• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Analysis of High-temperature Molten-salt Electrolytes in Thermal Batteries

    2015-12-13 03:32:48ChenLiandHong
    Computers Materials&Continua 2015年6期

    C.F.Chen,H.Y.Liand C.W.Hong,2

    Molecular Dynamics Analysis of High-temperature Molten-salt Electrolytes in Thermal Batteries

    C.F.Chen1,H.Y.Li1and C.W.Hong1,2

    The purpose of this research is to improve the discharge rate and to predict the melting point of high-temperature molten-salt electrolytes in thermal batteries.Using molecular dynamics(MD)simulation techniques,we tried to develop some novel ternary and quaternary molten electrolytes to replace conventional binary LiCl–KCl ones.The simulation results with greater ionic conductivity and lower melting point are consistent with experimental results reported by previous literatures.The MD results have found that the lithium ion mole fraction in the molten-salt electrolytes affects the ionic conductivity significantly.This paper demonstrates that MD simulation techniques are a useful tool to screen various design ideas on the multi-component electrolytes in a more efficient way.The molecular composition of each component of the molten-salt electrolytes can be optimized using this atomistic analysis instead of trial-and-error experiments.

    Molecular dynamics(MD),Thermal battery,Molten-salt electrolyte,Ionic conductivity,Melting point.

    1 Introduction

    High-temperature molten-salt batteries(or thermal batteries)are excellent power sources for military applications,and potentially for electric vehicles as well as grid energy storage.They are rugged,robust,reliable with excellent power density,and can be stored without degradation for more than 20 years[Guidotti and Masset(2006);Masset and Guidotti(2007);Masset and Guidotti(2007)].They feature high output power and superior stability in long-time storage,which are especially suitable to emergency applications.Thermal batteries consist of two functional parts:a heat generation system that generates heat and maintains the molten salt in the molten state,and an electrochemical cell system which generates electricpower.Thermal batteries are mainly used as electrical power generators in military equipment,including missiles,guided bombs,shells,decoys,torpedoes,and aircraft security systems[Masset P.(2006);Masset,Schoeffert,Poinso,and Poignet(2005); Ratnakumar,Smart,Kindler,Frank,Ewell,and Surampudi(2003)].Thermal batteries are also applied in civil high-technology appliances,such as satellites,rocket launchers,and specific applications such as geothermal generators[Dagarin,Taenaka,and Stofel(1996);Guidotti,Reinhardt,and Odinek(2004)].

    Improving the overall performance of thermal batteries for growing electronic demand is always a target for battery developers.Various methods for increasing the ionic conductivity and lowering the melting point,such as using new electrolytes of ternary and quaternary molten-salt systems,have been proposed to increase the power output.Recently,Fujiwara et al.[Fujiwara,Kato,Watanabe,Inaba,and Tasaka(2009);Fujiwara,Inaba,and Tasaka(2010);Fujiwara,Inaba,and Tasaka(2011);Fujiwara(2012)]developed a new simulation technique using the CALPHAD(Calculation of Phase Diagram and Thermodynamics)method to predict the ionic conductivity and the melting point.They proposed that the target of the ionic conductivity should be over 2.0 Scm?1or higher and the melting point should between a temperature range of 623-703K(350-430?).Due to the fact that experimental trial-and-errors on high-temperature molten-salt batteries are tedious to conduct,and most experiments cannot observe the detailed process inside the batteries,we need to develop a more efficient simulation technique,in which the chemical and physical properties can be predicted and the ion interactions inside the electrolyte can also be observed.Although Galamba et al.[Galamba,Nieto de Castro,and Ely(2004);Galamba,Nieto de Castro,and Ely(2007)],Ohtori et al.[Ohtori,Oono,and Takase(2009);Ohtori,Salanne,and Madden(2009)],and Salanne et al.[Salanne,Marrocchelli,Merlet,Ohtori,and Madden(2011)]have recently developed the equilibrium and non-equilibrium molecular dynamics techniques for molten salts and have achieved some results,they are limited in simple molten-salt compositions.

    This research mainly develops the molecular dynamics technique to simulate the ternary and quaternary electrolytes to replace the conventional binary ones.These molten-salt electrolytes contain neither environmentally unstable anions,such as iodides,nor expensive cations,such as rubidium and cesium.Ionic conductivities and melting temperatures are the two major parameters that influence the performance of these thermal batteries.We use simulation techniques to tune the lithium ion mole fraction(from 0.05 to 0.95)to achieve the greatest ionic conductivity with melting temperature as lower as possible.The following sections will describe the simulation model and those computational results.

    2 Simulation model and conditions

    This research mainly studies five types of eutectic salts,as displayed in Table 1,used as the electrolytes for the thermal batteries.Their molecular structures are set up in a unit cell with the volume around 50 ?×50 ?×50 ?.The total number of atoms is approximately 8000,comprising 4000 cations(Li+,Na+,and K+)and 4000 anions(Cl?and Br?).Figure 1 shows the molecular structures of the binary LiCl–KCl,ternary LiCl–LiBr–NaCl and LiCl–LiBr–NaBr,as well as quaternary LiCl–LiBr–NaCl–KCl and LiCl–LiBr–NaBr–KBr electrolytes.Their molecular structures were evaluated from their minimized total energies and softsphere models[Haile(1997);Cheng Lee,and Hong(2007)]were adopted.Details of their compositions and simulation conditions are listed in Table 1 and Table 2

    Table 1:Various molten-salt electrolytes.

    Table 2:Summary of simulation conditions.

    This simulation was carried out on a Material Studio 5.5platform,which was developed by Accelrys Corporation to analyze the nanostructure and to predict properties of various materials.A potential function called COMPASS(condensed-phase optimized molecular potential for atomistic simulation study)[Duan,Li,and Zhu(2011);Sun(1998)]was employed to evaluate the potential energy of organic and inorganic materials.Its ab initio force field also enables accurate and simultaneous predictions of the condensed-phase properties(equation of state,cohesive energies,etc.)of a broad range of atoms,molecules,and polymers.The potential equation is expressed as

    This force field was parameterized to predict various properties of molecules in an isolated system and in a condensed phase state.Molecular properties include molecular structures,vibrational frequencies,conformation energies,dipole moments,liquid structures,crystal structures,and cohesive energy densities.The parameterization procedure is divided into two phases:ab initio parameterization and semi-empirical optimization.In the first phase,partial charges and valence parameters are derived to fit to the ab initio potential energy surfaces.In the second phase,the force field is semi-empirically fitted to ensure strong agreement with the experimental data.

    The simulation procedure can be divided into two stages:equilibration and production.In this study,the simulation was carried out using a fixed number of atoms,fixed volume,and fixed temperature(NVT)ensemble[Darden York,and Pedersen(1993)].The Ewald summation technique[Hoover(1985);Nose(1984)]for evaluating the long-range electrostatic interactions in the Columbic term was employed.Detailed description of this molecular modeling technique has been explained in the textbook[Allen and Tildesley(1987)]and also in our previous papers[Cheng,Chen,and Hong(2008);Lee and Hong(2010);Lee and Hong(2009);San,Chiu and Hong(2011);San and Hong(2011);San and Hong(2012)].

    3 Results and discussion

    3.1 Diffusion coefficient and ionic conductivity analysis

    The mobility of lithium ions can be determined based on a quantitative mean square displacement(MSD),which is defined as

    where N is the number of total atoms,rn(t)represents the position vector of atom n at time t,t0is the initial time step,and the brackets hi indicate time averaging.The diffusion coefficient,D,can be evaluated from the slope of the MSD curves versus elapsed time and B is a constant.Figure 2 shows the MSD tendency of the molten salt ions at a fixed temperature.The fixed temperature of LiCl–KCl was set at 723 K,and that of the remaining electrolytes was set at 773 K for experimental verification.All MSD curves exhibited an approximately linear proportion to the elapsed time,indicating that the ions behaved like transport fluids during the simulation and con firming that all salts reached the molten(or liquid)state.This figure also shows that the slope of the LiCl–LiBr–NaBr–KBr(quaternary-2)is the greatest,the LiCl–KCl(binary)is the lowest,which means that quaternary may have higher ionic conductivity than the others.

    The ionic conductivity can be determined from the Nernst–Einstein relation,which is expressed by

    Figure 2:Mean square displacement(MSD)versus elapsed for different materials of molten-salt electrolytes.

    where σ the ionic conductivity,N is the number of lithium ions,e is the charge of mobile ions,Dselfis the self diffusion coefficient of lithium ions,V is the volume of the simulation system,KBis the Boltzmann constant,and T is the operation temperature of the simulation system.Figure 3 shows a comparison of the simulation and experimental ionic conductivities in different molten-salt electrolytes.The simulation results are lower than the experimental data slightly,but the trend is exctly predicted.

    Figure 4 shows the ionic conductivities at different operating temperatures for all electrolytes.The ionic conductivity predictions of the binary electrolytes are also compared with experimental results.The simulation and experimental results for LiCl-KCl are highly consistent and the deviations are within 5%–7%.Temperature was found to be the key factor and is directly proportional to the ionic transport.Teneray-2(LiCl–LiBr–NaBr)exhibits the highest ionic conductivity,while quaternary-2(LiCl-LiBr-NaBr-KBr)comes to the second,when the operating temperatures are over 723K.

    Figure 3:Simulation and experimental ionic conductivities in different molten-salt electrolytes.Experimental results are from references Masset and Guidotti(2007);Ratnakumar,Smart,Kindler, Frank,Ewell,and Surampudi(2003);Dagarin,Taenaka,and Stofel(1996).

    The above results can be converted to the Arrhenius plots as shown in Figure 5.It is for judgement of the dependence of ionic conductivity on the temperature.The chemical activation energy can also be calculated from the log form of the Arrhenius law as below

    where σ is the ionic conductivity,T is the opearting temperature,A is the preexponential factor,kBis the Boltzmann constant,and Eais the activation energy.In this study,the operation temperature ranged between 673 K and 873 K.The relationship between log(σ ·T)and the reciprocal temperature(1/T)can be fitted to straight lines in the plots.The value of the extrapolated intercept at y axis is ln(A),and the slope of the straight line equals(-Ea/kB).The activation energy of each electrolyte calculated from the above diagram is shown in Table 3,which indicates that the Tenary-1 has the lowest activation barrier.Figure 5(a)also shows that the linear fit of the simulation results is consistent with the experimental results

    Figure 4:Ionic conductivities at different operating temperatures(673,723,773,823,and 873 K)for all five kinds of molten salt electrolytes.*references[Masset and Guidotti(2007)]

    Table 3:Activation energies evaluated from simulation conditions.

    3.2 Radial distribution function and molecular structure analysis

    The radial distribution function(RDF),denoted as g(r),is a parameter for investigating the molecular structure by counting the local number density divided by the total system density.It is employed to predict the conjugation probability between two molecules.The equation for defining the radial distribution function g(r)is

    Figure 5:Arrhenius plots of the ionic conductivity versus the reciprocal temperature for(a)Binary,(b)Ternary-1,(c)Ternary-2,(d)Quaternary-1,and(e)Quaternary-2 electrolytes.*references[Masset and Guidotti(2007)]

    where hi indicates the time average,N(r,?r)is the number of atoms within a spherical shell of r+?r,N is the total number of atoms in the systems,ρ is the system number density,andV(r,?r)is volume of the shell.

    Figure 6 shows the radial distribution function g(r)diagram for lithium-ions,revealing that all electrolytes reached the molten state when the operation temperature is high enough.According to the height of the first peak,the electrolytes are ranked in the following order:Binary LiCl–KCl(g(r)is around 2.022)is much greater than the others,such as Quaternary-1 LiCl–LiBr–NaCl–KCl(g(r)is around 1.715),Tenary-2 LiCl–LiBr–NaBr(g(r)is around 1.701),Tenary-2 LiCl–LiBr–NaCl(g(r)is around 1.699),and Quaternary-2 LiCl–LiBr–NaBr–KBr(g(r)is around 1.692).This trend implies that the lithium-ion pairs of the binary electrolyte aggregate around are stronger than the ternary and quaternary ones.It indicates that the g(r)values increase as the moveability of the lithium ions decreased corresponding to their molecular weights.

    Figure 6:Radial distribution function g(r)of the Li+pair in different molten-salt electrolytes.

    3.3 Mole fraction of lithium ions

    Effects of the mole fraction of lithium ions in the composition of various electrolytes on the ionic conductivity are worth studying.Figure 7(a)shows the simulation results for the five types of electrolytes when the lithium ion mole fraction varies from 0.05 to 0.95.Comparing with the experimental results reported by Fujiwara et al.,our simulation results are slightly lower than the experimental data as shown in Figure 7(b)for Ternary-1 and Ternary-2 electrolytes.The Quaternary-1 and Quaternary-2 electrolyte results are shown in Figure 7(c)and indicate that approximately 0.6 of lithium ion mole fraction exhibites the maximal ionic conductivity.The overall results of this study suggested that,to obtain the optimal ionic conductivity,the lithium ion mole fraction should be approximately 0.7 for ternary ones and 0.6 for quaternary electrolytes.

    3.4 Prediction of the melting point

    Melting point plays an important role in thermal batteries as the indication of phase change of the electrolyte from solid to molten state.Using this MD simulation technique,we reversed the process from melting to cooling by setting the operating temperature from 900 K to 300 K,step by step.The phase change from the molten state to the solid state can be identified by an energy jump occurs in the total energy versus temperature diagram as shown in Figure 8.The melting point(energy jump temperature)of the Binary LiCl–KCl is around 615K,Ternary-1(LiCl–LiBr-NaCl)is around 718 K,Ternary-2(LiCl–LiBr–NaBr)is about 739 K,Quaternary-1(LiCl-LiBr–NaCl–KCl)is 688 K,and Quaternary-2(LiCl–LiBr–NaBr–KBr)is at 68 K.They are displayed in Table 4 and show acceptable accuracy by comparison with experimental results.Figure 9 shows that our predictions of Ternary-1 and Ternary-2 are over the experimental results and all the other three electrolytes are below the experimental ones but within the error bars.Although the melting temperatures are not so accurately predicted,the trend of the variation is exactly predicted.The simulated results show that the rank of the melting points:ternary electrolytes are greater than quaternary ones;and quaternary electrolytes are greater than binary ones.

    3.5 Target operation region

    The target region for tuning the properties of the electrolytes is to achieve that the ionic conductivity over 2.2 Scm?1and the melting point is less than 693 K,which locates in the Zone B in Figure 10.We use letters a,b,c,d,e to represent binary,ternary–1,ternary–2,quaternary–1,and quaternary–2 electrolytes,respectively.Only querternary ones(d and e)are in the target region,hence we can suggest that the Quaternary-1(LiCl-LiBr-NaCl-KCl)and Quaternary-2(LiCl-LiBr-NaBr-KBr)are the best choice.The former has greater ionic conductivity and higher melting point;the latter has slightly lower ionic conductivity but the melting temperature is also lower.All the detailed data are displayed in Table 4.

    Figure 7:Ionic conductivities in molten-salt electrolytes versus Li-ions mole fraction for(a)all electrolytes;(b)simulation and experimental results of Ternary-1 and Ternary-2 electrolytes;and(c)simulation and experimental results of Quternary-1 and Quternary-2 electrolytes.

    Figure 8:Variation of total energy versus operating temperature for(a)Binary,(b)Ternary-1,(c)Ternary-2,(d)Quaternary-1,and(e)Quaternary-2 electrolytes.The location of the energy jump indicates the phase change.

    Table 4:Comparison of simulation and experimental results of ionic conductivities and melting points of various electrolytes.

    Figure 9:Comparison of simulation and experimental melting points in different molten-salt electrolytes.*references[Masset and Guidotti(2007)Masset,Schoeffert, Poinso,and Poignet(2005);Dagarin,Taenaka,and Stofel(1996)]

    Figure 10:The target operating region of the molten electrolytes is at Zone B,where a(Binary)is in Zone C;b(Ternary-1)and c(Ternary-2)are in Zone A;Only d(Quaternary-1)and e(Quaternary-2)electrolytes are qualified.

    4 Conclusion

    To reduce the tedious work to promote the ionic conductivity and to lower the melting point in the same time for high-temperature molten-salt electrolyte thermal batteries,this research employs the molecular simulation technique to study some novel electrolytes.Our simulation results are within the acceptable accuracy comparing with the results of previous experimental studies regarding the LiCl-LiBr-based ternary(LiCl–LiBr–NaCl&LiCl–LiBr–NaBr)and quaternary(LiCl–LiBr–NaCl–KCl&LiCl–LiBr–NaBr–KBr)electrolytes.The detailed inside results suggested that the lithium ion mole fraction significantly affects the ionic conductivity.It was concluded that the use of novel LiCl–LiBr-based ternary and quaternary molten-salt electrolytes can improve the discharge rate in future thermal batteries because of their greater ionic conductivities and lower melting points than the conventional LiCl–KCl binary one.The quaternary ones can further reduce their melting temperatures for future development.

    This molecular simulation technique is a useful tool for evaluating ionic conductivity,predicting melting point,and to understand the interactions between each ions.This paper demonstrates that MD simulation techniques are a useful tool to screen various design ideas on the multi-component electrolytes in a more efficient way.The molecular composition of each component of the molten-salt electrolytes can be optimized using this simulation technique instead of trial-and-error experiments.Our academic future work is to develop the first-principles molecular dynamics technique to replace the current semi-empirical potential functions.

    Acknowledgement:We thank the National Science Council of Taiwan and the National Chung-Shan Institute of Science and Technology for their support under the grant numbers NSC 102-2623-E-007-002-D.We are also grateful to the National Center for High-Performance Computing for the facilities made available to us.

    Allen,M.P.;Tildesley,D.J.(1987):Computer Simulation of Liquids.Oxford University Press,New York.

    Cheng,C.H.;Chen,P.Y.;Hong,C.W.(2008):Atomistic analysis of hydration and thermal effects on proton dynamics in the Nafion membrane.J.Electrochem.Soc.,vol.155,pp.435-442.

    Cheng,C.H.;Lee,S.F.;Hong,C.W(2007):Ionic Dynamics of an Intermediate-Temperature Yttria-Doped-Ceria Electrolyte.J.Electrochem.Soc.,vol.154,pp.158-163.

    Dagarin,B.P.;Taenaka,R.K.;Stofel,E.J.(1996):Galileo Probe Battery System.IEEE Aerosp.Electron.Syst.Mag.,vol.11,pp.6-13.

    Darden,T.;York,D.;Pedersen,L.(1993):Particle mesh Ewald an N·log(N)method for Ewald sums in large systems.J.Chem.Phys.,vol.98,pp.89-92.

    Duan,X.H.;Li,J.F.;Zhu,W.J.(2011):Molecular Dynamics Simulation of Ionic Transport on Molten Li–KCl Interface.Inter.J.Quan.Chem.,vol.111,pp.3873-3880.

    Fujiwara,S.;Kato,F.;Watanabe,S.;Inaba,M.;Tasaka,A.(2009):New iodide-based molten salt systems for high temperature molten salt batteries.J.Power Sources,vol.194,pp.1180-1183.

    Fujiwara,S.;Inaba,M.;Tasaka,A.(2010):New molten salt systems for hightemperature molten salt batteries:LiF–LiCl–LiBr-based quaternary systems.J.Power Sources,vol.195,pp.7691-7700.

    Fujiwara,S.;Inaba,M.;Tasaka,A.(2011):New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF–LiCl,LiF–LiBr,and LiCl–LiBr.J.Power Sources,vol.196,pp.4012-4018.

    Fujiwara,S.(2012):Molten salt and thermal battery.U.S.Patent,US008221912B2.

    Galamba,N.;Nieto de Castro,C.A.;Ely,J.F.(2004):Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.J.Chem.Phys.,vol.120,pp.8676-8682.

    Galamba,N.;Nieto de Castro,C.A.;Ely,J.F.(2007):Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.J.Chem.Phys.,vol.126,pp.204511.

    Guidotti,R.A.;Reinhardt,F.W.;Odinek,J.(2004):Overview of high-temperature batteries for geothermal and oil/gas borehole power sources.J.Power Sources,vol.136,pp.257-262.

    Guidotti,R.A.;Masset,P.(2006):Thermally activated(thermal)battery technology Part I.An overview.J.Power Sources,vol.161,pp.1443-1449.

    Haile,J.M.(1997):Molecular Dynamics Simulation:Elementary Methods,John Wiley&Sons,New York.

    Hoover,W.G.(1985):Canonical dynamics Equilibrium phase-space distributions.Phys.Rev.A,vol.31,pp.1695-1697.

    Lee,S.F.;Hong,C.W.(2010):Multi-scale design simulation of a novel intermediate temperature micro solid oxide fuel cell stack system.Int.J.of Hydrogen Energy,vol 35,pp.1330-1338.

    Lee,S.F.;Hong,C.W.(2009):Computer modeling of ionic conductivity in low temperature doped ceria solid electrolytes.CMC-Computers,Materials&Continua,vol.12,no.3,pp.223235.

    Masset,P.;Guidotti,R.A.(2007):Thermally activated(thermal)battery technology Part II.Molten salt electrolyte.J.Power Sources,vol.164,pp.397-414.

    Masset,P.;Henry,A.;Poinso,J.-Y.;Poignet,J.-C.(2006):Ionic conductivity measurements of molten iodide-based electrolytes.J.Power Sources,vol.160,pp.752-757.

    Masset,P.(2006):Iodide-based electrolytes:A promising alternative for thermal batteries.J.Power Sources,vol.160,pp.688-697.

    Masset,P.;Schoeffert,S.;Poinso,J.-Y.;Poignet,J.-C.(2005):LiF-LiCl-LiI vs.LiF-LiBr-KBr as Molten Salt Electrolyte in Thermal Batteries.J.Electrochem.Soc.,vol.152,pp.A405-A410.

    Nose,S.(1984):A unified formulation of the constant temperature molecular dynamics methods.J.Chem.Phys.,vol.81,pp.511-.519.

    Ohtori,N.;Oono,T.;Takase,K.(2009):Thermal conductivity of molten alkali halides:Temperature and density dependence.J.Chem.Phys.,vol.130,pp.44505.

    Ohtori,N.;Salanne,M.;Madden,P.A.(2009):Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials.J.Chem.Phys.,vol.130,pp.104507.

    Ratnakumar,B.V.;Smart,M.C.;Kindler,A.;Frank,H.;Ewell,R.;Surampudi S.(2003):Lithium batteries for aerospace applications:2003 Mars Exploration Rover.J.Power Sources,vol.119,pp.906-910.

    Salanne,M.;Marrocchelli,D.;Merlet,C.;Ohtori,N.;Madden,P.A.(2011):Thermal conductivity of ionic systems from equilibrium molecular dynamics.J Phys.Condensed Matter,vol.23,pp.102101.

    San,C.H.;Chiu,C.P.;Hong,C.W.(2011):First principles computations of the oxygen reduction reaction on solid metal clusters.CMC-Computers,Materials&Continua,vol.26,no.3,pp.167-186.

    San,C.H.;Hong,C.W.(2011):Molecular design of the solid copolymer electrolytepoly(styrene-b-ethylene oxide)for lithium ion batteries.CMC-Computers,Materials&Continua,vol.23,no.2,pp.101-117.

    San,C.H.;Hong,C.W.(2012):Quantum analysis on the platinum/nitrogen doped carbon nanotubes for the oxygen reduction reaction at the air cathode of lithium-air batteries and fuel cells.J.Electrochem.Soc.,vol.159,pp.116121.

    Sun,H.(1998):COMPASS:An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds.J.Phys.Chem.B,vol.102,pp.7338-7364.

    Sun,H.;Ren,P.;Fried,J.R.(1998):The COMPASS force field parameterization and validation for phosphazenes.Comput.Theor.Polym.Sci.,vol.8,pp.229-246.

    1Department of Power Mechanical Engineering,National Tsing Hua University,Hsinchu 30013,Taiwan.

    2Corresponding author.E-mail:cwhong@pme.nthu.edu.tw

    两人在一起打扑克的视频| 国产成人系列免费观看| 午夜福利在线观看吧| 香蕉国产在线看| 久久久水蜜桃国产精品网| 国产黄a三级三级三级人| 国产又色又爽无遮挡免费看| av天堂在线播放| 精品国产超薄肉色丝袜足j| 韩国av一区二区三区四区| 中文亚洲av片在线观看爽| 巨乳人妻的诱惑在线观看| 视频区欧美日本亚洲| 日韩高清综合在线| 免费av中文字幕在线| 成人永久免费在线观看视频| 波多野结衣高清无吗| 亚洲成av片中文字幕在线观看| 满18在线观看网站| 亚洲欧美激情综合另类| 色综合婷婷激情| 老汉色∧v一级毛片| 丰满的人妻完整版| а√天堂www在线а√下载| 午夜老司机福利片| 亚洲av成人一区二区三| 丝袜在线中文字幕| 黄片小视频在线播放| 免费人成视频x8x8入口观看| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 免费搜索国产男女视频| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影 | 18禁美女被吸乳视频| 精品国产一区二区久久| 91精品国产国语对白视频| 妹子高潮喷水视频| 亚洲av成人av| 日韩有码中文字幕| 一级毛片高清免费大全| 午夜免费成人在线视频| 久久人妻福利社区极品人妻图片| 一级作爱视频免费观看| 99riav亚洲国产免费| 国产精品久久久久成人av| 成人国语在线视频| 久久午夜综合久久蜜桃| 一区二区三区国产精品乱码| 热re99久久国产66热| 可以免费在线观看a视频的电影网站| 亚洲国产精品合色在线| 超碰成人久久| 无限看片的www在线观看| 国产精品乱码一区二三区的特点 | 一级毛片高清免费大全| 热re99久久国产66热| 日韩国内少妇激情av| 欧美日韩精品网址| 亚洲精品在线美女| 亚洲少妇的诱惑av| av天堂在线播放| 久久久精品欧美日韩精品| 欧美+亚洲+日韩+国产| 中文字幕人妻丝袜一区二区| 国产精品美女特级片免费视频播放器 | aaaaa片日本免费| 老司机福利观看| aaaaa片日本免费| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区视频了| 日韩精品中文字幕看吧| 不卡一级毛片| 自线自在国产av| 久久人人97超碰香蕉20202| 丁香欧美五月| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 久久久久久大精品| 中文欧美无线码| 亚洲免费av在线视频| 99香蕉大伊视频| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 色婷婷av一区二区三区视频| 午夜免费鲁丝| 一边摸一边抽搐一进一出视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产国语露脸激情在线看| 欧美日韩一级在线毛片| 国产成人一区二区三区免费视频网站| 国产精品偷伦视频观看了| 69精品国产乱码久久久| 国产亚洲欧美98| 午夜成年电影在线免费观看| 黄片播放在线免费| 午夜日韩欧美国产| 又黄又粗又硬又大视频| 老熟妇乱子伦视频在线观看| 又紧又爽又黄一区二区| 午夜免费成人在线视频| 亚洲精品中文字幕在线视频| 黄色女人牲交| 久9热在线精品视频| 精品国内亚洲2022精品成人| 亚洲精品一区av在线观看| 大陆偷拍与自拍| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 涩涩av久久男人的天堂| av超薄肉色丝袜交足视频| 国产精品永久免费网站| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 黄片大片在线免费观看| 久久久久久久久免费视频了| 精品人妻1区二区| 日本免费a在线| 欧美一级毛片孕妇| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 亚洲中文日韩欧美视频| av天堂在线播放| 亚洲熟妇熟女久久| 久久精品亚洲av国产电影网| 热re99久久国产66热| 国产精品98久久久久久宅男小说| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 国产高清国产精品国产三级| 自线自在国产av| 免费观看人在逋| 国产成人一区二区三区免费视频网站| 成人18禁在线播放| 免费女性裸体啪啪无遮挡网站| 十八禁网站免费在线| 亚洲成av片中文字幕在线观看| 成年版毛片免费区| 九色亚洲精品在线播放| 丝袜在线中文字幕| 在线观看免费视频网站a站| 久久精品国产清高在天天线| 亚洲精品美女久久av网站| 叶爱在线成人免费视频播放| 亚洲五月天丁香| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| 91成年电影在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区三区免费视频网站| 欧美性长视频在线观看| 欧美黑人精品巨大| 免费看十八禁软件| 黄色a级毛片大全视频| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 99久久99久久久精品蜜桃| av在线天堂中文字幕 | 精品一区二区三区视频在线观看免费 | 欧美日韩瑟瑟在线播放| 亚洲成人免费电影在线观看| 女同久久另类99精品国产91| 99久久99久久久精品蜜桃| 亚洲av美国av| 香蕉久久夜色| 午夜91福利影院| 成年版毛片免费区| 欧美日韩亚洲高清精品| 男女下面进入的视频免费午夜 | av视频免费观看在线观看| 90打野战视频偷拍视频| 久久精品成人免费网站| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久综合精品五月天人人| 久久午夜综合久久蜜桃| 亚洲专区字幕在线| 成人特级黄色片久久久久久久| 精品久久久久久,| 亚洲av成人av| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 午夜久久久在线观看| 亚洲中文字幕日韩| 国产一区二区在线av高清观看| 日韩一卡2卡3卡4卡2021年| 超碰成人久久| 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 在线观看日韩欧美| 91在线观看av| 久久精品国产清高在天天线| 桃色一区二区三区在线观看| 天堂俺去俺来也www色官网| 国产一区二区三区在线臀色熟女 | 欧美激情 高清一区二区三区| 国产极品粉嫩免费观看在线| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 校园春色视频在线观看| 一区二区三区激情视频| 国产三级黄色录像| 中出人妻视频一区二区| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 亚洲成a人片在线一区二区| 国产精品99久久99久久久不卡| 一二三四社区在线视频社区8| 精品一区二区三区四区五区乱码| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| www国产在线视频色| 国产精品亚洲一级av第二区| 少妇裸体淫交视频免费看高清 | 丁香欧美五月| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | tocl精华| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 人人妻人人澡人人看| 久久影院123| 国产欧美日韩精品亚洲av| 久久精品人人爽人人爽视色| 久久精品91无色码中文字幕| 国产精品秋霞免费鲁丝片| 亚洲第一欧美日韩一区二区三区| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 国产在线观看jvid| 亚洲成av片中文字幕在线观看| 国产精品 国内视频| 欧美丝袜亚洲另类 | 免费女性裸体啪啪无遮挡网站| 黄片播放在线免费| 国产在线观看jvid| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av香蕉五月| 国产极品粉嫩免费观看在线| 热re99久久精品国产66热6| 国内毛片毛片毛片毛片毛片| 制服人妻中文乱码| 99久久人妻综合| 亚洲av电影在线进入| 国产精品爽爽va在线观看网站 | 99riav亚洲国产免费| 一区二区三区国产精品乱码| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 中文亚洲av片在线观看爽| 欧美日韩乱码在线| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 国产区一区二久久| 精品国产亚洲在线| 精品免费久久久久久久清纯| 美女福利国产在线| 1024香蕉在线观看| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 满18在线观看网站| 可以在线观看毛片的网站| 波多野结衣av一区二区av| 成年人黄色毛片网站| 免费日韩欧美在线观看| 国产成年人精品一区二区 | 国产一卡二卡三卡精品| 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 亚洲精品国产精品久久久不卡| 一级作爱视频免费观看| 神马国产精品三级电影在线观看 | 法律面前人人平等表现在哪些方面| 高清av免费在线| 亚洲国产精品合色在线| avwww免费| 久久中文字幕人妻熟女| 别揉我奶头~嗯~啊~动态视频| 亚洲精品av麻豆狂野| 香蕉久久夜色| 成人国产一区最新在线观看| 国产一区二区激情短视频| 波多野结衣一区麻豆| 人妻丰满熟妇av一区二区三区| 国产欧美日韩一区二区三区在线| 国产午夜精品久久久久久| 69精品国产乱码久久久| 亚洲国产欧美网| 午夜影院日韩av| 国产成人精品无人区| 欧美中文综合在线视频| 黄色成人免费大全| 久久精品国产清高在天天线| av福利片在线| 欧美乱色亚洲激情| 波多野结衣av一区二区av| 午夜免费激情av| 国产av又大| av网站在线播放免费| 黑人巨大精品欧美一区二区mp4| 国产高清视频在线播放一区| 亚洲av日韩精品久久久久久密| 超色免费av| 久久伊人香网站| 国产精品免费视频内射| 在线观看一区二区三区| 国产亚洲欧美在线一区二区| 后天国语完整版免费观看| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| 亚洲狠狠婷婷综合久久图片| 亚洲精品国产一区二区精华液| 一本大道久久a久久精品| a级片在线免费高清观看视频| 夜夜爽天天搞| 亚洲 欧美一区二区三区| 亚洲精品一二三| 黑人猛操日本美女一级片| 久久狼人影院| www.精华液| 免费少妇av软件| 国产97色在线日韩免费| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费 | 国产精品偷伦视频观看了| 一级黄色大片毛片| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| 91av网站免费观看| 在线国产一区二区在线| 欧美日本中文国产一区发布| 免费一级毛片在线播放高清视频 | av福利片在线| www.自偷自拍.com| 欧美日韩一级在线毛片| 国产高清视频在线播放一区| 国产国语露脸激情在线看| ponron亚洲| 在线观看日韩欧美| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 成人av一区二区三区在线看| 在线观看日韩欧美| 一进一出抽搐gif免费好疼 | 亚洲国产看品久久| 久久草成人影院| 亚洲成人免费av在线播放| 亚洲成a人片在线一区二区| 99国产极品粉嫩在线观看| 久久这里只有精品19| 久久婷婷成人综合色麻豆| 在线观看免费日韩欧美大片| 国产乱人伦免费视频| 国产精品日韩av在线免费观看 | 国产精品久久久人人做人人爽| cao死你这个sao货| 中文字幕av电影在线播放| 一进一出抽搐gif免费好疼 | 老司机深夜福利视频在线观看| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色 | 男女下面插进去视频免费观看| 男人舔女人的私密视频| 欧美日韩黄片免| 久久天堂一区二区三区四区| 夜夜爽天天搞| 精品一区二区三区av网在线观看| 亚洲精品中文字幕在线视频| 91成人精品电影| 在线看a的网站| 亚洲国产中文字幕在线视频| 国产精品98久久久久久宅男小说| 久热这里只有精品99| 男女下面插进去视频免费观看| 脱女人内裤的视频| 波多野结衣高清无吗| 午夜福利在线免费观看网站| 日本一区二区免费在线视频| 午夜日韩欧美国产| 亚洲成人免费av在线播放| 男人的好看免费观看在线视频 | 国产精品美女特级片免费视频播放器 | 国产免费av片在线观看野外av| 国产精品 欧美亚洲| 久久欧美精品欧美久久欧美| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| a在线观看视频网站| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 久9热在线精品视频| 欧美日韩精品网址| 国产精品日韩av在线免费观看 | 91精品国产国语对白视频| 一级作爱视频免费观看| 欧美日韩精品网址| 亚洲人成77777在线视频| 夜夜夜夜夜久久久久| 成人三级黄色视频| 成人手机av| 久久久久久人人人人人| 一级片免费观看大全| 欧美乱色亚洲激情| 国产成人精品无人区| 亚洲精品国产一区二区精华液| 日本五十路高清| 欧美黄色淫秽网站| 亚洲全国av大片| 1024视频免费在线观看| 亚洲男人的天堂狠狠| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 纯流量卡能插随身wifi吗| 中亚洲国语对白在线视频| 黄色成人免费大全| 亚洲国产精品一区二区三区在线| 亚洲 欧美一区二区三区| 久久久久久大精品| 黄片播放在线免费| 在线观看免费视频网站a站| 搡老乐熟女国产| 精品久久久久久,| 在线观看日韩欧美| 大型黄色视频在线免费观看| 制服诱惑二区| www.自偷自拍.com| 一级作爱视频免费观看| 麻豆成人av在线观看| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 深夜精品福利| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线观看免费 | 国内久久婷婷六月综合欲色啪| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 久久久精品欧美日韩精品| 桃色一区二区三区在线观看| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 久久人妻av系列| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| 性欧美人与动物交配| 久久青草综合色| 久久精品91无色码中文字幕| 国产成人av教育| 欧美人与性动交α欧美软件| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 三上悠亚av全集在线观看| 久久久水蜜桃国产精品网| 精品久久久久久电影网| 免费日韩欧美在线观看| 午夜福利一区二区在线看| 久久精品国产清高在天天线| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 亚洲激情在线av| 如日韩欧美国产精品一区二区三区| 免费在线观看日本一区| 国产av在哪里看| 一区福利在线观看| videosex国产| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合一区二区三区| 女人高潮潮喷娇喘18禁视频| 黄色视频不卡| 成人国语在线视频| 手机成人av网站| 一区福利在线观看| 久久久久国内视频| 日本三级黄在线观看| 午夜视频精品福利| 免费观看人在逋| 男女高潮啪啪啪动态图| 欧美日韩av久久| 欧洲精品卡2卡3卡4卡5卡区| 夜夜躁狠狠躁天天躁| 一本大道久久a久久精品| 成人av一区二区三区在线看| 国产亚洲欧美在线一区二区| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 久久久国产精品麻豆| 美女 人体艺术 gogo| 女人被躁到高潮嗷嗷叫费观| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 国产成人av教育| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 窝窝影院91人妻| 亚洲精品粉嫩美女一区| 日本vs欧美在线观看视频| 夜夜看夜夜爽夜夜摸 | 国产深夜福利视频在线观看| 国产精品美女特级片免费视频播放器 | 欧美日韩精品网址| 欧美成人午夜精品| 国产一卡二卡三卡精品| 成人手机av| 黑人巨大精品欧美一区二区mp4| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 国产精品久久久久成人av| 动漫黄色视频在线观看| av超薄肉色丝袜交足视频| 久久精品亚洲熟妇少妇任你| 中文欧美无线码| 丝袜在线中文字幕| 久久久国产一区二区| 国产精品免费视频内射| 国产色视频综合| 免费看a级黄色片| 99久久精品国产亚洲精品| 亚洲精品一二三| 最新美女视频免费是黄的| 亚洲九九香蕉| 久久 成人 亚洲| 亚洲国产欧美一区二区综合| 国产精品一区二区精品视频观看| 午夜老司机福利片| 久久欧美精品欧美久久欧美| 中文字幕最新亚洲高清| 91精品三级在线观看| 丁香六月欧美| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 真人一进一出gif抽搐免费| 午夜视频精品福利| www.精华液| 久久精品国产清高在天天线| 日韩免费高清中文字幕av| 亚洲七黄色美女视频| 国产精品久久久久成人av| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 国产精品 欧美亚洲| 午夜免费观看网址| 三级毛片av免费| 久久欧美精品欧美久久欧美| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 老司机在亚洲福利影院| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 操美女的视频在线观看| 欧美激情 高清一区二区三区| 日韩大尺度精品在线看网址 | 99精品欧美一区二区三区四区| 高清欧美精品videossex| 狠狠狠狠99中文字幕| 久久久久久人人人人人| 国产国语露脸激情在线看| 亚洲成人久久性| 国产精品 欧美亚洲| 亚洲av美国av| 色老头精品视频在线观看| 久久久久久久久久久久大奶| 国产av在哪里看| 欧美成人免费av一区二区三区| 琪琪午夜伦伦电影理论片6080| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久人妻精品电影| 成人特级黄色片久久久久久久| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 可以免费在线观看a视频的电影网站| 亚洲熟妇熟女久久| 我的亚洲天堂| 国产一区二区在线av高清观看| 在线观看66精品国产| 桃红色精品国产亚洲av| 成人三级黄色视频| 久久伊人香网站| 国产精品自产拍在线观看55亚洲| www日本在线高清视频| 日韩有码中文字幕| 91成人精品电影| 亚洲欧美精品综合久久99| 国产精品九九99| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 大型黄色视频在线免费观看| xxx96com| 久久久久久大精品| 热re99久久精品国产66热6| 无人区码免费观看不卡| 国产一卡二卡三卡精品| 可以在线观看毛片的网站| 高清毛片免费观看视频网站 | 国产av一区二区精品久久| 女人爽到高潮嗷嗷叫在线视频|