• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of integrating and critically damped systems with time delay

    2015-12-05 07:42:07BAJARANGBALISomanathMAJHI
    Control Theory and Technology 2015年1期

    BAJARANGBALI,Somanath MAJHI

    Department of Electronics and Electrical Engineering,Indian Institute of Technology Guwahati,Guwahati-781039,India

    Received 12 February 2014;revised 1 January 2015;accepted 1 January 2015

    Identification of integrating and critically damped systems with time delay

    BAJARANGBALI?,Somanath MAJHI

    Department of Electronics and Electrical Engineering,Indian Institute of Technology Guwahati,Guwahati-781039,India

    Received 12 February 2014;revised 1 January 2015;accepted 1 January 2015

    This paper presents identification of second order plus dead time(SOPDT)integrating and critically damped systems based on relay feedback testing.Relay with hysteresis is applied to the unknown system to get the sustained oscillations also called as limit cycle.The limit cycle parameters are utilized in mathematical expressions which are derived using state space technique so that exact process model parameters are estimated.As the relay with hysteresis helps in generating sustained oscillations and also reduces effect of measurement noise which is an important issue in system identification.Different types of processes in the form of transfer function models are considered to show the efficacy of the proposed method and results are compared with available methods in the literature with and without noise effect.

    System identification,time delay systems,relay with hysteresis

    DOI 10.1007/s11768-015-4018-5

    1 Introduction

    System identification is mathematical modeling of an unknown system orprocess in terms oftransferfunction form,utilizing the measurements of system’s input and output signals.Recently Liu et al.[1]presented a review on various methods of process dynamics identification.?str¨om and Eykhoff[2]had given a detailed survey on system identification and also mentioned the importance of identification for designing a control strategy.Identification can be done by step or pulse testing in open-loop or closed-loop mode[3].However,openloop step testing can not be applied for systems with large time constants having load disturbances,whereas closed-loop step testing takes less time compared to open-loop test.?str¨om and H¨agglund[4]introduced relay feedback testing called autotune variation(ATV)method for estimation of unknown process model parameters with the help of describing function approximation(DFA)technique.This ATV method identifies process information around the important frequency called the ultimate frequency.Hang etal.[5]presented a tutorial review for auto-tuning of process controllers using relay feedback technique.In DFA technique relay isapproximated by a gain,hence the estimated parameters were approximate.A number of relay based identification methods are proposed to obtain process models in terms of transfer functions.Li et al.[6]suggested estimation of unknown process model parameters for stable and unstable processes employing two relay tests.Shen et al.[7]considered dual input describing function approach(DIDF)and an input biased relay feedback experiment to identify two points on the Nyquist curve.However,this method can be applied only for stable systems.Padhy and Majhi[8]presented algorithms for identification of stable and unstable first order systems using DFA method and an ideal relay.Since the model parameters estimated by DFA technique are approximate hence,many authors explored research towards exact analysis so that more accurate parameters are estimated.Wang et al.[9]derived analytical expressions for amplitudes and frequency of the limit cycle under relay feedback for a first order plus dead time(FOPDT)systems.Jahanmiri and Fallahi[10]developed algorithms for identification of second order processes based on the open loop test and step input variable.Majhi and Atherton[11]and Majhi[12,13]suggested exact analysis for general model structure employing state space approach.Vivek and Chidambaram[14]proposed improved identification algorithms utilizing Laplace transform method and single symmetric relay feedback test.Thyagarajan and Yu[15]developed shape factor of relay feedback responses to estimate the unknown process model parameters.Liu and Gao[16]applied Newton-Raphson iteration method for obtaining exact expressions for integrating and unstable processes.Panda et al.[17]identified dynamics of integrating and time delay processes with the help of single relay feedback test.In the literature many authors presented various identification algorithms employing different types of relays.In this paper we are proposing the application of relay with hysteresis since it has got the advantage of generating the limit cycle and reducing the measurement noise effect[4].Bajarangbali et al.[18]have proposed identification of second order overdamped,underdamped and FOPDT process dynamics without considering integrating and critically damped systems.It is advantageous to generalize a SOPDT system in different types of systems hence,the mathematical expressions presented in[18]are extended in this paper to derive the expressions for SOPDT integrating and critically damped systems.This paper is arranged in the following Sections,proposed method is given in Section 2,mathematical expressions are derived in Section 3,results and discussions are detailed in Section 4 and finally conclusions are presented in Section 5.

    2 Proposed method

    The block diagram shown in Fig.1 mainly consists of relay with hysteresis,unknown system to be modeled and a denoising block.The relay is connected as an input to the system or process to generate sustained oscillations containing process information in the form of parameters like amplitude and time period.In real time scenarios normally the process output is corrupted with measurement noise so to remove the maximum noise content,a denoising block[18]is used.This denoising block as shown in Fig.2 consists of a derivative block(s1)connected to the closed loop block of an integrator(1/s)and one more derivative block(s2).Initially,the noisy limit cycle outputˉy(t)is passed through the first derivative block which gives the first derivative output in terms of the rate of change of the noisy limit cycle with respect to time.This output is passed through closed loop sequence of an integrator and the second derivative block.The integrator helps in removing the higher order harmonics present at the derivative(s1)output,assuming zero initial conditions ands2is used further to improve the results.Hence,a noise free limit cycle outputy(t)is obtained.The limit cycle parameters are utilized in the analytical expressions which are derived based on state space method to estimate the unknown process model parameters of integrating and critically damped systems.The noisy and denoised limit cycles are as shown in Fig.3.

    Fig.1 Relay feedback block diagram.

    Fig.2 Denoising block.

    Fig.3 Noisy and denoised outputs.

    For convenience the procedure to implement the proposed method is explained below.In Fig.1 the relay can be implemented with the help of op-amps or FPAA(field programmable analog array)[18,19]by appropriately selecting the relay amplitude,sampling time and hysteresis values in the range of volts,milliseconds and millivolts,respectively.These relay parameters can be varied accordingly to control the amplitude of limit cycle output.The relay is connected in the feedback to obtain sustained oscillations at the output.The denoising block consisting of derivative blocks and an integrator can be implemented using a set of op-amps or FPAA.Hence,a noise free limit cycle and the relay output can be observed on oscilloscope connected at the system output and relay output terminals,respectively.The limit cycle and other parameters can be measured by making simple observation.Utilizing these quantities in the corresponding analytical expressions derived,the process model parameters can be estimated.

    3 Derivation of mathematical expressions

    In this section,the SOPDT overdamped and underdamped expressions[18]are extended to develop the analytical expressions for estimation of accurate parameters of integrating and critically damped process models.Therefore,rewriting the stable SOPDT system as

    whereaandbare the process model parameters,Kthe steady state gain,θ the process time delay andcis a constant.The system in equation(1)becomes an overdamped with the conditionb2gt;4acand underdamped forb2lt;4ac.For convenience the expressions for overdamped and underdamped systems from[18]are derived here.Let us consider equation(1)in the following form:

    for overdamped system.Transforming equation(2)to the following state space equations:

    The delayed relay output provides two piecewise constant input signals(for time rangest0tt1andt1tT+t0)to the process for half limit cycle output.Hence,the solution of equation(4)with reference to delayed relay output for time ranget0tt1,can be written as

    similarly,fort1tT+t0,the solution becomes

    whereTis half time period of limit cycle output,hthe relay amplitude,t0the time instant at hysteresis value at which point actual relay switching takes place andt1the time where the second derivative output of limit cycle shows abrupt change as shown in Fig.4 and the process time delay(θ)is also given by θ =t1?t0[13].

    Fig.4 Limit cycle and it’s second derivative output.

    Substitutingt=t1in equation(7)we obtain

    whereIis an identity matrix of the order ofA.Symmetrical limit cycle leads tox(T+t0)=?x(t0).Hence,using equations(8)and(9)the following expression for initial condition is obtained:

    Substituting forcandx(t0)in above equation and solved to get

    Expression for peak amplitude is obtained from the following equation:

    which is further solved to

    which is reduced to

    The above equation is solved with substitution ofc,Aandx(?t)to obtain

    Hence,equations(12),(14)and(17)are modified to obtain the following expressions:

    Similarly,for underdamped systems substitutingc1=m+jnandc2=m?jnin equations(12),(14)and(17)and solved to obtain the following expressions,respectively.

    3.1 Expressions for integrating systems

    Substitutinga=T1,b=1 andc=0 in equation(1),the following transfer function for SOPDT integrating system is obtained:

    whereT1is the time constant.Hence,with reference to equation(26)makinga=T1,b=1 andc=0 in equation(3)we can writec1→0 andc2=?1/T1,which are used in equations(18)–(20)to obtain expressions for integrating systems.Expression(20)can be modified as

    The expression for ε is obtained by substitutingB1andB2in equation(18)as

    Solving(29)we obtain the following equations:

    Further simplification leads to

    Now,to obtain the expression for peak amplitude?A,equation(28)is substituted in equation(19)to get

    Again substituting forB1,c1and solving further the following expressions are obtained:

    B1andB2are substituted in equation(27)to get the expression in terms of?tas

    Since,c1→0 above equation reduces to

    which is further simplified to

    The expressions for ε and?tin terms ofT1are rewritten as

    Hence,substituting the parameters of relay and limit cycle in expression(36),Kis estimated similarly,other parametersT1and θ are obtained from simultaneous solution of equations(41)and(42).

    3.2 Expressions for critically damped systems

    The following transfer function for SOPDT critically damped system is obtained by substitutinga=T12,b=2T1andc=1 in equation(1)which is considered as an underdamped system in this section.

    with reference to the above transfer functionmandnin equation(25)can be written as asm=?1/T1andn→0.Hence,substitutingn→0 in equations(22)to(24)we obtain expressions in terms ofK,T1and θ as follows.

    Equation(24)can be reduced to

    which is again modified as

    Using L’H?ospital’s rule above equation is further simplified to obtain the following expressions

    Now,equation(23)is solved to get

    Similarly,the expression for ε is obtained from equation(22)as

    The above equation can be represented in terms ofT1as

    Hence,the unknown parametersT1andKare estimated from explicitexpressions(48)and(51),respectively similarlyθis obtained from equation(53)using matlab function fzero.

    4 Results and discussions

    In this section,well known examples are considered and results are compared with recent methods available in the literature.Relay parameters and measured limit cycle parameters are substituted in the corresponding expressions derived to estimate the unknown process model parameters with and without noise effect.As mentioned earlier,effect of measurement noise is reduced using relay with hysteresis and denoising block.Hysteresis width is considered to be twice the standard deviation ofnoise.Results are compared using Nyquist’s plot and performance is evaluated by calculating estimation error(Eerror)between actual process and identified process model using integral of absolute error(IAE)criterion.

    wherepis the phase crossover frequency of the actual process,Gpm(jω)is the identified process model andG(jω)is the actual process.The proposed models 1 and 2 identified in the absence of measurement noise and with noise,respectively are given in tabular form for all examples.

    Fig.5 Noisy and denoised limit cycles.

    Using the relay and denoised limit cycle parameters in the corresponding expressions the process model is identified.The proposed models 1 and 2 in the absence of measurement noise and with noise,respectively and the model proposed by Panda et al.[17]without noise effect,are given in Table 1 with corresponding estimation error.From Table 1,it can be observed that the proposed method can be successfully used to identify the process models even under noisy environment.

    Table 1 Transfer function models for Example 1.

    Table 2 Transfer function models for Example 2.

    Fig.6 Nyquist’s plots.

    From Nyquist’s plots it can be seen that the identified models are closely following the actual system.

    Table 3 Transfer function models for Example 3.

    5 Conclusions

    Relay with hysteresis is used to extract the process information in the form of limit cycle parameters.State space based mathematical expressions are derived to estimate the unknown process model parameters of integrating and critically damped systems.Effect of measurement noise is mitigated using relay with hysteresis and denoising block.Transfer function models from well known processes are considered to show the general usefulness of the proposed method.Results are compared using IAE based estimation error values and Nyquist’s plots.

    Acknowledgements

    I am highly grateful to PES Institute of Technology,Bangalore South Campus,Karnataka,India for deputing me to study at Indian Institute of Technology Guwahati(IITG),a prestigious institute in India and providing me with financial assistance.I sincerely thank Dr.J.Suryaprasad,Director,PESIT South Campus,Bangalore for his help and support.

    [1]T.Liu,Q.G.Wang,H.P.Huang.A tutorial review on process identification from step or relay feedback test.Journal of Process Control,2013,23(10):1597–1623.

    [2]K.J.?str¨om,P.Eykhoff.System identification-A survey.Automatica,1971,7(2):123–162.

    [3]C.C.Yu.Introduction.Autotuning of PID controllers-A relay feedback approach.London:Springer-Verlag,2nd Edition,1999:1–8.

    [4]K.J.?str¨om,T.H¨agglund.Automatic tuning of simple regulators with specifications on phase and amplitude margins.Automatica,1984,20(5):645–651.

    [5]C.C.Hang,K.J.?str¨om,Q.G.Wang.Relay feedback autotuning of process controllers a-tutorial review.Journal of Process Control,2002,12(1):143–162.

    [6]W.Li,E.Eskinat,W.L.Luyben.An improved auto tune identification method.Industrial and Engineering Chemistry Research,1991,30(7):1530–1541.

    [7]S.H.Shen,J.H.Wu,C.C.Yu.Use of biased-relay feedback for system identification.AIChE,1996,42(4):1174–1180.

    [8]P.K.Padhy,S.Majhi.Relay based PI-PD design for stable and unstable FOPDT processes.Computers and Chemical Engineering,2006,30(5):790–796.

    [9]Q.G.Wang,C.C.Hang,B.Zou.Low order modeling from relay feedback systems.Industrial and Engineering Chemistry Research,1997,36(2):375–381.

    [10]A.Jahanmiri,H.R.Fallahi.New methodsforprocess identification and design of feedback controller.Trans IChemE,1997,75(5):519–522.

    [11]S.Majhi,D.P.Atherton.Autotuning and controller design for processes with small time delays.IEE Proceedings on Control Theory and Applications,1999,146(5):415–424.

    [12]S.Majhi.On-line PI control of stable processes.Journal of Process Control,2005,15(8):859–867.

    [13]S.Majhi.Relay based identification of processes with time delay.Journal of Process Control,2007,17(2):93–101.

    [14]S.Vivek,M.Chidambaram.Identification using single symmetrical relay feedback test.Computers and Chemical Engineering,2005,29(7):1625–1630.

    [15]T.Thyagarajan,C.C.Yu.Improved auto tuning using shape factor from relay feedback.Industrial and Engineering Chemistry Research,2003,42(20):4425–4440.

    [16]T.Liu,F.Gao.Identification of integrating and unstable processes from relay feedback.Computers and ChemicalEngineering,2008,32(12):3038–3056.

    [17]R.C.Panda,V.Vijayan,V.Sujatha,et al.Parameter estimation of integrating and time delay processes using single relay feedback test.ISA Transactions,2011,50(4):529–537.

    [18]Bajarangbali,S.Majhi,S.Pandey.Identification of FOPDT and SOPDT process dynamics using closed loop test.ISA Transactions,2014,53(4):1223–1231.

    [19]S.Majhi,V.Kotwal,U.Mehta.FPAA-based PI controller for DC servo position control system.IFAC Conference on Advances in PID Control,Brescia Italy,2012:1–5.

    BAJARANGBALIis a Ph.D.candidate at Indian Institute of Technology Guwahati,India.He obtained his B.E.in Instrumentation Technology from Mysore University,India,and M.Tech.in Computer Applications in Industrial Drives from Visvesvaraya Technological University,India.He has eight years teaching experience at PESIT-BSC,Bengaluru,India.His research interests are relay based process identification and controller design.E-mail:bajarangbali@iitg.ernet.in.

    Somanath MAJHIis currently a professor in the Department of Electronics and Communication Engineering at Indian Institute of Technology,Guwahati.He received his Ph.D.from Sussex University,England,and he has been awarded the Commonwealth Scholarship and the Alexander von Humboldt Research Fellowship for his doctoral and postdoctoral research programmes.He is a life member of Systems Society of India and Indian Society for Technical Engineers.He has to his credited more than 125 research papers in reputed national and international journals and conferences.His research interests include relay control systems,design of automatic controllers,model identification,and application of control theory to communication systems.E-mail:smajhi@iitg.ernet.in.

    ?Corresponding author.

    E-mail:bajarangbali@iitg.ernet.in.Tel.:+91-8011012736;fax:+91-361-2582542.

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    日韩熟女老妇一区二区性免费视频| 人成视频在线观看免费观看| 在线观看免费视频网站a站| 久久久久国产精品人妻一区二区| 黄色毛片三级朝国网站| 制服人妻中文乱码| 免费不卡的大黄色大毛片视频在线观看| 天天躁夜夜躁狠狠久久av| 国产在线免费精品| 久久av网站| 日韩精品免费视频一区二区三区 | 日本-黄色视频高清免费观看| 97超碰精品成人国产| 黄色欧美视频在线观看| 成人二区视频| 99热全是精品| 日韩免费高清中文字幕av| 国产成人a∨麻豆精品| xxxhd国产人妻xxx| 人人妻人人添人人爽欧美一区卜| 亚洲内射少妇av| 亚洲美女视频黄频| 日韩中字成人| 日本与韩国留学比较| 欧美三级亚洲精品| 久久久久久久国产电影| 超色免费av| 免费黄频网站在线观看国产| 国产精品嫩草影院av在线观看| 高清av免费在线| 黑人高潮一二区| 亚洲av男天堂| 女人精品久久久久毛片| 日韩制服骚丝袜av| 亚洲天堂av无毛| 欧美精品一区二区大全| av.在线天堂| 国产有黄有色有爽视频| 看十八女毛片水多多多| 国产精品一区二区在线观看99| 亚洲,欧美,日韩| 午夜福利,免费看| 赤兔流量卡办理| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 精品久久久噜噜| 久久久国产欧美日韩av| 亚洲美女搞黄在线观看| 日本91视频免费播放| 亚洲国产成人一精品久久久| 999精品在线视频| 三上悠亚av全集在线观看| 国产欧美日韩一区二区三区在线 | 国产免费现黄频在线看| 国产一区二区三区综合在线观看 | 尾随美女入室| 国产又色又爽无遮挡免| 尾随美女入室| 欧美变态另类bdsm刘玥| 在线观看免费视频网站a站| 久久这里有精品视频免费| 国产精品国产av在线观看| 赤兔流量卡办理| 久久久精品免费免费高清| 青春草视频在线免费观看| 久久婷婷青草| 精品人妻在线不人妻| 日韩精品免费视频一区二区三区 | 国产日韩欧美视频二区| 亚洲精品中文字幕在线视频| 中文字幕制服av| 黑人巨大精品欧美一区二区蜜桃 | 丝袜在线中文字幕| 超碰97精品在线观看| 国产一级毛片在线| 亚洲美女搞黄在线观看| 九九爱精品视频在线观看| 高清毛片免费看| av在线app专区| 欧美97在线视频| 久久这里有精品视频免费| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 国产精品久久久久久久电影| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 男女边摸边吃奶| 日本与韩国留学比较| 视频区图区小说| 久久久久视频综合| 在线观看三级黄色| 欧美少妇被猛烈插入视频| 中国国产av一级| 9色porny在线观看| av卡一久久| 亚洲高清免费不卡视频| 欧美日韩国产mv在线观看视频| 国产在视频线精品| 熟女人妻精品中文字幕| 99热6这里只有精品| 在线观看www视频免费| 欧美日韩亚洲高清精品| 亚洲美女搞黄在线观看| 国产日韩欧美在线精品| 久久久欧美国产精品| 大香蕉久久网| 满18在线观看网站| 高清黄色对白视频在线免费看| 亚洲性久久影院| 欧美日韩视频精品一区| 国产熟女午夜一区二区三区 | 精品一品国产午夜福利视频| 亚洲成人手机| 热re99久久国产66热| 在现免费观看毛片| 欧美丝袜亚洲另类| 狠狠精品人妻久久久久久综合| 久久久久久久久久久丰满| 极品少妇高潮喷水抽搐| 国产日韩欧美在线精品| 蜜桃在线观看..| 欧美激情极品国产一区二区三区 | 成年av动漫网址| av在线老鸭窝| av视频免费观看在线观看| 热99久久久久精品小说推荐| 免费看光身美女| 国产精品久久久久久久电影| 成人毛片a级毛片在线播放| 亚洲精品久久久久久婷婷小说| 最黄视频免费看| 日韩中文字幕视频在线看片| 校园人妻丝袜中文字幕| 国产成人免费无遮挡视频| a级毛片黄视频| 蜜桃国产av成人99| 国产亚洲av片在线观看秒播厂| 考比视频在线观看| 女人久久www免费人成看片| 制服丝袜香蕉在线| 中文欧美无线码| 久久久久视频综合| 午夜免费鲁丝| 大片免费播放器 马上看| 亚洲国产色片| 亚洲国产成人一精品久久久| 黄色欧美视频在线观看| 日韩,欧美,国产一区二区三区| 夜夜看夜夜爽夜夜摸| 一区二区三区精品91| 精品久久久久久电影网| 日韩强制内射视频| 丝袜美足系列| 亚洲五月色婷婷综合| 国产精品蜜桃在线观看| 在线观看一区二区三区激情| 亚洲性久久影院| 三级国产精品欧美在线观看| 久久久久精品久久久久真实原创| 日韩av免费高清视频| 男男h啪啪无遮挡| 国产精品久久久久久精品电影小说| 性色av一级| 一个人免费看片子| 97超碰精品成人国产| 国产精品久久久久久久电影| 成人黄色视频免费在线看| 国产成人免费观看mmmm| 一级二级三级毛片免费看| av不卡在线播放| 超碰97精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费看不卡的av| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 国产国语露脸激情在线看| 制服人妻中文乱码| 一本一本综合久久| 国产在线一区二区三区精| 熟女av电影| 成年美女黄网站色视频大全免费 | 女性被躁到高潮视频| av不卡在线播放| 午夜激情av网站| 亚洲欧美一区二区三区国产| 久久精品夜色国产| 蜜桃久久精品国产亚洲av| 久久婷婷青草| 美女脱内裤让男人舔精品视频| 免费人妻精品一区二区三区视频| 亚洲精品色激情综合| 久久久久久久精品精品| 免费日韩欧美在线观看| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 色吧在线观看| xxx大片免费视频| 一级毛片我不卡| 18禁观看日本| 黄色配什么色好看| 美女主播在线视频| 国产黄片视频在线免费观看| 久久精品夜色国产| 国产成人午夜福利电影在线观看| 久久久久久久久久久久大奶| 国产亚洲午夜精品一区二区久久| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 一区二区av电影网| 久久午夜福利片| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 亚洲国产av新网站| 久久 成人 亚洲| 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 国产在视频线精品| 99国产精品免费福利视频| 国产男人的电影天堂91| av黄色大香蕉| 最新中文字幕久久久久| a级毛色黄片| av.在线天堂| 久久99热这里只频精品6学生| 国产日韩欧美在线精品| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 午夜日本视频在线| 99九九在线精品视频| 亚洲国产精品999| 最近最新中文字幕免费大全7| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 久久久久久久亚洲中文字幕| 亚洲欧美成人综合另类久久久| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 午夜视频国产福利| 精品一区二区免费观看| 午夜精品国产一区二区电影| 国产精品一国产av| 国产精品国产三级国产专区5o| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 免费黄网站久久成人精品| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 岛国毛片在线播放| 在线观看美女被高潮喷水网站| 大又大粗又爽又黄少妇毛片口| 日韩不卡一区二区三区视频在线| 美女视频免费永久观看网站| 只有这里有精品99| 99热6这里只有精品| 制服丝袜香蕉在线| 婷婷色综合www| www.av在线官网国产| av一本久久久久| 精品亚洲成a人片在线观看| 黄片无遮挡物在线观看| 亚洲精品第二区| 欧美三级亚洲精品| av电影中文网址| 免费大片黄手机在线观看| 欧美国产精品一级二级三级| 日韩精品免费视频一区二区三区 | 一级a做视频免费观看| av在线app专区| 观看av在线不卡| 亚洲精品成人av观看孕妇| 高清午夜精品一区二区三区| 成人无遮挡网站| 国产精品99久久久久久久久| 一级毛片电影观看| 精品一区二区三卡| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 97在线人人人人妻| 搡女人真爽免费视频火全软件| 国产视频内射| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 成年美女黄网站色视频大全免费 | 精品人妻偷拍中文字幕| 女性被躁到高潮视频| 欧美最新免费一区二区三区| 午夜福利视频精品| 亚洲中文av在线| 综合色丁香网| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 在线播放无遮挡| 日本猛色少妇xxxxx猛交久久| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄| 特大巨黑吊av在线直播| 美女主播在线视频| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕 | 99久久人妻综合| 国产精品一国产av| 三级国产精品片| 纵有疾风起免费观看全集完整版| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 最近手机中文字幕大全| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 久久婷婷青草| 多毛熟女@视频| 亚洲三级黄色毛片| 高清av免费在线| 国产成人精品一,二区| 久久久久久伊人网av| 欧美成人午夜免费资源| 国产伦精品一区二区三区视频9| 晚上一个人看的免费电影| 在线观看免费日韩欧美大片 | 99热国产这里只有精品6| 久久精品久久久久久久性| 这个男人来自地球电影免费观看 | 国产欧美日韩综合在线一区二区| 亚洲精品456在线播放app| freevideosex欧美| 亚洲精品第二区| a级毛片在线看网站| 久久久久精品性色| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 中文字幕精品免费在线观看视频 | 亚洲综合色惰| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 久久狼人影院| 免费久久久久久久精品成人欧美视频 | 亚洲av.av天堂| 亚洲图色成人| 亚洲国产精品专区欧美| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 中文字幕亚洲精品专区| 少妇丰满av| 久久久久久久大尺度免费视频| 午夜av观看不卡| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 久久久久精品性色| 国产成人精品无人区| 在现免费观看毛片| 国产免费福利视频在线观看| 青青草视频在线视频观看| 国产不卡av网站在线观看| 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 大片电影免费在线观看免费| 在线观看免费视频网站a站| 亚洲内射少妇av| 成年女人在线观看亚洲视频| 国产视频首页在线观看| 久久久久久久久久成人| 综合色丁香网| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 日本免费在线观看一区| 亚洲国产色片| 亚洲欧美精品自产自拍| 久久久久网色| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃 | 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 午夜福利影视在线免费观看| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 久热久热在线精品观看| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 精品国产国语对白av| av视频免费观看在线观看| 九九久久精品国产亚洲av麻豆| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 99九九线精品视频在线观看视频| 97在线人人人人妻| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 国产成人freesex在线| 亚州av有码| 丝袜在线中文字幕| 男的添女的下面高潮视频| 精品少妇内射三级| 亚洲国产精品999| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 这个男人来自地球电影免费观看 | av专区在线播放| 欧美少妇被猛烈插入视频| 久久亚洲国产成人精品v| 天美传媒精品一区二区| 亚洲人成77777在线视频| 美女cb高潮喷水在线观看| 亚洲国产精品一区二区三区在线| 最近2019中文字幕mv第一页| 日本av免费视频播放| 国产爽快片一区二区三区| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 国产一区亚洲一区在线观看| 国产av一区二区精品久久| 欧美性感艳星| 久久精品人人爽人人爽视色| 大香蕉97超碰在线| 婷婷色麻豆天堂久久| 国产无遮挡羞羞视频在线观看| 欧美bdsm另类| 亚洲欧美色中文字幕在线| 夫妻午夜视频| 日本黄色日本黄色录像| 一区二区三区免费毛片| 交换朋友夫妻互换小说| 免费看av在线观看网站| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品| 丰满乱子伦码专区| 亚洲国产日韩一区二区| 一本久久精品| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| 日本vs欧美在线观看视频| 男人添女人高潮全过程视频| 18禁在线播放成人免费| 免费高清在线观看日韩| 欧美日韩av久久| 在线观看免费日韩欧美大片 | 九色成人免费人妻av| 中国美白少妇内射xxxbb| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 久久99精品国语久久久| av线在线观看网站| 国产国拍精品亚洲av在线观看| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 国产精品一二三区在线看| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区 | 国产免费又黄又爽又色| 搡老乐熟女国产| 国产成人精品福利久久| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 欧美成人精品欧美一级黄| 日日撸夜夜添| 国产成人午夜福利电影在线观看| 91精品伊人久久大香线蕉| 男女免费视频国产| 亚洲成人一二三区av| 国产伦精品一区二区三区视频9| 亚洲三级黄色毛片| 久久久久久久精品精品| 在线天堂最新版资源| 少妇 在线观看| 99热国产这里只有精品6| 亚洲第一av免费看| 综合色丁香网| 狠狠婷婷综合久久久久久88av| 久久久久国产精品人妻一区二区| 久久精品国产自在天天线| 亚洲欧美色中文字幕在线| 制服人妻中文乱码| 亚洲成人av在线免费| av女优亚洲男人天堂| 国产精品一国产av| 欧美精品高潮呻吟av久久| 青春草亚洲视频在线观看| 国产精品一区二区在线观看99| 国产精品久久久久久精品电影小说| 如日韩欧美国产精品一区二区三区 | 大香蕉久久网| 美女国产高潮福利片在线看| 一区在线观看完整版| 久久久久久久亚洲中文字幕| 久久人人爽av亚洲精品天堂| 一级毛片黄色毛片免费观看视频| 99热这里只有是精品在线观看| 少妇人妻 视频| 亚洲精品久久成人aⅴ小说 | 熟女av电影| av国产久精品久网站免费入址| 久久免费观看电影| 欧美成人午夜免费资源| 精品午夜福利在线看| 日韩视频在线欧美| 亚洲欧洲日产国产| www.av在线官网国产| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| 一区在线观看完整版| 亚洲av成人精品一区久久| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区| 97精品久久久久久久久久精品| 国产欧美日韩综合在线一区二区| av专区在线播放| 啦啦啦视频在线资源免费观看| 国产女主播在线喷水免费视频网站| 香蕉精品网在线| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 中文字幕精品免费在线观看视频 | 久久午夜综合久久蜜桃| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 国产极品粉嫩免费观看在线 | 黑人高潮一二区| 日日摸夜夜添夜夜添av毛片| 日产精品乱码卡一卡2卡三| 欧美成人午夜免费资源| 国产亚洲最大av| 国产成人精品在线电影| 久久人人爽人人片av| 国产成人免费观看mmmm| 亚洲性久久影院| 我要看黄色一级片免费的| av播播在线观看一区| 国产一区有黄有色的免费视频| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 狠狠精品人妻久久久久久综合| 国产亚洲午夜精品一区二区久久| 国产精品一区二区在线观看99| 秋霞在线观看毛片| 日日撸夜夜添| 99re6热这里在线精品视频| 国产精品嫩草影院av在线观看| 日韩中字成人| 日韩欧美一区视频在线观看| 美女内射精品一级片tv| 午夜日本视频在线| 老女人水多毛片| 观看美女的网站| 纵有疾风起免费观看全集完整版| 蜜桃久久精品国产亚洲av| 亚洲欧洲精品一区二区精品久久久 | 国产伦精品一区二区三区视频9| 国产又色又爽无遮挡免| 亚洲欧美清纯卡通| 美女主播在线视频| av视频免费观看在线观看| 日韩欧美精品免费久久| 日本av免费视频播放| 国产淫语在线视频| 国产免费一区二区三区四区乱码| 在线观看免费日韩欧美大片 | 国产成人av激情在线播放 | 美女cb高潮喷水在线观看| 免费观看a级毛片全部| 午夜免费观看性视频| 99九九在线精品视频| 亚洲美女黄色视频免费看| 久久狼人影院| videossex国产| 日本av免费视频播放| 久久婷婷青草| 一级毛片我不卡| 日本色播在线视频| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 男人操女人黄网站| av视频免费观看在线观看| 国语对白做爰xxxⅹ性视频网站| 哪个播放器可以免费观看大片| 午夜免费观看性视频| 人妻人人澡人人爽人人| 五月伊人婷婷丁香| 午夜免费男女啪啪视频观看| 我要看黄色一级片免费的| 国产欧美日韩综合在线一区二区| 中文字幕久久专区| 国产免费一区二区三区四区乱码| 国产精品无大码| 一区二区日韩欧美中文字幕 | 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 欧美激情 高清一区二区三区| 在现免费观看毛片| 日韩制服骚丝袜av| 国产探花极品一区二区| 久久精品夜色国产| 亚洲精品色激情综合| 亚洲av二区三区四区| 性色av一级| 夫妻午夜视频|