• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves.

    2015-12-13 06:10:16SeboldLacerdaandCarrer
    關(guān)鍵詞:阻斷劑那普利拮抗劑

    J.E.Sebold,L.A.Lacerdaand J.A.M.Carrer

    An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves.

    J.E.Sebold1,L.A.Lacerda2and J.A.M.Carrer3

    This paper deals with a Finite Element Method(FEM)for the approximationof the Helmholtz equation for two dimensional problems. The acoustic boundary conditions are weakly posed andan auxiliary problem with homogeneous boundary conditions is defined.This auxiliary approach allows for the formulation of a general solution method.Second order finite elements are used along with a discretization parameter based on the fixed wave vector and the imposed error tolerance.An explicit formula is defined for the mesh size control parameter based on Padé approximant.A parametric analysis is conducted to validate the rectangular finite element approach and the mesh control parameter.The results of the examples show that the discrete dispersion relation(DDR)can be used for the rectangular finite element mesh refinement under predefined error tolerances.It is also shown that the numerical formulation is robust and can be extended to higher order finite element analyses.

    Numerical Methods in Engineering,Finite Element Method,Helmholtz Equations,Plane and Cylindrical Wave Propagation.

    1 Introduction

    Numerical solutions of the Helmholtz Equation are well-known in literature,where finite and boundary element methods of aproximation have been proposed for a broad range of problems.

    One particular issue addressed by many authors is the necessary/minimum mesh discretization for the solution approximation for a fixed wavenumber.See for instance,Harari et al.(1996),who used the technique of dispersion analysis to include complex wavenumbers.In addition,complex Fourier analysis techniques wereused by them to observe the dispersion and attenuation characteristics of thepversion finite element method.Based on numerical evidences they conjectured that the elements of degreepprovide an approximation of order 2pfor the dispersion relation in the limit when the element size tends to zero. Ainsworth(2003)analyzed the discrete dispersion in the aproximation by finite elements with relatively high wavenumbers.Sarkar et al.(2011)showed that in finite flexible structural acoustic waveguides have a general form for the dispersion equation.Christon(1999)considered the dispersive behaviour of a variety of second order finite elements for wave equations and presented numerical comparisons between the discrete phase,group velocity and the analytical value.Babu?ka et al.(1995)studied the scattering properties of high order finite elements for the Helmholtz equation in one dimension,and obtained estimates up to the fifth order approximation,in which the product between the temporal frequency and the mesh parameter is smaller than one,that is,whenωh<1.The same article presents numerical evidences,which lead to the conjecture that elements of orderphave an order approximation 2pfor dispersion relation when the mesh parameterhtends to zero.Sebold et al.(2014)presented analytical expressions that provide information to the mesh control of edge finite element for the approximation of Maxwell’s equations.Such expressions were generated from the numerical phase velocity and dispersion analysis.Another important task in the present work is the use of hierarchical basis functions,Adjerid(2002).A hierarchical basis has the property that the base levelp+1 is obtained by adding new functions to the base levelp,i.e.,the base as a whole does not need to be rebuilt when the degree of the polynomial is increased.This property is desirable,if not essential,when using thep-version of the finite element method.The hierarchical basis functions in one-dimension are defined as integrals of Legendre polynomials.Thus,the orthogonality properties are guaranteed,leading to sparse and well conditioned stiffness matrices.Although the proposal of analytical expressions for the mesh refinement,based on the discrete dispersion relation,is a significant contribution of this article,the main novelty is the presentation of a contribution applied to acoustic which related with the works mentioned above.This contribution enables one to extend the work of Sebold et al.(2014)to nodal finite elements,unifying,from this point of view,the acoustic studies presented by Christon(1999)for numerical phase velocity and Babu?ka et al.(1995)for discrete dispersion relation.

    In this study the discrete dispersion relation suggests the used of the phase velocity number as an error estimator for the finite element approximation of the Helmholtz equation.The analytical expressions for the numerical phase velocity can be used to estimate the approximation error in the presence of plane or cylindrical waves,thus providing a faster,more efficient and less expensive computationally way to obtain results within an imposed error margin.It is the authors’reasoning that restricting the study to quadrilateral elements is a convenient way to provide an initial understanding for those readers interested in the foundations of this theory.

    2 Basis functions

    Let ? be an open and bounded domain in the real set R,and letbe a subspace of piecewise continuous polynomials of degreep∈Z+withmvariables denoted by

    whereC0(?)is the space of all continous functions on ?,H1(?)is the Hilbert space of differentiable functionsu,such thatuandwithj=1,...m,are integrable square functions.

    2.1 Legendre hierarchical base functions

    LetMjbe the set of Legendre polynomials de fined on a reference element ?e,which are given by Rodrigues formula,Olver et al.(2010),for 0≤j≤pas:

    The functions de fined by equations(2)form what is called Legendre Hierarchical Shape Functions,Harari et al.(1996)and Thompson and Pinsky(1994).

    2.2 Hierarchical base functions for rectangular elements of p-order

    whereXp,qis the monomial set of degree less or equal topinξand of degree less or equal toqinη,i.e.

    Thus,the basis functions with two variables,ξandη,of orderp=q,are given by the tensor product

    Thus,it follows that each basis functionand withi,j=1,2,3,associated with the nodel,appears at the tensor product entries,see equation(6)and Figure 1(a),

    Figure 1:Reference element ?eassociated with the basis functions of p=2.

    3 Helmholtz equation and the finite element method approach

    3.1 Plane wave

    Let ? ? R2be a domain with boundary Γ.The homogeneous acoustic wave equation can be written as

    For time harmonic waves,a solution of equation(7)can be written as

    Furthermore,one can assume that the wave vector κ =(κ1,κ2)is related to the circular frequency ω by the dispersion relation,Oliveira et al.(2007),

    Thus,the following variational problem,present in Liu(2009),can be stated:Find∈H1such that

    in which(·,·)L2denotes the inner product L2(?).The problem(11)is subject to boundary conditions

    An alternative approach,which aims a simpler programming solution for the problem(11)-(12),is presented in the sequence.The idea is to establish,from u( xxx)data,a new problem with homogeneous boundary conditions. The new problem is solved with second order finite element method using the Legendre hierarchical shape functions for retangular elements.Once the solution to the new problem has been found,the next step is the recovery of the solution of the problem given by equations(11)-(12).For this approach,is de fined,as well asThus,one has the new boundary conditions:j=1,2.Proceeding this way,the problem de fined by(11)-(12)turns into the nonhomogeouos problems

    3.2 Cylindrical wave

    Another relevant case appears when one has as solution of(14)the convolution

    where g,f∈Lp(?),with 1≤ p≤∞,has compact support in the domain ??Rd,with d=1,2,...,n.In the solution(18),g is known as free space Helmholtz Green’s function,Beylkin et al.(2009).Furthermore,the function g satisfy

    The main interest of this work is the case d=2.Thus,the fundamental solution in two dimensions can be obtained by takingand the identity cosh(θ)?sinh(θ)=1 for any θ angle.Thus,by taking

    Suppose the cylindrical waves expanding from a punctual source which is located at(0,0)∈R2,see Figure 2(a).Finite element approximation is considered on square domain ??R2extracted from Figure 2(a)(see Figure 2(b)).

    3.3 Numerical experiments

    Figure 2:(a)Cylindrical wave;(b)Domain ?.

    Figure 3(a)shows the analytical solution of the problem(11)-(12),while Figure 3(b)shows the result of alternative approach suggested using second order finite elements,the wave vector κ =(10π,10π),h=1/16 and the Legendre hierarchical basis functions for rectangular elements.Figures 4(a)and 4(b)show the exact solution(21)and finite element approach,respectively,referring to the cylindrical wave.This approximation is calculated using the same wave vector and the same parameterhfor the plane wave approximation.

    Figures 5(a),5(b)and 5(c)depict the diagonal slice in the(1,1)direction of the plane wave from Figure 3(a),and of the discrete surface encountered by alternative approach from Figure 3(b),at different levels of re finement:h=1/16,h=1/32,h=1/64.

    Figures 6(a),6(b)and 6(c)depict the diagonal slice in the(1,1)direction of the region propagation ? =[1,1]×[2,2]of the cylindrical wave,Figure 4(a),and of the discrete surface encountered by alternative approach,Figure 4(b),at different levels of re finement:h=1/16,h=1/32,h=1/64.

    Figure 3:(a)Analytic solution of the problem(11)-(12);(b)Alternative finite element method approach with p=2,κ =10π and re finement level h=1/16.

    Figure 4:(a)Analytic Solution for cylindrical wave;(b)Alternative finite element method approach for cylindrical wave with re finement level h=1/16.

    Figure 5:(a),(b)and(c)depict the diagonal slice in the(1,1)direction of the plane wave,at different levels of re finement,h=1/16,h=1/32,h=1/64,respectively.

    Figure 6: (a),(b)and(c)depict the diagonal slice in the(1,1)direction of the region propagation ? =[1,1]× [2,2]of the cylindrical wave,at different levels of refinement,h=1/16,h=1/32,h=1/64,respectively.

    4 Discrete dispersion relation

    First let’s establish some requirements for the definition of the discrete dispersion relation for the scalar Helmholtz equation in two dimensions must be establish.Suppose that a uniform mesh sizewith n∈Z,is placed on the real line with nodes located at hZ,where Z is the set of integers.The set of continuous piecewice linear functions on the mesh is denoted Xh1.In analogy to the continuous problem de fined by equation(7),one should be concerned with solutions of the form

    Thus,the analysis can be performed uniformly at any point of the mesh.The function∈Xh1is a discrete version of the complex exponential(s)=eiκs,where κ is the wavenumber,which is related to the frequency ω by the dispersion relation,found at Oliveira et al.(2007),and written below

    Considering the Helmholtz equation in one dimension

    the following variational problem can be stated:Find∈Xh1such that

    From another point of view,one can consider(29)as an eigenvalue problem,where ωh(κ)2can be calculated by settingIn fact,after replacing equation(25)

    into equation(29)and noting thatfollowing a similar statement forthen follows

    Expression(32)corresponds to the discrete dispersion relation for the scalar Helmholtz equation in one dimension.

    4.1 Discrete dispersion relation for the Helmholtz equation in two dimensions

    Suppose now that we have a real plane with nodes located at hZ2.The set of continuous piecewice polinomials with degree p less than or equal to two on the mesh is denoted Xh2.In analogy to the solution of the continuous problem de fined by equation(25),one should be concerned with solutions of the form

    Replacing(36),(37)and(38)in(35)the discrete dispersion relation for the Helmholtz equation in two dimensions is obtaind.It is written as follows:

    4.2 Discrete dispersion relation for elements of p-order.

    In order to use equation(30),it is desirable to expressωh(κ)in terms ofκ.A practical way to achieve this goal consist is finding an implicit de finition forωh(κ)in terms ofcos(hκ).For example,for the case of elements of the first order,relation(30)can be rewritten as

    Teorema 4.1Let[2Ne+2/2Ne]κtan(κ)and let[2No/2No?2]κcot(κ)be the notations for the Pad approximation of κtan(κ)and κcot(κ),respectively,where Ne=Thus,ωhpsatis fies cos(hκ)≈Rp(hωhp),where Rpis a rational function

    5 Parameter selection for mesh

    Now the theory developed in the two previous sections is used to establish a criterion for selection of the mesh refinement parameter n for second order rectangular elements.

    First,consider the speed of numerical phase as

    Second,to establish a connection with the numerical experiments carried out in Section 3,consider a wave vector with the same characteristics as that used in the approximation of the problem(11)-(12),i.e., κ =(κ,κ).Thus,note that ω2=2κ2C2.On the other hand,equation(39)shows that ω2=2ωh(κ)2,consequently

    Considering the cos(hκ)approximations for p=1 and p=2,equations(42)and(43),respectively,the numerical phase velocity C can be written as a function of hκ,thus obtaining,

    where β =(16cos(hκ)+104)2?960(cos(hκ)?3)(cos(hκ)?1).

    However,from dispersion relation(10)of the continuous problem,the exact phase velocity is given by c=1.For example,for p=2,Figure 7(a)shows the exact phase velocity compared with the numerical phase velocity given by equation(47).Figure 7(b)presents a closer view of Figure 7(a),with 0≤hκ≤1,from which it is possible to determine,for example,the minimum value of the parameter h so that the estimated phase velocity error is less than 0.01%.This is done simply by observing the point at which the velocity curve reaches the value 1.0001(or hκ≈0.62).

    Note that the wave vector in the numerical example was κ =10π(1,1),then by taking κ =10π,has h ≈Consequently,for n≥51,the error between the approximated and exact phase velocity is less than 0.01%.The possible use of this approximation for mesh refinement is now evaluated through a convergence analysis.

    Figure 7: (a)Numerical phase velocity for first and second order elements;(b)Closer view of Figure 7(a).

    5.1 Convergence analysis

    Letdbe the relative error in the phase velocity given by|1?C|.Equation(46)is employed to show the phase velocity approximation for a fixedκand an increasingn.This is shown in Figure 8(a)for three differentκvalues and,as expected,it is clear that improving the approximation forcrequires smallerhvalues for larger frequency numbers.For convenience,it would be interesting to vali-date the equation(27)for problems in two dimensions.To do so,it is assumed that κ=κ(cos(θ),sin(θ)).Letua∈H1(?)bedefinedbyNote que uais an analytical solution of problem(11)-(12).

    觀察組患者采取ACEI藥物治療,10 mg/d的苯那普利,對(duì)于高血壓患者降壓效果不好可加至20 mg/d,對(duì)照組患者采取非ACEI藥物治療,使用鈣離子拮抗劑、β受體阻斷劑等。兩組患者治療時(shí)間均為3個(gè)月。

    Figure 8:Phase Velocity approximation by Equation(47)with increasing discretization and FEM results for n=51.

    For calculation purposes let||·||be the norm for a real value function,de fined by

    Consideruh∈Xh2the Finite Element numerical solution of problem(11)-(12),with 51 elements in the mesh discretization.By taking the same direction of propagation of the plane wave of the numerical experiment,i.e.,one can de fine uadj∈H1by

    that are analytics solutions within the range 0.9<cadj<1.1.Furthermore,we consider the analytical solutions of diagonal points of the domain ?,i.e.,x1=x2,are considered.The error norm||uadj?uh||is shown in Figure 9(a),where can be noticed that the numerical result is better adjusted by an analytic expression with cadjvery close to 1.A closer view is shown in Figure 9(b)where it becomes clear that the numerical phase velocity error is in neighborhood d<0.01%,conforming the estimated result obtained from 7(b).

    Figure 9:(a)Error norm with 51 elements in the mesh indicating the better adjust by analytic expression with cadjvery close to 1;(b)Closer view of Figure 9(a).

    The same analysis can be made for the experiment involving cylindrical waves.In this version,uadjis de fined according to:

    whereris the distance between any point on the diagonal of the domain ?=[1,1]×[2,2]and the point(0,0).Figures 10(a)and 10(b)show the error norm reaching its lowest value,≈10?7,also in the neighborhoodd<0.01%ofcadj≈1.

    Figure 10:(a)Error norm with 51 elements in the mesh indicating the better adjust by analytic expression with cadjvery close to 1;(b)Closer view of Figure 10(a).

    In both experiments,with plane and cylindrical waves,the correlation between the error in the numerical phase velocity and the error of the approximation by finite element is evident and shows that the phase velocity equations obtained from the discrete dispersion analysis may be used as error estimators in the FEM solution of the Helmhotz equation problems.

    6 Conclusion

    The use of Legendre hierarchical basis functions facilitate the computer implementation of the finite element method for solving Helmholtz equation problems.It is always possible to take advantage of the functions used in the approximation of order p in the numerical experiments of orderp+1.Solution approximations of a simple numerical problem with fixed wavenumber were presented,until fourth order,demonstrating the already known efficiency of the method.

    From the variational formulation of the Helmholtz equation the already known expression of the discrete dispersion relation was presented for a finite element space of orderp=1.Such relation was reformulated with aid of Padé approximation and extended to spaces of elements of orderp=2.A direct link between the phase velocity,written as a function of the discrete dispersion relation,and the size of the elements used in domain discretization is shown for ordersp=1 andp=2.Graphical interpretation of these equations clearly indicate the phase velocity error reduction with the increasing mesh refinement for several wavenumbers.

    Finite element analyses were carried out and con firmed the validity of the developed phase velocity equations forp=1 andp=2.FEM results were fitted to obtain a numerical phase velocity and it was shown that the best fit was in perfect agreement with the error estimates derived from the phase velocity equation and the number of elements in the uniform discretization.

    Error norms were evaluated in all FEM analysis and a strong correlation was observed with the phase velocity error in the analyzed problem.This evidence suggests that the numerical phase velocity de fined from the discrete dispersion can be used as an error estimator in the approximation of the Helmholtz equation by the finite element method.

    Adjerid,S.(2002):Hierarchical finite element bases for triangular and tetrahedral elements.Comput.Methods Appl.Mech.Engrg.,vol.190,pp.2925–2941.

    Ainsworth,M.(2003):Discrete dispersion for hp-version finite element approximation at high wavenumber.SIAM J.Numer.Analysis,vol.42,pp.553–575.

    Babu?ka,I.et al.(1995): Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation.International Journal for Numerical Methods in Engineering,vol.38,pp.3745–3774.

    Beylkin,G.et al.(2009):Fast convolution with the free space Helmholtz Green’s function.Journal of Computational Physics,vol.228,pp.2770–2791.

    Christon,M.(1999):The influence of the mass Matrix on the dispersive nature of the semi-discrete,second-order wave equation.Methods Appl.Mech.Engrg.,vol.173,pp.146–166.

    Harari,I.et al.(1996): Recent Developments in Finite Element Methods for Structural Acoustic.Archives of Computational Methods in Engineering,vol.36,pp.131–311.

    Liu,Y.(2009):Fast Multipole Boundary Element Method.Cambridge University Press.

    Monk,P.(2003):Finite Element Methods for Maxwell’s Equations.Oxford Science Publications,New York.

    Oliveira,S.P.et al.(2007): Optimal blended spectral-element operators for acoustic wave modeling.Geophysics,vol.72,no.5,pp.95–106.

    Olver,F.et al.(2010):NIST-Handbook of mathematical functions.Cambridge University Press,New York.

    Sarkar,A.et al.(2011):Unified Dispersion Characteristics of Structural Acoustic Waveguides.Computer Modeling in Engineering&Sciences,vol.81,no.3,pp.249–268.

    Sebold,J.E.et al.(2014): Construction of an edge finite element space and a contribution to the mesh selection in the approximation of the second order time harmonic Maxwell system.Computer Modeling in Engineering&Sciences,vol.103,no.2,pp.111–137.

    Thompson,L.;Pinsky,P.(1994):Complex wavenumber Fourier analysis of the p-version finite element method.Computat.Mech.,vol.13,pp.255–275.

    1Federal Institute of Education,Science and Technology-Campus Araquari,Santa Catarina,Brazil

    2Institute of Technology for Development,Curitiba,Paraná,Brazil.

    3Federal University of Paraná,Curitiba,Paraná,Brazil.

    猜你喜歡
    阻斷劑那普利拮抗劑
    適配體在免疫性疾病靶向治療中的應(yīng)用
    環(huán)境中的β-阻斷劑及其在污水處理中的工藝研究
    GPⅡb/Ⅲa受體拮抗劑在急性冠脈綜合征中的應(yīng)用
    貝那普利聯(lián)合美托落爾治療快速房顫的療效觀察
    特拉唑嗪聯(lián)合貝那普利治療腎性高血壓的臨床觀察
    合理選擇降壓藥物對(duì)改善透析患者預(yù)后的意義
    IVF-ET拮抗劑方案中促性腺激素釋放激素激動(dòng)劑扳機(jī)后的黃體支持
    腫瘤壞死因子拮抗劑治療重癥三氯乙烯藥疹樣皮炎
    反相高效液相色譜法測(cè)定鹽酸貝那普利的血藥濃度
    微絲解聚劑及微管阻斷劑對(duì)蘚羽藻細(xì)胞重建過(guò)程的影響
    搞女人的毛片| 九九热线精品视视频播放| 国产高清有码在线观看视频| 日本黄色片子视频| 免费观看精品视频网站| 日本黄大片高清| 国产精品一及| 欧美黑人巨大hd| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 少妇裸体淫交视频免费看高清| 日本欧美国产在线视频| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 亚洲内射少妇av| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 色综合色国产| www日本黄色视频网| 深爱激情五月婷婷| 国产单亲对白刺激| 欧美激情久久久久久爽电影| 无遮挡黄片免费观看| 久久精品综合一区二区三区| x7x7x7水蜜桃| 91在线观看av| 深夜a级毛片| 乱人视频在线观看| 免费在线观看成人毛片| 波多野结衣巨乳人妻| 国产精品综合久久久久久久免费| 久久精品综合一区二区三区| 最新在线观看一区二区三区| 免费看光身美女| 亚洲国产精品sss在线观看| 舔av片在线| 51国产日韩欧美| 国产精品电影一区二区三区| 国产三级中文精品| 国内毛片毛片毛片毛片毛片| 日本黄色片子视频| 亚洲最大成人中文| 搡老岳熟女国产| 日韩欧美免费精品| 久久草成人影院| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 男女下面进入的视频免费午夜| 日本免费a在线| 免费在线观看成人毛片| av在线亚洲专区| 婷婷精品国产亚洲av在线| 色综合站精品国产| 中文字幕精品亚洲无线码一区| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 亚洲性夜色夜夜综合| 国内精品久久久久久久电影| 特级一级黄色大片| 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 十八禁国产超污无遮挡网站| 中文亚洲av片在线观看爽| 久久中文看片网| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 国产熟女欧美一区二区| 国产精品三级大全| 欧美丝袜亚洲另类 | 亚洲最大成人av| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 国产高清视频在线播放一区| 有码 亚洲区| 能在线免费观看的黄片| 国产精品99久久久久久久久| 成人三级黄色视频| 日本 欧美在线| 精品人妻一区二区三区麻豆 | 日韩人妻高清精品专区| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 久久久成人免费电影| 波多野结衣高清作品| 欧美日韩乱码在线| 亚洲欧美清纯卡通| 在线看三级毛片| 真实男女啪啪啪动态图| 老司机深夜福利视频在线观看| 欧美三级亚洲精品| 国产三级在线视频| 国产精品一及| 欧美日韩乱码在线| 18禁黄网站禁片午夜丰满| 国产大屁股一区二区在线视频| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 桃红色精品国产亚洲av| 日韩欧美国产在线观看| 午夜福利在线在线| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 久久中文看片网| 精品一区二区三区视频在线| 欧美+日韩+精品| av国产免费在线观看| 色播亚洲综合网| 国产av一区在线观看免费| 永久网站在线| 美女xxoo啪啪120秒动态图| 久久久国产成人精品二区| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 精品久久久久久久人妻蜜臀av| av在线观看视频网站免费| 一个人免费在线观看电影| 校园春色视频在线观看| 免费在线观看影片大全网站| 欧美一区二区亚洲| 乱码一卡2卡4卡精品| 亚洲一区二区三区色噜噜| 九九热线精品视视频播放| 国产精品伦人一区二区| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 韩国av在线不卡| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 国产成人影院久久av| 欧美潮喷喷水| av国产免费在线观看| 久久久久国内视频| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看 | 亚洲欧美日韩高清在线视频| 人人妻人人澡欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 国产精品久久电影中文字幕| 国产极品精品免费视频能看的| 久久精品影院6| 亚洲国产色片| av在线亚洲专区| 草草在线视频免费看| 免费观看的影片在线观看| 成人精品一区二区免费| 黄色女人牲交| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 欧美绝顶高潮抽搐喷水| 搡女人真爽免费视频火全软件 | 久久99热6这里只有精品| 精品福利观看| 露出奶头的视频| 女的被弄到高潮叫床怎么办 | 亚洲人成伊人成综合网2020| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 成年版毛片免费区| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区 | 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 中文字幕av成人在线电影| 69人妻影院| 真实男女啪啪啪动态图| 午夜影院日韩av| 中亚洲国语对白在线视频| 成人一区二区视频在线观看| 精品国产三级普通话版| 久久久国产成人免费| 亚洲无线观看免费| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 免费在线观看影片大全网站| 亚洲精品影视一区二区三区av| 人妻丰满熟妇av一区二区三区| 人人妻,人人澡人人爽秒播| 毛片一级片免费看久久久久 | 一区福利在线观看| 99在线视频只有这里精品首页| 久久久久免费精品人妻一区二区| 深夜精品福利| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 极品教师在线免费播放| 国内精品久久久久精免费| 色在线成人网| 日本欧美国产在线视频| 特级一级黄色大片| 亚洲av日韩精品久久久久久密| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 成人无遮挡网站| 少妇的逼水好多| 91av网一区二区| 日本一二三区视频观看| 99久久九九国产精品国产免费| 国产高清视频在线观看网站| 蜜桃久久精品国产亚洲av| 一区二区三区高清视频在线| 久久亚洲真实| 日韩欧美在线乱码| 国产私拍福利视频在线观看| 免费看av在线观看网站| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线观看免费完整高清在 | 伊人久久精品亚洲午夜| 亚洲国产精品sss在线观看| 亚洲av日韩精品久久久久久密| 日本a在线网址| 久久精品国产亚洲网站| 91在线观看av| 亚洲熟妇熟女久久| 欧美高清性xxxxhd video| 午夜福利高清视频| 嫁个100分男人电影在线观看| 国产精品亚洲美女久久久| 亚洲av免费在线观看| 最新在线观看一区二区三区| 国产女主播在线喷水免费视频网站 | 久久久久久久久久黄片| 别揉我奶头 嗯啊视频| 成人国产一区最新在线观看| 一本久久中文字幕| 伦理电影大哥的女人| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 国产精品嫩草影院av在线观看 | 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办 | 色av中文字幕| av中文乱码字幕在线| 成年人黄色毛片网站| 又黄又爽又免费观看的视频| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 亚洲av五月六月丁香网| 制服丝袜大香蕉在线| 成人综合一区亚洲| 久久精品国产清高在天天线| 国产日本99.免费观看| 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 久久这里只有精品中国| 欧美日韩亚洲国产一区二区在线观看| 国产精品福利在线免费观看| 国产中年淑女户外野战色| 亚洲人成网站在线播放欧美日韩| 两个人视频免费观看高清| 人人妻人人看人人澡| 他把我摸到了高潮在线观看| 欧美另类亚洲清纯唯美| 美女免费视频网站| 日本黄色片子视频| 国产男靠女视频免费网站| 最近在线观看免费完整版| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站| 大又大粗又爽又黄少妇毛片口| 亚洲美女视频黄频| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 亚洲四区av| 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 国产亚洲精品综合一区在线观看| 久久久久久久午夜电影| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 美女高潮喷水抽搐中文字幕| 亚洲精品乱码久久久v下载方式| 午夜影院日韩av| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 男女视频在线观看网站免费| 亚洲最大成人中文| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 久久中文看片网| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 日本 欧美在线| 日韩,欧美,国产一区二区三区 | 欧美精品啪啪一区二区三区| 嫩草影院新地址| 亚洲精华国产精华液的使用体验 | 色在线成人网| 成人鲁丝片一二三区免费| 97碰自拍视频| 国产成人aa在线观看| 久久精品91蜜桃| 欧美黑人巨大hd| 日本熟妇午夜| 91在线精品国自产拍蜜月| av在线亚洲专区| 久久久久久大精品| 麻豆一二三区av精品| 日本精品一区二区三区蜜桃| av在线老鸭窝| 欧美黑人欧美精品刺激| 久久人妻av系列| 久久久成人免费电影| 亚洲男人的天堂狠狠| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线| 久久久久国内视频| 在线天堂最新版资源| 久久午夜福利片| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 亚洲色图av天堂| 一个人免费在线观看电影| 韩国av一区二区三区四区| 亚洲精品国产成人久久av| 国产探花在线观看一区二区| 亚洲精品色激情综合| 又爽又黄a免费视频| 国产精品av视频在线免费观看| 亚洲av不卡在线观看| 美女免费视频网站| 亚洲avbb在线观看| 久久久成人免费电影| 欧美高清性xxxxhd video| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 国产不卡一卡二| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 亚洲精品456在线播放app | 黄色丝袜av网址大全| avwww免费| 中文字幕免费在线视频6| 美女免费视频网站| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 国产单亲对白刺激| 在线观看一区二区三区| 在线播放国产精品三级| 亚洲av美国av| 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 欧美最黄视频在线播放免费| a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| 男女边吃奶边做爰视频| 91在线观看av| 日本a在线网址| 欧美日韩瑟瑟在线播放| 毛片一级片免费看久久久久 | 观看美女的网站| 国产亚洲精品av在线| a级毛片a级免费在线| av专区在线播放| 女生性感内裤真人,穿戴方法视频| 日日摸夜夜添夜夜添小说| 国国产精品蜜臀av免费| 搡老熟女国产l中国老女人| 18禁在线播放成人免费| 亚洲国产精品合色在线| 亚洲av熟女| 白带黄色成豆腐渣| 夜夜爽天天搞| av.在线天堂| 99久久精品国产国产毛片| 全区人妻精品视频| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 麻豆国产av国片精品| 午夜福利高清视频| 最新在线观看一区二区三区| 3wmmmm亚洲av在线观看| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 小蜜桃在线观看免费完整版高清| 亚洲狠狠婷婷综合久久图片| 在线播放无遮挡| 听说在线观看完整版免费高清| 韩国av一区二区三区四区| 制服丝袜大香蕉在线| 国内精品一区二区在线观看| 中国美女看黄片| 免费观看在线日韩| 国产人妻一区二区三区在| 在线观看av片永久免费下载| 成人鲁丝片一二三区免费| 精品人妻视频免费看| 99久国产av精品| avwww免费| 亚洲天堂国产精品一区在线| 国产国拍精品亚洲av在线观看| 成人精品一区二区免费| 搡老妇女老女人老熟妇| 国产白丝娇喘喷水9色精品| www.www免费av| 999久久久精品免费观看国产| 午夜爱爱视频在线播放| 亚洲成人精品中文字幕电影| 亚洲图色成人| 国产精品人妻久久久影院| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 白带黄色成豆腐渣| 久久午夜亚洲精品久久| 在线观看av片永久免费下载| 国产精品伦人一区二区| 丰满的人妻完整版| 亚洲欧美日韩高清在线视频| 国产精品自产拍在线观看55亚洲| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 免费观看在线日韩| 精品无人区乱码1区二区| 日韩欧美精品v在线| 校园春色视频在线观看| 五月玫瑰六月丁香| 精品久久久久久久人妻蜜臀av| 国内毛片毛片毛片毛片毛片| 欧美最新免费一区二区三区| av女优亚洲男人天堂| 此物有八面人人有两片| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 亚洲欧美清纯卡通| 波多野结衣高清无吗| 成人鲁丝片一二三区免费| 热99在线观看视频| 九色国产91popny在线| 国产亚洲91精品色在线| 欧美日本视频| 亚洲黑人精品在线| 在线天堂最新版资源| 最近在线观看免费完整版| 成人国产一区最新在线观看| 91精品国产九色| 九九久久精品国产亚洲av麻豆| 精品久久久噜噜| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 久久6这里有精品| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 欧美又色又爽又黄视频| 蜜桃亚洲精品一区二区三区| 婷婷六月久久综合丁香| 国产av麻豆久久久久久久| 国产伦人伦偷精品视频| 亚洲成人免费电影在线观看| 在线免费观看不下载黄p国产 | 亚洲av成人精品一区久久| a级毛片免费高清观看在线播放| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 在线a可以看的网站| 乱系列少妇在线播放| 美女大奶头视频| 久久久久精品国产欧美久久久| 久久人人爽人人爽人人片va| 久久精品国产亚洲av涩爱 | 日本a在线网址| 在线天堂最新版资源| 中文字幕精品亚洲无线码一区| 黄片wwwwww| 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 看十八女毛片水多多多| 国产真实乱freesex| 成人三级黄色视频| 精品久久久久久久久久免费视频| 免费看美女性在线毛片视频| 国产熟女欧美一区二区| 97超级碰碰碰精品色视频在线观看| 一区福利在线观看| 可以在线观看毛片的网站| 亚洲av第一区精品v没综合| 亚洲国产高清在线一区二区三| 久久精品国产亚洲网站| 丰满的人妻完整版| 免费av观看视频| 日本免费a在线| 日韩中文字幕欧美一区二区| 日本撒尿小便嘘嘘汇集6| 黄色女人牲交| 人人妻人人看人人澡| 欧美黑人巨大hd| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 女生性感内裤真人,穿戴方法视频| 日韩,欧美,国产一区二区三区 | 国产一区二区三区av在线 | 直男gayav资源| 欧美日韩中文字幕国产精品一区二区三区| 国产精品国产高清国产av| 国产淫片久久久久久久久| 国产精品无大码| 男女那种视频在线观看| 日本免费a在线| 日本-黄色视频高清免费观看| 麻豆av噜噜一区二区三区| 国产精品,欧美在线| 亚洲无线观看免费| 国产亚洲av嫩草精品影院| 亚洲自拍偷在线| 亚洲人成网站高清观看| 一夜夜www| 永久网站在线| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区久久| 国产免费男女视频| 精品欧美国产一区二区三| 精品人妻视频免费看| 成人美女网站在线观看视频| 欧美成人性av电影在线观看| av在线蜜桃| 成熟少妇高潮喷水视频| 国产成人福利小说| 国产黄片美女视频| 精品无人区乱码1区二区| 香蕉av资源在线| 亚洲午夜理论影院| 最后的刺客免费高清国语| av天堂在线播放| 久久人妻av系列| 天美传媒精品一区二区| 国产一级毛片七仙女欲春2| 99久国产av精品| 国产黄a三级三级三级人| 精品福利观看| 亚洲欧美激情综合另类| 日韩欧美三级三区| 欧美人与善性xxx| 免费观看的影片在线观看| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| 日韩强制内射视频| 小说图片视频综合网站| xxxwww97欧美| 99久久中文字幕三级久久日本| 午夜日韩欧美国产| 在线观看午夜福利视频| 日韩欧美国产一区二区入口| 黄色丝袜av网址大全| 国产一区二区三区在线臀色熟女| 欧美日韩综合久久久久久 | 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 久久精品久久久久久噜噜老黄 | 亚洲自拍偷在线| 国产高清三级在线| 免费看美女性在线毛片视频| 全区人妻精品视频| 成人鲁丝片一二三区免费| 美女黄网站色视频| 欧美+日韩+精品| 午夜精品在线福利| 日本色播在线视频| 黄色欧美视频在线观看| 岛国在线免费视频观看| 午夜福利高清视频| 国内久久婷婷六月综合欲色啪| 亚洲最大成人av| 女同久久另类99精品国产91| 日本黄色片子视频| 国产精品一区二区三区四区久久| 亚洲无线观看免费| 国产亚洲精品久久久com| 深夜a级毛片| 99热精品在线国产| 欧美黑人巨大hd| 精品人妻1区二区| 乱码一卡2卡4卡精品| 亚洲av一区综合| 亚洲中文字幕一区二区三区有码在线看| 91精品国产九色| 色哟哟·www| h日本视频在线播放| 免费在线观看成人毛片| 日韩欧美三级三区| 久久精品国产亚洲av涩爱 | 日韩强制内射视频| 日本-黄色视频高清免费观看| 久久精品国产99精品国产亚洲性色| 深夜精品福利| 亚洲国产精品合色在线| 亚洲人与动物交配视频| 国产免费av片在线观看野外av| 尾随美女入室| 亚洲av免费高清在线观看|