• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GARCH-neural network model for forecasting the volatility of bid-ask spread of the Chinese stock market

    2015-12-15 10:30:30MUZepingLISiming

    MU Zeping,LI Siming

    (1.Chongqing College of Electronic Engineering,Chongqing 401331,P.R.China 2.Southwestern University of Finance and Economics,Chengdu 611130,P.R.China)

    1 Introduction

    In this paper,the so-called bid-ask spread is served as an important indicator to quantify the financial market liquidity and efficiency.Most modern financial markets are order-driven markets,which adopt continuous double auction mechanism.There are two basic types of orders,market order and limit order.The bid-ask spread refers to the price difference between the lowest ask price and the highest bid price based on limit orders.Generally speaking,the lower the spread,the smaller the transaction cost,and also the higher liquidity and efficiency of the stock market.

    So far,bid-ask spread has been wildly discussed by empirical study and theoretical analysis[1-8].Groβ-KluβMann et al use long-memory autoregressive conditional Poisson models to predict bid-ask spread in NYSE and NASDAQ[2].Empirical study shows that,the probability distribution of the bid-ask spread obeys a power law behavior,with the exponent around 3.0[3-4].And U-shaped pattern of bid-ask spread is found in Taiwan stock exchange[5].Long-range time correlation of the bid-ask spread is also revealed for different markets,including Chinese stock market[3,6].In addition,the bid-ask spread is reported to be mono-fractal for the Chinese stock market[6].And long-rangcross-correlationsarepresentedforthe spread volatilities of different stocks in Chinese stock market[7].However,the dynamics and forecasts of bid-ask spread volatility have not been analyzed and reported in detail,to our knowledge.

    In financial market,one concerns more on the price volatility rather than the price itself.Volatility can be used to model the uncertainty and risk in financial markets.And forecasting price volatility,which is a primary subject of recent empirical studies and theoretical analysis in financial market,can enhance financial applications from risk management to investment decision.So,it is significant to look into the dynamics of bid-ask spread volatility and forecast it to deepen our understanding about the microstructure of financial market itself.

    GARCH family models have been extensively used for estimating financial asset volatilities[9-13].They can model financial data with changing variances over time.However,the linear correlation structure assumption in these models,which usually goes against the real word financial data,can result in poor model performances.Neural network,a kind of nonparametric model,can fit on non-linear data set much better,also get better results in forecasting.And the applications of neural network to modeling financial conditions are expanding rapidly[14-18].

    The motivation of this paper is to find out the perfect fitness GARCH model for bid-ask spread to better our understanding about the dynamics of volatility,and then a hybrid GARCH-NN model based on it is proposed to enhance the ability in forecasting volatility.Our proposed models are tested by tick-by-tick data of 40 constituent stocks of SZEI(Shenzhen Stock Exchange Index)in Chinese stock market for the whole year 2010,which can be used to present the performance of this exchange.And our empirical results show that SZEI bid-ask spread can be modeled better by GARCH-M model at the first step.Furthermore,our hybrid model GARCH-NN performs better on one-stepahead forecasting than GARCH-M model according to MSE and MAE criteria.

    2 GARCH family models

    Recently,numerous models based on the stochastic volatility process and time series modeling have been found as alternatives to the implied and historical volatility approach.The most wildly used model for estimating volatility is ARCH model developed by Engel in 1982.Since the development of the original ARCH model,among which GARCH,IGARCH,GARCH-M,EGARCH and GJR-GARCH are the most frequently used models[19-23].

    GARCH(p,q)is a generalization of ARCH model by making the current conditional variance dependent on the p past conditional variances as well as the q past squared innovations.

    The GARCH(p,q)model can be written as following equation(1)and(2).

    where εtis a sequence i.i.d.random variables with mean 0 and variance 1,and α0>0,αi≥0,βi≥0,and

    If the AR of the GARCH has a unit root,then GARCH model is substituted by IGARCH model.An IGARCH model can be written as formula(3)and(4).

    In finance,the return of a security may depend on its own volatility.To model such phenomenon,one may consider the GARCH-M model,which can be written as equation(5),(6)and(7).

    To overcome some weakness of the GARCH model in handling financial time series,Nelson proposes the exponential GARCH(EGARCH)model[22].The EGATCH(p,q)model can be represented as follows equation(8)and(9).

    This model allows that the volatility can have asymmetry in response to positive and negative innovations respectively.Here a positive at-icontributesto the log volatility,whereas a negativeat-igives,whereεt-i=at-i/σt-i,where the γiparameter thus signifies the leverage effect of at-i.

    Another volatility model commonly used to handle leverageeffectsisthethresholdGARCH(TGARCH).A T-GARCH(p,q)assumes the form as equation(10),(11)and(12):

    Here αi,γi,and βiare non-negative parameters satisfying conditions similar to those of GARHC models.From the model,it is seen that a positive at-icontributesto volatility,whereas a negative at-igives larger impactwith γi>0.

    In this study,we estimate GARCH family models respectively.And we use two penalized model selection criteria,the Akaike information criterion(AIC)and Schwartz bayesian criterion(SBC)to select best parameters for GARCH models[24-25].

    3 Neural network model

    GARCH family models assume a linear correlation structure among the time series data while there are non-linear patterns in such data that cannot be captured by these models.This assumption can result in poor modeling fitness and forecasting performance.A popular topic in modern data analysis is neural network,which is classified as a semi-parametric method.The theory of neural network computation provides interesting techniques that mimic the human brain and nervous system.Generally speaking,a neural network model is a set of connected input and output units where each connection has a weight associated with it.During the learning phase,the network learns by adjusting the weights so as to be able to correctly predict or classify the output target of a given set of input samples.

    Neural networks can be divided into feed forward and feedback networks.In this study,we apply a back propagation neural network,which is the most widely used network in financial applications[26-29].A generic two-layer feed-forward neural network is shown in Fig.1.

    In this study,the dataset is divided as:70%for training,15%for validation and 15%for testing.They are used for fitting model,selecting model and assessing model respectively.

    Fig.1 A two-layer feed-forward network

    4 Hybrid model

    In this section,we propose a hybrid model.As firstly,a perfected GARCH model is identified by AIC and SBC information criterions,and then upon which the hybrid model is proposed.For evaluation,we compare the forecasting result of these two models by selected measures,including MSE(mean square error)and MAE(mean absolute error).

    4.1 Bid-ask spread data and model

    The Chinese stock market is an order-driven market based on the continuous double auction.Our analysis is based on the tick-by-tick limit order book data of the liquid stocks listed on the Shenzhen Stock Exchange(SZSE).SZSE was established on December 1,1990 and has been in operation since July 3,1991.SZSE is open for trading from Monday to Friday except for the public holidays and other days as announced by the China Security Regulatory Commission.With respect to securities auction,opening call auction is held between 9:15 and 9:25 on each trading day,followed by continuous trading from 9:30 to 11:30 and 13:00 to 15:00.In this study,trading data on SZSE from 9:30 A.M.to 11:30 A.M.and 13:00 P.M.to 15:00 P.M.Beijing Time during 2010 are included only.What’s more,particular data of 40 constituent stocks issued in SZSE are collected at the same time.The data for this study comprise every quotation for the 40 stocks during 2010,which were obtained from the Guotaijunan Security Company.

    The raw limit-order book recorded high-frequency data we got firstly whose time stamps are accurate to 0.01 s.And the length of time between the reporting of quotation varies slightly depending on the trade and quote activity levels.Then a minute-by-minute series of time-weighted percentage bid-ask spreads over the trading day in SZSE market is constructed by the time weighted method in Mcinish[30].

    The time-weighting is based on the number of seconds the quotation is outstanding during the one-minute or thirty-minute interval.A percentage bid-ask spread is computed for every quotation as the following equation(13),where askkis the price a seller states she will accept for stock k,while bidkis the highest price that a buyer(i.e.,bidder)is willing to pay for stock k.

    Suppose that in the interval(T,T')there are N quotation updates,occurring at times ti,i=1,…,N,with spreads BASi,i=1,…,N where t0=T and tN+1=T'.The time-weighted spread is calculated by the following equation(14).

    After weighting,our dataset contains 50 905 minute-by-minute records for each 40 constituent stocks of SZEI.And then the spread average of these 40 stocks is calculated as the final bid-ask spread data we test for proposed model,and which represent the performance of SZSE in 2010.This time-weighting and average methods are used to process other time series variables in our model as well.And all the variances included in our model are logarithm transformed.The Tab.1 shows basic statistics of final bid-ask spread data.

    Tab.1 Data description and preliminary statistics of BAS

    Schwartz identifies four classes of variables as determinants of bid-ask spreads:activity,risk,information,and competition[31].Previous researchers show that a number of variables are significant determinants of bid-ask spreads including:the average numbers of shares per trade[32],the trading volume[32],Branch and Freed[33],stoll[34]average variance of the time-weighted bid-ask spread[35],the average return for weighted bid-ask return[35],the variance of return for weighted bid-ask spread[35],the last trading price[35].

    Based on prior researches,6 independent variables are selected by significantly correlating to the estimated volatility based on the GARCH models,which are presented in the following Tab.2.

    Tab.2 Selected independent variables

    The linear model is formed in the equation(15)and the OLS(ordinary least square)regression results are shown in equations(16)and(17).The values in brackets are t-statistic used to test whether any of the coefficients might be equal to zero.Large values of t indicate that the null hypothesis can be rejected and that the corresponding coefficient is not zero.From our results,all the coefficients are significantly not equal to zero.

    4.2 Hybrid model

    To this stage,the input variables to the neural network model have been specified by GARCH model.Specifically,the estimated conditional variance is considered to be the target for training the network,while the estimated error term from the structure model is the input variable.Fig.2 shows the process of our hybrid model.

    Fig.2 Process of hybrid model

    5 Results

    In this section,we report the results of applying GARCH-type models as well as the proposed hybrid model for forecasting volatility of bid-ask spread.At firstly,GARCH,E-GARH,I-GARCH,GARCH-M,and T-GARCH models with various combination of(p,q)parameters ranging from(1,1)to(2,2)were estimated,of which some models are not converged.And the AIC and SBC results of converged models are represented as Tab.3.

    Tab.3 AIC and SBC criteria for GARCH-type models

    According tothevaluesoffitnessmeasure,GARCH-M(1,1)has shown the best performance and thus is selected for construction of hybrid model.Specifically,the model can be represented in the following equation(18),(19)and(20).

    According to above model results,the coefficient of ln_trade is significantly positive which is against the result in New York Stock Exchange[35],however,it is reasonable for Chinese stock market,since more trading volume means higher probability inside trading involved in.The coefficient of ln_size is significant negative confirming that the spread will decrease when the market is more activity.The coefficient of risk1 and risk2aresignificantlypositivedemonstratingthat spreads are larger during intervals with greater risk.The coefficient of price shows that higher priced stocks have smaller spreads.In addition,more volatility which means more risk in the market accompanies higher spread.

    To this stage,the realized conditional variance time series data produced by GARCH-M model is inputted to be the target for training the network,while a time lag of conditional variance and a time lag of the estimated error term from the structure model are the input variables.And the statistic properties are shown in the Tab.4.

    Tab.4 Data description of BAS conditional variance and error term

    Then,we use these two models to do one-step-ahead forecast for volatility.To evaluate forecast accuracy,we compare the volatility forecasts of the proposed hybrid models with the GARCH-M(1,1)model by the threefollowingcriterions:meansquareerror(MSE),mean absolute error(MAE).And the results are shown in the Tab.5.

    The results show that hybrid model which is proposed in this paper has much lower MSE and MAE than GARCH-M(1,1)model.So,the GARCH-NN model outperforms GARCH-M(1,1)model on forecasting bidask spread of Chinese Shenzhen stock market.

    Tab.5 MSE and MAE criteria for GARCH-M and GARCH-NN models

    6 Conclusions

    Price spread is an important indicator for stock market liquidity and efficacy,and is discussed a lot in recently studies.However,the study of spread volatility is not detailed,either on the dynamics of volatility or forecasting topics.In this research,we propose a hybrid GARCH-Neural Network model,which broadens the applications of GARCH-type models in Chinese stock market.Furthermore,by comparing forecasting performances,the proposed hybrid model in this paper outperforms the perfected GARCH-M(1,1)model based on MSE and MAE criteria.Future research includes the application of such high quality forecasts of volatilities in various financial decision making problems such as asset pricing,portfolio selection and investment strategy.

    [1]PLEROU V,GOPKRISHNAN P,STANLEY H E.Quantifying fluctuations in market liquidity:analysis of the Bid-Ask Spread[J].Physical Review E,2005(7):046131-1-046131-8.

    [2]GROB-KLUBMANN A,HAUTSCH N.Predicting bid-ask spread using long-memory autoregressive conditional poisson models[J].Journal of Forecasting,2013,32(8):724-742.

    [3]MIKE S,F(xiàn)ARMER J D.An empirical behavioral model of liquidity and volatility[J].Journal of Economics&Control,2008,32(1):200-234.

    [4]ZHAO Yan,CHENG Lee-Young,CHANG Chong-Chuo,et al.Short sales,margin purchases and bid-ask spreads[J].Pacific-Basin Finance Journal,2013(24):199-220.

    [5]FARMER J D.What really cause large price changes?[J].Quantitative Finance,2004(4):383-397.

    [6]GU Gaofeng,CHEN Wei,ZHOU Weixing.Empirical regularities of order placement in the Chinese stock market[J].Physica A,2008:3173-3182.

    [7]QIU Tian,CHEN Guang,ZHONG Lixin,et al.Dynamics of Bid-ask Spread return and volatility of Chinese stock market[J].Physica A,2012,391(6):2656-2666.

    [8]ZHANG Xindong,YANG Junxian,SU Huimin et al.Liquidity premium and the Corwin-Schultz bid-ask spread estimate[J].China Finance Review International,2014,4(2):168-186.

    [9]GRANGER C W J,DING Zhuanxin.Modeling volatility persistence of speculative returns:A new approach[J].Journal of Econometrics,1996,73(1):185-215.

    [10]GRANGER C W J.Overview of non-linear time series specification in Economics[M].Berkeley NSF-Symposia,1998.

    [11]HAN H,PARK J Y.Time series properties of ARCH processes with persistent covariates[J].Journal of Econometrics,2008:275-292.

    [12]GOKBULUT R I,PEKKAYA M.Estimating and Forecasting Volatility of Financial Markets Using Asymmetric GARCH Models:An Application on Turkish Financial Markets[J].International Journal of Economics and Finance,2014,6(4):23.

    [13]ZHANG Huannan,LAN Qiujun.GARCH-Type Model with Continuous and Jump Variation for Stock Volatility and Its Empirical Study in China[J].Mathematical Problems in Engineering,2014:1-8.

    [14]HAMID S A,IABAL Z.Using neural networks for forecasting volatility of S&P 500[J].Journal of Business Research,2004:1116-1125.

    [15]KIM K J.Artificial neural networks with evolutionary instance selection for financial forecasting[J].Expert System with Application,2006:519-526.

    [16]WANG Y H.Nonlinear neural network forecasting model for stock index option price:Hybrid GJR-GARCH approach[J].Expert System with Application,2009:564-570.

    [17]YU Lean,WANG Shouyang,LAI K K.A neural-networkbased nonlinear meta-modeling approach to financial time series forecasting[J].Applied Soft Computing,2009:536-574.

    [18]KOURENTZES N,BARROW D K,CRONE S F.Neural network ensemble operators for time series forccasting[J].Expert Systems with Applications,2014,41(9):4235-4244.

    [19]BOLLERSLEV T.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1986(31):307-327.

    [20]ENGEL R.BOLLERSLEV T,Modeling the persistence of conditional variance[J].Econometric Reviews,1986(5):1-50.

    [21]ENGEL R,LILLIEN D,ROBIN R,Estimating time varying risk premia in the term structure:the ARCH-M model[J].Econometrica,1987(55):391-407.

    [22]NELSON D B.Conditional heteroskedasticity in asset return:A new approach[J].Econometrica,1991(59):347-370.

    [23]GLOSTEN L R,JAGANNATHAN R,RUNKLE D E.On the relation between the expected value and the volatility of the nominal excess return on stocks[J].Journal of Finance,1993(48):1779-1801.

    [24]AKAIKE H.A new look at the statistical model identification[J].IEEE Transactions on Automatic Control,1974:716-723.

    [25]SCHWARZ G.Estimating the dimension of model[J].Annuals of Statistics,1978:461-464.

    [26]KO P C.Option valuation based on the neural regression model[J].Expert System with Application,2009,36(1):464-471.

    [27]TSENG C H,CHENG S T,WANG Y H et al.Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices[J].Physica A,2008,387(13):3192-3200.

    [28]WANG Y H.Nonlinear neural network forecasting model for stock index option price:Hybrid GJR-GARCH approach[J].Expert System with Application,2009,36(1):564-570.

    [29]HAJIZADEH E,SEIFI A,ZARANDI M H F et al.A Hybrid Modeling Approach for Forecasting the Volatility of S&P 500 Index Return[J].Expert System with Applications,2012,39(1):431-436.

    [30]MCINISH T H,WOOD R A.An analysis of intraday pattern in Bid/Ask Spread for NYSE stocks[J].The Journal of Finance,1992,47(2):753-764.

    [31]SCHWARTZ R A.Equity markets:structure,trading,and performance[M].New York:Harper&Row,inc,1988.

    [32]TINIC S,WEST R.Competition and the pricing of dealer services in the over-the-counter market[J].Journal of Financial and Quantitative Analysis,1972,7(3):1707-1727.

    [33]BRANCH B S,F(xiàn)REED W.Bid-ask Spreads on AMEX and the big board[J].Journal of Finance,1977,32(1):159-163.

    [34]STOLL H R.The pricing of security dealer services:an empirical study of NASDAQ stocks[J].Journal of Finance,1978,33(4):1153-1172.

    [35]TINIC S M.The economics of liquidity service[J].Quarterly Journal of Economics,1972,86(1):1707-1727.

    啦啦啦观看免费观看视频高清 | 国产精品一区二区三区四区久久 | 久久久精品欧美日韩精品| 国产精华一区二区三区| 日韩欧美在线二视频| 黄色毛片三级朝国网站| 亚洲电影在线观看av| 午夜免费成人在线视频| 在线免费观看的www视频| 两个人视频免费观看高清| 非洲黑人性xxxx精品又粗又长| 制服人妻中文乱码| 国产精品1区2区在线观看.| 欧美一区二区精品小视频在线| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久久5区| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区| 一二三四在线观看免费中文在| 一级a爱片免费观看的视频| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 国产真人三级小视频在线观看| 久久中文字幕一级| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址 | 香蕉国产在线看| 国产av一区在线观看免费| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| videosex国产| 日韩一卡2卡3卡4卡2021年| 黑人欧美特级aaaaaa片| 午夜两性在线视频| 国产91精品成人一区二区三区| 大型av网站在线播放| 亚洲成国产人片在线观看| 亚洲国产欧美网| 午夜视频精品福利| 天堂√8在线中文| 国产精品久久视频播放| 国产精品秋霞免费鲁丝片| 久久青草综合色| 999久久久精品免费观看国产| 日本 av在线| а√天堂www在线а√下载| 最新在线观看一区二区三区| 中文字幕精品免费在线观看视频| 搡老岳熟女国产| 国产av精品麻豆| 国产麻豆69| 中文字幕av电影在线播放| 麻豆久久精品国产亚洲av| 黄片小视频在线播放| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 在线观看www视频免费| 91成人精品电影| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 亚洲专区字幕在线| 日本黄色视频三级网站网址| 伊人久久大香线蕉亚洲五| 日韩精品青青久久久久久| 欧美日本亚洲视频在线播放| 久久狼人影院| 精品电影一区二区在线| 国产一区二区三区视频了| 久久 成人 亚洲| 亚洲第一电影网av| 久久影院123| 黄色毛片三级朝国网站| 天天一区二区日本电影三级 | 国产精品久久久久久人妻精品电影| 在线观看免费日韩欧美大片| 性少妇av在线| www.熟女人妻精品国产| 热re99久久国产66热| 国产精品99久久99久久久不卡| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费视频网站a站| 不卡一级毛片| 国产成年人精品一区二区| 这个男人来自地球电影免费观看| 看免费av毛片| 午夜精品国产一区二区电影| 国产av精品麻豆| 国产亚洲欧美98| 亚洲国产欧美网| av中文乱码字幕在线| 天天添夜夜摸| 欧美成人免费av一区二区三区| 成人国产综合亚洲| 国产精品香港三级国产av潘金莲| 丝袜人妻中文字幕| 亚洲欧美精品综合久久99| 性少妇av在线| 中文字幕色久视频| www.熟女人妻精品国产| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女 | 久久性视频一级片| 欧美日韩一级在线毛片| 亚洲一区高清亚洲精品| 淫妇啪啪啪对白视频| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕在线视频| 国产精品久久久av美女十八| 国产精品,欧美在线| 亚洲九九香蕉| 嫁个100分男人电影在线观看| 久久草成人影院| 看片在线看免费视频| 亚洲五月色婷婷综合| 国产野战对白在线观看| АⅤ资源中文在线天堂| 国内精品久久久久久久电影| 国产精品国产高清国产av| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 少妇的丰满在线观看| 欧美性长视频在线观看| 他把我摸到了高潮在线观看| 操出白浆在线播放| 色播在线永久视频| 国产又爽黄色视频| 在线观看午夜福利视频| 国产精品电影一区二区三区| av天堂在线播放| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 日本黄色视频三级网站网址| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 亚洲第一青青草原| 国产成人一区二区三区免费视频网站| 好看av亚洲va欧美ⅴa在| 99久久99久久久精品蜜桃| 好男人在线观看高清免费视频 | 最近最新中文字幕大全免费视频| 日本一区二区免费在线视频| 最近最新中文字幕大全电影3 | 国产人伦9x9x在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩黄片免| 午夜福利一区二区在线看| 亚洲九九香蕉| 99久久国产精品久久久| 看免费av毛片| 欧美乱色亚洲激情| 婷婷六月久久综合丁香| 操出白浆在线播放| 曰老女人黄片| 亚洲精品美女久久av网站| 国产麻豆69| 欧美激情久久久久久爽电影 | 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 免费看十八禁软件| 欧美最黄视频在线播放免费| 成人三级黄色视频| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 午夜精品在线福利| 免费在线观看视频国产中文字幕亚洲| 亚洲男人天堂网一区| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| 午夜福利欧美成人| 欧美色视频一区免费| 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 亚洲免费av在线视频| 亚洲国产日韩欧美精品在线观看 | 真人做人爱边吃奶动态| 免费在线观看日本一区| 丝袜在线中文字幕| 国产97色在线日韩免费| 黄片播放在线免费| 在线观看免费视频日本深夜| av欧美777| 国产亚洲精品久久久久5区| 极品人妻少妇av视频| 脱女人内裤的视频| 久久精品91蜜桃| 久热这里只有精品99| 国产一卡二卡三卡精品| 亚洲黑人精品在线| 精品欧美一区二区三区在线| 99精品在免费线老司机午夜| 免费在线观看视频国产中文字幕亚洲| 欧美不卡视频在线免费观看 | 精品久久久久久久毛片微露脸| 一卡2卡三卡四卡精品乱码亚洲| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| 日本在线视频免费播放| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 美女免费视频网站| 1024视频免费在线观看| 亚洲av成人一区二区三| 在线观看一区二区三区| 中国美女看黄片| 久久久久久久久中文| 97人妻精品一区二区三区麻豆 | 亚洲伊人色综图| 99re在线观看精品视频| 亚洲精品中文字幕一二三四区| 久久草成人影院| 国产精品乱码一区二三区的特点 | 两人在一起打扑克的视频| 一区二区三区国产精品乱码| 韩国精品一区二区三区| 国产三级黄色录像| 99在线视频只有这里精品首页| 免费观看精品视频网站| 久久婷婷成人综合色麻豆| 亚洲av成人av| 国产欧美日韩一区二区精品| 精品国产乱子伦一区二区三区| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 婷婷精品国产亚洲av在线| 久久精品91无色码中文字幕| 欧美日本视频| 啦啦啦 在线观看视频| 人妻久久中文字幕网| 久久久久久免费高清国产稀缺| 欧美激情高清一区二区三区| 成人精品一区二区免费| 国产精品久久久人人做人人爽| bbb黄色大片| 97人妻天天添夜夜摸| 成人免费观看视频高清| 国产在线精品亚洲第一网站| 亚洲国产看品久久| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 99国产精品一区二区蜜桃av| 看免费av毛片| 国产免费av片在线观看野外av| 美女 人体艺术 gogo| 午夜激情av网站| 免费高清在线观看日韩| xxx96com| 男女做爰动态图高潮gif福利片 | 日韩免费av在线播放| 色精品久久人妻99蜜桃| 日韩国内少妇激情av| 亚洲精品粉嫩美女一区| 国产高清videossex| 国产av在哪里看| 国产色视频综合| 日韩国内少妇激情av| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 日韩精品青青久久久久久| 一本久久中文字幕| 午夜激情av网站| 极品教师在线免费播放| 久久青草综合色| 精品人妻在线不人妻| 无人区码免费观看不卡| 黄色 视频免费看| 人成视频在线观看免费观看| 国产免费男女视频| 国产三级黄色录像| 久久午夜综合久久蜜桃| 男女下面进入的视频免费午夜 | 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲七黄色美女视频| 国内精品久久久久久久电影| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人精品中文字幕电影| 日韩大码丰满熟妇| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 99精品久久久久人妻精品| 黄色a级毛片大全视频| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 免费一级毛片在线播放高清视频 | av超薄肉色丝袜交足视频| 最近最新中文字幕大全电影3 | 成年版毛片免费区| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 色老头精品视频在线观看| 国产私拍福利视频在线观看| 操出白浆在线播放| www日本在线高清视频| 1024香蕉在线观看| 免费在线观看亚洲国产| 激情视频va一区二区三区| 久久久久久久午夜电影| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 大陆偷拍与自拍| 久久精品成人免费网站| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 美女高潮到喷水免费观看| 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 色av中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久av网站| 亚洲avbb在线观看| 伊人久久大香线蕉亚洲五| 国产高清激情床上av| 一边摸一边抽搐一进一小说| netflix在线观看网站| 久久久久亚洲av毛片大全| 99riav亚洲国产免费| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 一二三四在线观看免费中文在| 91精品三级在线观看| 日韩欧美国产一区二区入口| 国产精品二区激情视频| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 国产麻豆69| av免费在线观看网站| 99国产综合亚洲精品| 天堂影院成人在线观看| 无遮挡黄片免费观看| 麻豆国产av国片精品| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| 少妇裸体淫交视频免费看高清 | 久久久久久人人人人人| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 亚洲中文字幕一区二区三区有码在线看 | 国产成人av教育| 午夜激情av网站| 91成年电影在线观看| 日韩欧美国产在线观看| 国产三级在线视频| 电影成人av| 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 高清毛片免费观看视频网站| 国产成人av激情在线播放| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 国产精品亚洲av一区麻豆| 香蕉久久夜色| 久久人人精品亚洲av| 给我免费播放毛片高清在线观看| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看 | 午夜a级毛片| 97超级碰碰碰精品色视频在线观看| 久久久久久免费高清国产稀缺| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 99riav亚洲国产免费| av电影中文网址| 88av欧美| 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 欧美绝顶高潮抽搐喷水| 岛国视频午夜一区免费看| www国产在线视频色| 亚洲成人久久性| 国产成人精品无人区| 国产激情欧美一区二区| 男人舔女人下体高潮全视频| 久9热在线精品视频| 曰老女人黄片| 色综合站精品国产| 高清在线国产一区| 亚洲少妇的诱惑av| tocl精华| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 欧美中文综合在线视频| 国产av在哪里看| 欧美成狂野欧美在线观看| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久 | 中文字幕久久专区| 久久久水蜜桃国产精品网| 免费在线观看日本一区| 国产精品爽爽va在线观看网站 | 日韩精品中文字幕看吧| 18美女黄网站色大片免费观看| 久久香蕉精品热| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 国产欧美日韩综合在线一区二区| 午夜影院日韩av| 中出人妻视频一区二区| 日本 av在线| 国产人伦9x9x在线观看| 亚洲熟妇熟女久久| 欧美日本视频| 日韩av在线大香蕉| 91在线观看av| 人成视频在线观看免费观看| 一级a爱视频在线免费观看| 亚洲人成电影观看| 久久久久久免费高清国产稀缺| 一级作爱视频免费观看| 欧美日本亚洲视频在线播放| 国产激情久久老熟女| 一进一出好大好爽视频| 久热这里只有精品99| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 国语自产精品视频在线第100页| 亚洲无线在线观看| 久久人人爽av亚洲精品天堂| av在线播放免费不卡| or卡值多少钱| 色尼玛亚洲综合影院| 999久久久国产精品视频| 久久亚洲真实| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 国产成人精品无人区| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月| 熟女少妇亚洲综合色aaa.| 久久人人精品亚洲av| x7x7x7水蜜桃| 自线自在国产av| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 国产精品一区二区精品视频观看| 国产人伦9x9x在线观看| 巨乳人妻的诱惑在线观看| 女人被狂操c到高潮| 999精品在线视频| 日日干狠狠操夜夜爽| 搡老熟女国产l中国老女人| 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 窝窝影院91人妻| 亚洲激情在线av| 女人被狂操c到高潮| 女人被躁到高潮嗷嗷叫费观| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 中文字幕人妻丝袜一区二区| 亚洲人成伊人成综合网2020| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 丝袜美足系列| 深夜精品福利| 美女扒开内裤让男人捅视频| 午夜福利18| 一进一出抽搐动态| 黄色 视频免费看| 男人的好看免费观看在线视频 | 一夜夜www| 精品久久久精品久久久| 黄色视频不卡| 91大片在线观看| 午夜福利一区二区在线看| 国产精品自产拍在线观看55亚洲| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 久久狼人影院| 老司机福利观看| 国产真人三级小视频在线观看| 久久久久国产一级毛片高清牌| 老熟妇仑乱视频hdxx| 中国美女看黄片| 757午夜福利合集在线观看| av在线天堂中文字幕| 亚洲专区字幕在线| 一夜夜www| 成年版毛片免费区| 大型av网站在线播放| 欧美性长视频在线观看| 精品国产乱码久久久久久男人| 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 久久热在线av| 黄片小视频在线播放| 夜夜躁狠狠躁天天躁| 亚洲熟妇中文字幕五十中出| 精品国产乱子伦一区二区三区| 长腿黑丝高跟| 久久人妻av系列| 午夜福利,免费看| 91大片在线观看| 精品乱码久久久久久99久播| 91大片在线观看| 亚洲av美国av| 精品第一国产精品| 亚洲成av片中文字幕在线观看| 中文字幕久久专区| 视频区欧美日本亚洲| 99久久99久久久精品蜜桃| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 免费搜索国产男女视频| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看| 国产亚洲av高清不卡| 青草久久国产| ponron亚洲| 亚洲欧美激情综合另类| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 国产精品久久久av美女十八| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 丝袜人妻中文字幕| 激情视频va一区二区三区| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 美女 人体艺术 gogo| 精品国产亚洲在线| 国产av又大| 日韩免费av在线播放| 黄色视频,在线免费观看| 国产亚洲精品一区二区www| 亚洲狠狠婷婷综合久久图片| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 女人被狂操c到高潮| 精品久久久久久,| 精品久久蜜臀av无| 国产又爽黄色视频| 成熟少妇高潮喷水视频| 午夜a级毛片| 午夜成年电影在线免费观看| 日韩欧美一区视频在线观看| 国产精品永久免费网站| 一进一出好大好爽视频| 久久人人爽av亚洲精品天堂| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添小说| 国产一区二区激情短视频| 一区二区三区国产精品乱码| 久久中文字幕人妻熟女| 国产免费男女视频| 69av精品久久久久久| 少妇 在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕日韩| 日本 欧美在线| 亚洲人成网站在线播放欧美日韩| 午夜福利视频1000在线观看 | or卡值多少钱| netflix在线观看网站| 久久人妻福利社区极品人妻图片| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 一级,二级,三级黄色视频| 亚洲熟女毛片儿| 69精品国产乱码久久久| 女人高潮潮喷娇喘18禁视频| 欧美色欧美亚洲另类二区 | 午夜久久久久精精品| 国产精品精品国产色婷婷| 夜夜看夜夜爽夜夜摸| 91麻豆av在线| videosex国产| 日本黄色视频三级网站网址| 欧美成人免费av一区二区三区| 琪琪午夜伦伦电影理论片6080| 黄色成人免费大全| 国产精品亚洲av一区麻豆| 99在线人妻在线中文字幕| 9热在线视频观看99| 美女 人体艺术 gogo| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 国产av一区二区精品久久| 久久精品亚洲精品国产色婷小说| 一区在线观看完整版| 在线观看免费视频网站a站| 亚洲国产日韩欧美精品在线观看 | 亚洲男人的天堂狠狠| 国产精品精品国产色婷婷| 麻豆久久精品国产亚洲av|