn)了與穗發(fā)芽抗性相關(guān)的QTLs[18-20],其中以3A、3B、3D和4A報道最為集中[5,19,21-25]。1A、2B、2D、4B、5D、7A、7D也有不依賴于種皮色澤的具有較大效應(yīng)QTLs存在的報道[18,26-29]。
由于雙親作圖群體具有局限性,近年來利用自然群體關(guān)聯(lián)分析(Association analysis)發(fā)現(xiàn)了一些新的小麥穗發(fā)芽抗性位點,并證實了部分已定位的位點。Kulwal等[30]通過進行全基因組關(guān)聯(lián)分析,檢測到位于1BS、2BS、2BL、2DS、4AL、6DL和7DS上已報道的QTL,還鑒定出位于7BS的新位點。Arif等[31]在15條染色體檢測到含有穗發(fā)芽抗性位點,13條染色體含有休眠抗性位點,其中2D、5B 和7A是抗性位點的密集區(qū)域。Lohwasser等[32]再度檢測到Vp-1(Viviparous-1)與穗發(fā)芽和休眠顯著相關(guān),新發(fā)現(xiàn)4A上1個水通道蛋白家族基因與穗發(fā)芽和休眠顯著相關(guān)。朱玉磊等[33]找到20個顯著位點分布于小麥染色體1AS、2DS、3AS、3BL、4AL、5AS、5BL、6BS、6DS、7AL 和7BL上,其中有兩個穩(wěn)定的抗性位點,在7BL鑒定出1個新位點。endprint
綜合定位結(jié)果發(fā)現(xiàn),在小麥的基因組上均發(fā)現(xiàn)了大量的與穗發(fā)芽抗性相關(guān)的QTLs,但僅少數(shù)QTLs具有較大的效應(yīng),大多數(shù)QTLs效應(yīng)較小,且受環(huán)境和基因型影響。
2.2 小麥穗發(fā)芽抗性基因研究
2.2.1 種皮色澤相關(guān)基因 種皮顏色是影響種子休眠性的一個重要因素。小麥種子分為紅白兩色,紅色主要由類黃酮生物合成途徑產(chǎn)生的兒茶酸、原花青素和花青素組成。一般而言,紅粒品種比白粒品種的穗發(fā)芽抗性強。閆長生等[3]對起源于中國的小麥品種進行穗發(fā)芽抗性鑒定后發(fā)現(xiàn)表現(xiàn)為抗穗發(fā)芽的品種很少。
Flintham等[34]發(fā)現(xiàn)控制粒色的R(red grain color gene)基因為母性遺傳,位于3A、3B、3D染色體的長臂上。進一步研究發(fā)現(xiàn),R基因?qū)儆贛yb類轉(zhuǎn)錄因子,TaMyb10是其候選基因,調(diào)控類黃酮代謝途徑中重要基因的轉(zhuǎn)錄,如查爾酮合成酶(CHS)、查爾酮異構(gòu)酶(CHI)、黃烷酮3-羥化酶(F3H)和二羥基黃酮醇還原酶(DFR)基因在紅粒小麥的未成熟種皮中表達,在白粒小麥中幾乎完全被抑制[35-37]。R與Vp-1(Viviparous-1)在物理圖譜上大約有30 cM的距離,Vp-1可以與R基因啟動子區(qū)域的順勢作用元件結(jié)合影響R基因的表達[38]。
對TaDFR基因進一步研究發(fā)現(xiàn),3A、3D染色體基因沒有功能變異,而3B染色體有兩種等位變異,TaDFR-Bb型具有較高的穗發(fā)芽抗性,其啟動子區(qū)含有一個8 bp的插入序列,推測該序列影響TaMyb10與TaDFR-Bb啟動子的結(jié)合效率,從而導(dǎo)致該類型紅粒品種型具有較高穗發(fā)芽抗性[39]。
2.2.2 內(nèi)源激素調(diào)控途徑基因 種子內(nèi)源激素GA和ABA對種子休眠起著重要作用。GA能夠促進胚乳中儲藏物代謝,可以解除種子休眠,誘發(fā)萌發(fā)。ABA能阻止小麥子粒胚萌發(fā),并保持胚的正常發(fā)育。二者存在拮抗效應(yīng),且彼此抑制對方的代謝和信號基因[40],種子休眠還是萌發(fā),主要取決于ABA和GA激素的相互的平衡。
ABA合成相關(guān)基因的突變會使植株表現(xiàn)出低休眠性,尤其是參與ABA合成的9-順環(huán)氧類胡蘿卜素雙加氧酶NCED基因和ABA降解的ABA-8-羥化酶CYP707A基因[41]。Okamoto等[42]認為CYP707A1基因在擬南芥種子成熟中期起到分解代謝ABA的作用,而CYP707A2在種子晚熟階段發(fā)揮作用。Chono等[43]在大麥中克隆出CYP707A1基因,認為HvCYP707A1是CYP707A基因家族中的主要成員,在種子吸脹過程中,該基因在胚中的表達模式與胚中ABA含量一致。
Zhang等[44]以大麥HvCYP707A1基因的cDNA序列為探針,同源克隆了普通小麥6BL染色體上TaCYP707Al基因的全序列,該基因與大麥HvCYP707A1基因的cDNA序列相似性達94.9%,推測其與大麥很可能具有相同功能。
在擬南芥中利用ABA不敏感和超敏感突變體已經(jīng)鑒定出了控制種子休眠性和與穗發(fā)芽抗性相關(guān)的侯選基因有Abi3、Fus3以及Leci等,這些基因都具有雙重功效,既抑制萌發(fā)又促進與胚成熟有關(guān)的過程,而且這幾個基因都編碼一個含高度保守的B3區(qū)段的氨基酸序列,該保守域最早在玉米的轉(zhuǎn)錄因子Vp-1中被發(fā)現(xiàn)[45,46]。
Vp-1是玉米胚成熟過程中的一個重要轉(zhuǎn)錄調(diào)節(jié)因子,也是ABI3的同源蛋白,主要通過影響ABA信號的傳導(dǎo),調(diào)節(jié)胚對ABA的敏感性,促進與胚成熟相關(guān)基因的表達,并抑制與萌發(fā)相關(guān)基因的活性,從而對種子休眠和萌發(fā)起重要的調(diào)控作用[47,48]。
小麥Vp-1基因也是ABA信號傳導(dǎo)途徑中的重要轉(zhuǎn)錄因子,它調(diào)控子粒的休眠性,定位于第三部分同源群的長臂上[49]。小麥胚中Vp-1基因A、B、D三個等位基因產(chǎn)生的前體mRNA都會發(fā)生錯誤剪接,從而無法編碼全長蛋白,進而不同品種表現(xiàn)出對穗發(fā)芽敏感性的不同[50]。將燕麥和玉米Vp-1基因在小麥中超表達,顯著提高了種子休眠性和穗發(fā)芽抗性[51,52]。中國科學(xué)家對歐洲、中國等地小麥種質(zhì)資源以及小麥近緣種Vp-1的等位基因進行了研究,Vp-1D沒有發(fā)現(xiàn)等位變異,TaVp-1B、TaVp-1A染色體均發(fā)現(xiàn)了與穗發(fā)芽抗性相關(guān)的等位變異,并據(jù)此開發(fā)出相關(guān)的功能標記[53-57]。
AIP2(ABI3-interacting protein 2)是1個含C3H2C3型環(huán)指基序的E3連接酶,其能使ABI3蛋白多聚泛素化通過26 s蛋白途徑降解,從而通過翻譯后降解來反式調(diào)控ABA信號的傳導(dǎo)過程,從而影響穗發(fā)芽[58,59]。
高東堯[60]從小麥中分離得到AIP2基因的兩種cDNA序列TaAIP2-1和TaAIP2-2,其中TaAIP2-2基因與穗發(fā)芽性相關(guān),在感穗發(fā)芽品種中的表達量明顯高于抗穗發(fā)芽品種,在擬南芥突變體aip2中表達TaAIP2-2,激活了擬南芥ABI1、ABI2基因的表達,轉(zhuǎn)基因種子對ABA的敏感性減弱。TaAIP2蛋白與擬南芥中的AIP2蛋白一致性達88.5%,都含有典型的鋅指環(huán)結(jié)構(gòu)域,進化分析發(fā)現(xiàn),AIP2基因在植物中非常保守[61]。
GA20-氧化酶是GA生物合成和調(diào)控的關(guān)鍵酶,其催化赤霉素生物合成倒數(shù)第二步的限速酶。GA20-氧化酶通常由小的多基因家族編碼,在擬南芥中已有5個成員被成功克隆。Appleford等[62]定位了3個GA20-ox1的等位基因,分別位于小麥的5BL、5DL、4AL染色體,同時確定了其與小麥莖的生長和休眠特性相關(guān)。Li等[45]在大麥5H長臂上定位了一個穗發(fā)芽和休眠主效QTL,可解釋70%的表型變異,通過與水稻進行比較基因組學(xué)分析,發(fā)現(xiàn)TaGA20-ox1是該QTL的候選基因,同時發(fā)現(xiàn)其也可能是小麥4AL上穗發(fā)芽抗性QTL的候選基因[20,45]。目前相關(guān)后續(xù)研究還未見報道。
2.2.3 其他休眠基因 MFT(MOTHER OF FT AND TFL1)基因?qū)儆诹字R掖及方Y(jié)合蛋白(PEBP)基因家族,廣泛存在于多細胞陸生植物中。Xi等[63]證明擬南芥AtMFT基因通過一個調(diào)控ABA信號途徑的負反饋環(huán)促進種子萌發(fā),AtMFT基因表達能減弱ABA對種子萌發(fā)的抑制作用,受GA信息途徑中的DELLA蛋白正向調(diào)控。endprint
Nakamura等[64]通過對小麥TaMFT基因的表達、轉(zhuǎn)化分析證明小麥TaMFT基因促進休眠和抑制種子萌發(fā),也受到低溫調(diào)控;其解釋了3A短臂上的抗穗發(fā)芽主效QTL。liu等[65]利用白皮抗穗發(fā)芽小麥品種Rio Blanco圖位克隆了3AS的主效穗發(fā)芽抗性QTL,命名為TaPHS1,該基因被證實是TaMFT的同源基因,對小麥穗發(fā)芽抗性起正向調(diào)節(jié)作用,該基因能在較高溫度下對穗發(fā)芽抗性起作用。TaMFT基因可能在小麥穗發(fā)芽育種中發(fā)揮較大的效益。
Sugimoto等[66]利用Nipponbare/Kasalath RIL群體圖位克隆了水稻第7染色體的休眠QTL,Sdr4 (Seed dormancy 4)。OsSdr4有3個等位基因即OsSdr4-n、OsSdr4-k、OsSdr4-k,OsSdr4-n只存在于粳稻中,秈稻中則含有OsSdr4-k、OsSdr4-k兩種類型,OsSdr4-n基因型的休眠性通常低于OsSdr4-k基因型。OsSdr4基因啟動子區(qū)存在Vp-1基因B3結(jié)構(gòu)域作用的靶位點(RY元件),受OsVpl基因調(diào)控;同時OsSdr4正向調(diào)控OsDOGl-llke基因,表明OsSdr4處于種子休眠調(diào)控途徑的中間環(huán)節(jié)。
Zhang等[67]通過比較基因組學(xué),克隆了小麥的Sdr4同源基因,定位于第2部分同源群,根據(jù)TaSdr-Bl基因-11位點的SNP,開發(fā)了CAPS標記Sdr2B,產(chǎn)生TaSdr-Bla和TaSdr-Blb兩種基因型,TaSdr-Blb基因型GI值顯著高于TaSdr-Bla基因型,顯示種子休眠強弱有關(guān)。該基因可能是Munkvold等和Somyong報道的2B染色體穗發(fā)芽抗性主效QTL的候選基因。由于小麥TaVp-1和TaDOGl基因同樣參與子粒休眠性的調(diào)控,小麥TaSdr-Bl可能與水稻OsSdr4一樣,處于Vp-1和DOG1基因調(diào)控途徑的中間環(huán)節(jié)。
Alonso-Blanco等[68]利用低休眠擬南芥品種Ler和強休眠品種Cvi構(gòu)建NIL群體,定位到與子粒休眠相關(guān)的QTL,命名為DOG(delay of germination)。Bentsink等[69]圖位克隆了擬南芥的DOG1基因,這是第一個通過圖位克隆方法得到的控制種子休眠的基因。該基因?qū)儆谥参锾禺愋曰蚣易?,在擬南芥中共鑒定出4個同源基因,稱為DOG1-like基因。該基因啟動子區(qū)鑒定出1個子粒特異表達元件RY重復(fù)元件(CATGCA) 和ABA響應(yīng)元件ABRE元件(TACGTGTC)。其可能編碼與bZIP相作用的蛋白, 能夠提高種子對ABA和糖的感應(yīng)性,從而有利于維持或增強種子的休眠。
Ashikawa等[70]克隆了小麥和大麥DOGl-like基因的cDNA序列,二者序列高度相似,但與擬南芥DOG1序列相似性較低。在表達模式上,小麥和大麥的DOGl-like基因與擬南芥D0G1也存在差異, 擬南芥DOG1在子粒中特異表達,而小麥和大麥的DOGl-like基因在葉片、根和胚中都表達。在擬南芥中表達TaDOGL1基因,能夠提高子粒的休眠性,因此TaDOG1基因可能與擬南芥D0G1具有相似的作用,可用于提高小麥的穗發(fā)芽抗性。
3 小麥抗穗發(fā)芽育種進展
在抗穗發(fā)芽育種方面,何震天等[71]綜述了通過常規(guī)育種途徑如雜交、回交、誘變育種等方法育種抗穗發(fā)芽種質(zhì)的進展。肖世和等[1]也在專著中全面總結(jié)了小麥穗發(fā)芽抗性資源、育種及機理方面的進展。Depauw等[72]通過報道加拿大利用紅粒抗穗發(fā)芽種質(zhì)RL4137育成Columbus、AC Domain、Snowbird等抗穗發(fā)芽品種,評價了整穗發(fā)芽率和子粒發(fā)芽測定、自然降雨和人工模擬降雨篩選、降落值法(FN)測定a-淀粉酶活性間接篩選等方法在育種應(yīng)用中的效果。但總體上抗穗發(fā)芽小麥品種比例仍然較低,且多為紅皮品種,白皮品種的選育困難較大。
近年來分子標記輔助在穗發(fā)芽抗性育種中得到應(yīng)用。Kottearachchi等[73]、Xiao等[74]、Tyagi等[75]分別利用紅皮抗穗發(fā)芽品種Zen、萬縣白麥子及SPR8198的3A主效QTL提高了白皮小麥穗發(fā)芽抗性,但苗西磊[76]在群體中利用Vp1-1B進行穗發(fā)芽抗性篩選,發(fā)現(xiàn)效果較小,認為單靠一兩個分子標記篩選來提高穗發(fā)芽抗性效果欠佳。分子標記輔助穗發(fā)芽育種目前發(fā)展沒有達到預(yù)期的可能原因是:①當(dāng)前多數(shù)分子標記定位得到的信息重復(fù)性差,與抗穗發(fā)芽基因的連鎖距離也較遠,實際應(yīng)用較難;②多數(shù)高抗穗發(fā)芽種質(zhì)為地方或農(nóng)家品種,農(nóng)藝性狀差,難以被育種家直接應(yīng)用;而對育種家常用的育種親本材料穗發(fā)芽抗性表型及穗發(fā)芽抗性因子解析不夠。
4 問題與展望
總體上看,在穗發(fā)芽抗性基因發(fā)掘上取得了不錯的進展,但抗穗發(fā)芽品種培育進展相對緩慢,從基因到品種還需要做出很多的努力。
長江中下游麥區(qū)是穗發(fā)芽的高發(fā)區(qū),要破解小麥穗發(fā)芽難題需從三個方面入手:①在穗發(fā)芽高危區(qū)通過優(yōu)化品種布局降低穗發(fā)芽風(fēng)險,如布局揚麥11、揚麥12、鄂麥352等抗性品種。②進一步發(fā)掘優(yōu)良抗穗發(fā)芽基因和適于育種需求的種質(zhì)資源,解析穗發(fā)芽抗性遺傳機制。長江流域麥區(qū)是萬縣白麥子、永川白麥子、禿頭麥、大玉花等抗穗發(fā)芽地方品種的原產(chǎn)區(qū),該地區(qū)生產(chǎn)應(yīng)用品種和育種家材料中也理應(yīng)蘊含較高頻率的優(yōu)異穗發(fā)芽抗性基因,對該區(qū)域小麥種質(zhì)進行抗性評價和解析,對抗穗發(fā)芽育種將起到事半功倍的效果。③加大科研協(xié)作力度,創(chuàng)造一批具有不同抗性來源的中間材料,豐富育種親本,從而聚合到優(yōu)良的抗穗發(fā)芽品種。
參考文獻:
[1] 肖世和,閏長生,張海萍.小麥穗發(fā)芽研究[M].北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2004.10-184.
[2] 楊 燕,張春利,何中虎,等.小麥抗穗發(fā)芽研究進展[J].植物遺傳資源學(xué)報,2007,8(4):503-509.endprint
[3] 閆長生,張海萍,海 林,等.中國小麥品種穗發(fā)芽抗性差異的研究[J].作物學(xué)報,2006,32:580-587.
[4] 董 靜,李梅芳,許甫超,等.湖北小麥材料穗發(fā)芽抗性評價[J].湖北農(nóng)業(yè)科學(xué),2011,50(24):5040-5043.
[5] IMTIAZ M, OGBONNAYA F C, OMAN J, et al. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines[J].Genetics, 2008, 178: 1725-1736.
[6] TORADA A, AMANO Y.Effect of seed coat color on seed dormancy in different environments[J]. Euphytica,2002,126:99-105.
[7] JACOBSEN J V, BARRERO J M, HUGHES T, et al. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain(Triticum aestivum L.) [J]. Planta, 2013, 238:121-138.
[8] MAO B R, WU Z S. Study on inheritance of seed dormancy in wheat and its mechanism[J]. Scientia Agricultura Sinica, 1983,6:53-58.
[9] 肖世和.國外小麥抗穗發(fā)芽研究概況[J].國外農(nóng)學(xué)-麥類作物,1985(6):13-16.
[10] DERERA N F,BHATT G M,MONASTER G J.On the problem of pre-harvest sprouting of wheat[J]. Euphytica, 1977, 26(2):299-308.
[11] 沈正興,俞世蓉,吳兆蘇.小麥品種穗發(fā)芽抗性研究[J].中國農(nóng)業(yè)科學(xué),1991,24(5):44-50.
[12] 劉 雷,尹 鈞,任江萍,等.反義trxs基因的導(dǎo)入對小麥種子發(fā)芽的影響[J].作物學(xué)報,2004,30(8):801-805.
[13] 王鳳寶,董立峰,付金鋒.小麥抗穗發(fā)芽酶反應(yīng)生化標記選擇法[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2007,15(3):482-88.
[14] SREENIVASULU N, USADEL B, WINTER A, et al. Barley grain maturation and germination:metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools[J]. Plant Physiol,2008, 146:1738-1758.
[15] HOWELL K A, NARSAI R, CARROLL A, et al. Mapping metabolic and transcript temporal switches during germination in ricehighlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiol ,2009,149:961-980.
[16] MARES D J, MRVA K. Wheat grain preharvest sprouting and late maturity alpha-amylase[J]. Planta,2014,240:1167-1178.
[17] ANDERSON J A, SORRELLS M E, TANKSLEY S D. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat[J]. Crop Sci,1993,33:453-459.
[18] MOHAN A, KULWAL P, SINGH R, et al. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat[J]. Euphytica, 2009, 168: 319-329.
[19] KULWAL P L, MIR R R, KUMAR S, et al. QTL analysis and molecular breeding for seed dormancy and pre-harvest sprouting tolerance in bread wheat[J]. J Plant Biol, 2010, 37: 59-74.
[20] TYAGI S, GUPTA P K. Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat[J]. Triticeae Genomics and Genetics, 2012, 3:9-24.endprint
[21] KATO K, NAKAMURA W, TABIKI T, et al. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes[J]. Theor Appl Genet, 2001, 102:980-985.
[22] OSA M, KATO K, MORI M, et al. Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat[J]. Theor Appl Genet,2003,106:1491-1496.
[23] MORI M, UCHINO N, CHONO M, et al. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect[J]. Theor Appl Genet ,2005,110:1315-1323.
[24] CHEN C X, CAI B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace[J]. Mol Breed, 2008, 21:351-358.
[25] LIU S, BAI G. Dissection and fine mapping of a major QTL for preharvest sprouting in white wheat Rio Blanco[J]. Theor Appl Genet, 2010, 121:1395-1404.
[26] FOFANA B, HUMPHREYS D G, CLOUTIER S, et al. Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red 3 white seeded spring wheat cross[J]. Euphytica, 2009, 165:509-521.
[27] MUNCVOLD J D, TANAKA J, BENSCHER D, et al. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat[J]. Theor Appl Genet,2009,119:1223-1235.
[28] RASUL G, HUMPHREYS D G, BRULE-BABEL A, et al. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain[J]. Euphytica, 2009, 168: 363-378.
[29] SINGH R, MATUS-CADIZ M, BAGA M, et al. Identification of genomic regions associated with seed dormancy in white-grained wheat[J]. Euphytica,2010,174:391-408.
[30] KULWAL P, ISHIKAWA G, BENSCHER D, et al. Association mapping for preharvest sprouting resistance in white winter wheat[J]. Theor Appl Genet, 2012, 125:793-805.
[31] ARIF M A, NEUMANN K, NAGEL M, et al. An association mapping analysis of dormancy and pre-harvest sprouting in wheat[J]. Euphytica, 2012, 188: 409-417.
[32] LOHWASSER U, ARIF BORNER A. Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping[J].Biologia Plantarum, 2013,57(4): 663-674.
[33] 朱玉磊,王升星,趙良俠,等.以關(guān)聯(lián)分析發(fā)掘小麥整穗發(fā)芽抗性基因分子標記[J].作物學(xué)報,2014,40(10):1725-1732.
[34] FLINTHAM J E. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat[J]. Seed Sci Res, 2000, 10:43-50.
[35] HIMI E, NODA K. Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression[J]. J Exp Bot, 2004, 55: 365-375.endprint
[36] HIMI E, NODA K.Red grain color gene(R)of wheat is a Myb type transcription factor[J]. Euphytica,2005,143:239-242.
[37] HIMI E, MAEKAWA M, MIURA H, et al. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat[J]. Theor Appl Genet, 2011, 122:1561-1576.
[38] HATTORI T,VASLL V,ROSENKRANS L,et al.The ViviParous-1 gene and abscisic acid activate the CI regulatory gene for anthocyanin biosynthesis during seed maturation in maize[J].Genes Dev,1992,6:609-618.
[39] BI H H, SUN Y W, XIAO Y G, et al. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm[J]. Euphytica, 2014, 195: 197-207.
[40] VANSTRAELEN M,BENKOV?魣 E.Hormonal interactions in the regulation of plant development[J].Annual Review of Cell and Developmental Biology,2012,28:463-487.
[41] NAMBARA E, OKAMOTO M, TATEMATSU K, et a1.Abscisic acid and the control of seed dormancy and germination [J].Seed Sci Res, 2010,20 (2): 55.
[42] OKAMOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol,2006,141:97-107.
[43] CHONO M, HONDA I, SHINOCK S, et a1.Field studies on the regulation of abscisic acid content and germinability during grain development of barley:molecular and chemical analysis of pre-harvest sprouting[J]. J Exp Bot,2006,57:2421-2434.
[44] ZHANG C L, HE X Y, HE Z H, et al. Cloning of TaCYP707Al gene that encodes ABA 8′-Hydroxylase in common wheat(Triticum aestivum L.)[J]. Agricultural Sciences in China,2009,8:902-909.
[45] LI C D,NI P X,F(xiàn)RANCKI M,et a1.Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison[J]. Funct Integr Genomics,2004,4:84-93.
[46] PATRICK B,MARGARET E S,RALPHL O.Raffinose accumulation in maize embryos in the absence of a fully functiona1 gene product[J].Planta,l997,203:222-228.
[47] MCCARTY D R, HATTORI T, CARSON C B, et al. the Viviparous-1 developmental gene of maize encodes a novel transcriptional activator[J]. Cell,1991, 66:895-905.
[48] HOECKER U,VASIL I K,MCCARTY D R.Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize[J]. Genes Dev,1995,9:2459-2469.
[49] BAILEY P C,MCKIBBIN R S.Lenton J R. Genetic map location for orthologous genes in wheat and rice[J]. Theor Appl Genet, 1999, 98:281-284.endprint
[50] MCKIBBIN R S, WILKINSON M D, BAILEY P C, et al. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species[J]. Proc Natl Acad Sci USA, 2002, 99:10203-10208.
[51] JONES H D, PETERS N C, HOLDSWOTH M J.Genotype and environment interact to control dormancy and differential expression of the VIVIPAR0US l homologue in embryos of a vena fatua[J]. The Plant Journal, l997, 12:911-920.
[52] HUANG T, QU B, LI H P, et al. A maize viviparous 1 gene increases seed dormancy and preharvest sprouting tolerance in transgenic wheat[J]. J Cereal Sci, 2012, 55:166-173.
[53] YANG Y, ZHAO X L, XIA L Q, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats[J]. Theor Appl Genet, 2007, 115:971-980.
[54] XIA L Q, GANAL M W, SHEWRY P R, et al. Exploiting the diversity of Viviparous-1 gene associated with preharvestsprouting tolerance in European wheat varieties[J]. Euphytica, 2008,159:411-417.
[55] CHANG C,ZHANG H P,ZHAO Q X,et al. Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat[J].Euphytica,2011,179:343-353.
[56] SUN Y W, JONES D H, YANG Y, et al. Haplotype analysis of Viviparous-1 gene in CIMMYT elite bread wheat germplasm[J]. Euphytica, 2012, 186: 25-43.
[57] YANG Y, ZHANG C L, LIU S X, et al. Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence tagged site marker for pre-harvest sprouting resistance[J]. Mol Breed,2014,33:75-88.
[58] KURUP S, JONES H D, HOLDSWORTH M J. Interactions of the developmental regulator ABA with proteins identified from developing Arabidopsis seeds[J]. Plant J,2000,21:143-155.
[59] ZHANG X R,GARRETON V,CHUA N H.The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation[J].Gene Dev,2005,19:1532-1543.
[60] 高東堯.小麥穗發(fā)芽抗性相關(guān)Vp-1B和AIP2基因的克隆及功能分析[D].北京:中國農(nóng)業(yè)科學(xué)院,2010.
[61] 胡翠花,李曉燕,高 翔.普通小麥供體種穗發(fā)芽相關(guān)基因AIP2的克隆和進化研究[J].西北農(nóng)業(yè)學(xué)報,2013,22(8):1-8.
[62] APPLEFORD N E,EVANS D J, LENTON J R,et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta,2006, 223: 568-582.
[63] XI W Y, LIU C, HOU X L,et al. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J]. Plant Cell, 2010, 22:1733-1748.
[64] NAKAMURA S,ABE F,KAWAHIGASHI H,et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination[J]. Plant Cell,2011,23:3215-3229.endprint
[65] LIU S, SEHGAL S K, LI J, et al. Cloning and characterization of a critical regulator for preharvest sprouting in wheat[J]. Genetics, 2013, 195:263-273.
[66] SUGIMOTO K,TAKEUCHI Y,EBANA K,et al. Molecular cloning of Sdr4,a regulator involved in seed dormancy and domestication of rice[J]. Proc Natl Acad Sci USA,2010,107:5792-5797.
[67] ZHANG Y,MIAO X, XIA X,et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker[J]. Theor Appl Genet,2014,127:855-866.
[68] ALONSO-BLANCO C, BENTSINK L, HANHART C J, et al. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana[J]. Genetics,2003, 164:711-729.
[69] BENTSINK L,JOWETT J,HANHART C J,et al.Cloning of DOG1,a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2006,103(45):17042-17047.
[70] ASHIKAWA I,F(xiàn)UMITAKA A, NAKAMURA S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis[J]. Plant Science ,2010,179: 536-542.
[71] 何震天,陳秀蘭,韓月澎.白皮小麥抗穗發(fā)芽研究進展[J].麥類作物學(xué)報,2000,20(2):84-87.
[72] DEPAUW R M, KNOX R E, SINGH A K, et al. Developing standardized methods for breeding preharvest sprouting resistant wheat, challenges and successes in Canadian wheat[J]. Euphytica,2012, 188:7-14.
[73] KOTTEARACHCHI N S,UCHINO N, KATO K, et al. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs[J]. Euphytica,2006,152:421-428.
[74] XIAO S H, ZHANG H P,YOU G X,et al. Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment[J]. Euphytica,2012,188:85-88.
[75] TYAGI R R,MIR H,KAUR P.Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.)[J].Mol Breeding,2014,34:167-175.
[76] 苗西磊.普通小麥穗發(fā)芽抗性QTL定位及分子標記輔助選擇[D].北京:中國農(nóng)業(yè)科學(xué)院,2013.
(責(zé)任編輯 韓 雪)endprint