• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    2015-11-30 11:02:16SungSukSuhSoJungKimJinikHwangMiryeParkTaekKyunLeeEuiJoonKilSukchanLee

    Sung-Suk Suh, So Jung Kim, Jinik Hwang, Mirye Park, Taek-Kyun Lee*, Eui-Joon Kil, Sukchan Lee

    1South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea

    2Kyeongbuk Institute for Marine Bio-Industry, Wooljin, 767-813, Republic of Korea

    3Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

    Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    Sung-Suk Suh1, So Jung Kim2, Jinik Hwang1, Mirye Park1, Taek-Kyun Lee1*, Eui-Joon Kil3, Sukchan Lee3

    1South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea

    2Kyeongbuk Institute for Marine Bio-Industry, Wooljin, 767-813, Republic of Korea

    3Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

    ARTICLE INFO

    Article history:

    Received 15 December 2014

    Received in revised form 20 January 2015

    Accepted 15 February 2015

    Available online 20 March 2015

    Microalgae

    PUFA

    Nutritive values

    DHA

    EPA

    Objective: To screen the fatty acid (FA) composition of 20 marine microalgae species, including seven Diophyceae, six Bacillariophyceae, four Chlorophyceae, two Haptophyceae and one Raphidophyceae species. Methods: Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed. Results: The FA composition of microalgae was speciesspecific. For example, seven different species of Dinophyceae were composed primarily of C14:0, C16:0, C18:0, C20:4n-6, C20:5n-3 and C22:6n-3, while C14:0, C16:0, C16:1, C18:0, C20:5n-3 and C22:6n-3 were abundant FAs in six species of Bacillariophyceae. In addition, four Chlorophyceae, two Haptophyceae and one Raphidophyceae species all contained a high degree of C16:1n-7 [(9.28-34.91)% and (34.48-35.04)%], C14:0 [(13.34-25.96)%] and [(26.69-28.24)%], and C16:0 [(5.89-29.15)%] and [(5.70-16.81)%]. Several factors contribute to the nutritional value of microalgae, including the polyunsaturated FA content and n-3 to n-6 FA ratio, which could be used to assess the nutritional quality of microalgae. Conclusions: This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea, and identifies the potential utility of FAs as species-specific biomarkers.

    1. Introduction

    Microalgae are highly diverse photoautotrophic organisms that play a primary role in the food chain of the open sea[1] as prey for crustaceans and late larval and juvenile fish such as rotifer, copepod, daphnia, and brine shrimp[2,3]. The great diversity in microalgae has led to numerous studies on the effects of fatty acid (FA) composition and lipid class on nutritional quality and algae growth[4,5]. In addition, microalgae produce polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)[6,7], which have a wide variety of nutraceutical and pharmaceutical applications[8,9].

    The biochemical composition of microalgae is one determining factor affecting its nutritional quality and utility as a food for bivalves[10]. Many of the studies performed using juvenile or adult bivalves[11,12] have focused on microalgae PUFAs as indicators of nutritional quality[13]. Thus, the correlation between microalgae PUFA composition and nutritional value has now been established[3,14].

    DHA and EPA are important n-3 PUFAs, while arachidonic acid (AA, C20:4n-6) is a vital n-6 PUFA. Modern nutritional theory has focused on the numerous health benefits of maintaining sufficient levels of n-3 PUFAs[15]. The eicosanoids, such as prostaglandin, prostacyclin and leukotriene, derived from n-3 PUFAs, are important for infant development, modulating vascular resistance and wound healing[16]. DHA plays an important role in coronary heart disease,hypertension, type II diabetes, and ocular diseases and is used in the prevention and treatment of chronic diseases such as arthritis and cystic fibrosis[15]. DHA and EPA also help treat atherosclerosis, cancer, rheumatoid arthritis, psoriasis and diseases of old age, such as Alzheimer's and age-related macular degeneration[15], while AA and DHA are particularly important for brain and blood vessels and essential for pre-and postnatal, as well as retinal, development[17].

    Physiological studies of FA content and general composition using marine microalgae have been reported elsewhere, although few studies of Korean microalgae exist. The study of Korean microalgae FA composition has great significance for the use of marine bioresources as a basic material. The purpose of this study was to screen the FA composition of 20 species in the marine microalgae culture collection at the Korea Institute of Ocean Science & Technology to characterize the nutritional value of microalgae as a food source.

    2. Materials and methods

    2.1. Culture and isolation of microalgae

    A total of 20 purified cultures from the Korea Institute of Ocean Science & Technology collection were selected, including seven dinoflagellate [Gymnodinium sanguineum, Alexandrium sp., Prorocentrum minimum (P. minimum), Prorocentrum micans (P. micans), Prorocentrum dentatum (P. dentatum), Hetrocapsa triquetra (H triqutra), Scrippsiella trochoidea (S. trochoidea)], six diatom [Chaetoceros sp., Chaetoceros didymus (C. didymus), Chaetoceros affinis (C. affinis), Thalassiosira weissflogii (T. weissflogii), Phaeodactyrum tricornutum (P. tricornutum), Skeletonema costatum (S. costatum)], four Chlorophyceae [Chlamydomonas sp., Sphaerocystis schroeteri (S. schroeteri), Chlorella ellipsoidea (C. ellipsoidea), Nannochloropsis oculata (N. oculata)], two Haptophyta [Isocrysis galbana (I. galbana), Palova gyran (P. gyran)] and one Raphidophyceae species [(Heterosigma akashiwo (H. akashiwo)]. Microalgae were cultured in F/2 media[18] at (20±1) ℃ under a 12-h light/dark cycle at 150 μmol.m-2.s-1. All microalgae were grown under the same conditions and harvested by centrifugation at 3 500 rpm for 5 min at 4 ℃ during the exponential growth phase. The harvested algae were stored at 4 ℃ until all samples were obtained and then concentrated by continuous centrifugation. The concentrated algae were freeze-dried and stored at -80 ℃ until FA analysis. Table 1 lists the strains used in this study along with cell numbers and cell dry weight/mL.

    2.2. Lipid and FA extraction

    Lipid extraction was performed based on the method of Folch et al[18]. After culturing microalgae, 5 mL CHCl3:MeOH (2:1) was added to 0.5 mL of the pellets collected by centrifugation and sonicated for 20 min in 5 mL 0.58% sodium chloride followed by additional sonication for 10 min. The sample was then centrifuged for 5 min at 2 000-3 000 rpm to remove the upper layer, and the separated lower layer was transferred to another tube using a Pasteur pipet dried using nitrogen gas. A known amount of heneicosanoic acid (C21:0) was used as an internal standard. Next, 0.5 mL toluene and 2 mL 0.5 N NaOH were added to the dried sample, which was incubated for 5 min in a heated bath and cooled. BF3MeOH was then added, and the sample was heated in the bath for 3 min and cooled again. In the final step, 15 mL petroleum ether and 20 mL H2O were added, the sample sonicated, and the supernatant isolated and dried using nitrogen gas.

    Table 1 Cell density and dry weight of marine microalgae used in the study.

    2.3. Fatty acid analysis

    Fatty acid methyl esters (FAMEs) were analyzed in a Varian CP-3800 equipped with a HP-Innowax silica capillary column (30 m× 0.25 mm id., 0.25 μm film thickness), using helium as the carrier gas. Samples (1 mL) were injected under the following conditions: the column temperature was held at 50 ℃ for 2 min, then elevated at a rate of 5 ℃/min to 220 ℃, maintained for 30 min and held until all FAME of interest had been eluted. The injector and flame ionization detector temperatures were both 250 ℃. FAMEs were identified by comparing their retention times with those of validated standards (Sigma-Aldrich Co., USA) and quantified using heneicosanoic acid as the internal standard.

    2.4. Data analysis

    All data have been expressed as weight percentages and representthe means of at least three different samples of each algae species. Statistical analysis was performed using a non-parametric ANOVA followed by a Dunn's pair-wise multiple comparison test with significance indicated at P<0.05. FAs were grouped into saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and PUFAs. Among the PUFAs, 20:5n3 (EPA), 22:6n3 (DHA), total n3 and n6, and n3/n6 ratios were reported.

    3. Results

    3.1. FAME composition of 20 marine microalgae

    FAME compositions of the seven species of Dinophyceae used in this study are shown in Table 2. The major FAs in Dinophyceae were C14:0, C16:0, C16:1, C18:0, C18:1n-9, C20:5n-3 and C22:6n-3 in Alexandrium sanguinea (A. sanguinea) and Alexandrium sp., while the other five species of Dinophyceae (P. minimum, P. micans, P. dentatum, H. triqutra and S. trochoidea) contained C14:0, C16:0, C16:1, C18:0, C18:1n-9, C20:2n-6, C20:4n-6, C20:5n-3 and C22:6n-3. In comparisons of the FAME contents between Alexandrium sp. and the other species, ΣSFA (41.9%) was relatively high and ΣMUFA (36.7%) relatively low. In particular, C16:0 (26.2%) and C18:0 (11.4%) were higher than the other species.

    Table 2 Fatty acid composition of Dinophyceae algae species.

    The FAME compositions of the six species of Bacillariophyceae used in this study are shown in Table 3. The contents of six major FA tested in Bacillariophyceae (C14:0, C16:0, C18:0, C20:5n-3 and C22:6n-3, and C16:1) were low in C. didymus compared with the other species. Chetocerus sp. had the highest contents of C14:0 (18.2%), C16:0 (23.4%) and C18:3n-6 (2.7%). C. didymus had the highest level of ΣSFA (53.8%) among all Bacillariophyceae, and C22:6n-3 (24.1%) was also high. C. affinis had high contents of C20:2n-6 (6.2%) and C22:6n-3 (18.6%). T. weissflogii was high in C16:0 (23.4%) and C16:1 (34.3%). P. tricornutum was high in C18:2n-6 (2.8%) and C20:5n-3 (52.6%), with the highest ΣPUFA (64.8%) among all Bacillariophyceae species. Furthermore, S. costatum showed the highest level of C16:1 (35.6%) among the Bacillariophyceae.

    Table 3 Fatty acid composition of Bacillariophyceae algae species.

    FAME compositions of the four Chlorophyceae, two Haptophyceae, one Raphidophyceae and one Eugtophyceae species used in this study are shown in Table 4. In this study, the major FAs of Chlorophyceae, including C16:0, C18:0, C16:1, C18:3n-3, C20:4n-6 and C22:6n-3, were low. The major FAs of Chlamydomonas sp. were C16:0 (24.3%), C18:0 (13.9%), C18:3n-3 (26.7%) and C20:5n-3 (19.7%), and S. schroeteri had the highest amount of C18:0 (46.8%) among the Chlorophyceae species evaluated with 26.0% C18:3n-3. C.ellipsoidea showed the highest levels of C16:0 (23.8%), C16:1 (25.3%) and C20:5n-3 (34.6%) among Chlorophyceae, but C18:3n-3 (0.5%) was relatively low. N. oculata had a very high level of C18:0 (35.5%) and C18:3n-3 (29.1%). The major FAs in the two species of Haptophyceae, I. galbana and P. gyrans, were C14:0, C16:1, C20:5n-3 and C22:6n-3. In particular, the C22:6n-3 content of I. ganbana was very high at 33.6%. H. akashiwo had C16:0 (18.3%), C18:0 (9.3%), C16:1 (15.1%), C20:5n-3 (38.8%) and C22:6n-3 (8.7%) as the major FAs.

    Table 4 Fatty acid composition of 4 Chlorophyceae, 2 Haptophyceae, and 1 Raphidophyceae algae species.

    3.2. Nutritive values of FAME contents from 20 marine microalgae

    Next, we investigated the nutritive values of FAME contents from microalgae. The EPA content was high and increased in the order of P. tricornutum, H. akashiwo, C. ellipsoidea, P. gyrans and S. costatum (27.8-52.6%), and the DHA content was highest in I. galbana (33.6%). Dinophyceae, excluding Alexandrium sp., contained significantly high levels DHA from 21.0%-28.1%. The DHA and EPA ratio critical to the survival of marine fish larvae[19] was the highest in I. galbana (3.3) and C. didymus (2.7) (Table 5).

    Table 5 Nutritive values of FAME contents from 20 marine microalgae.

    The n-3/n-6 ratio was a parameter used to assess the nutritional value of microalgal cells[20]. This study determined that the n-3/n-6 ratios ranging from 2-5 provided sufficient microalgae nutritional value. The authors reported that the microalgae with a high n-3/n-6 ratio included N. oculata (17.3), S. schreoteri (12.8) and H. akashiwo (12.4), although eight species were in the 2-5 range and thus nutritionally suitable, including P. minimum (3.3), P. micans (3.4), P. dentatum (4.0), H. triquitra (2.5). S. trochoidea (3.6), C. affinis (3.4), C. ellipsoidea (3.2) and I. galbana (4.9). In addition, arachidonic acid (AA, C20:4n-6) content was higher in Dinophyceae, similar to DHA, and high in P. minimum (13.8%), H. triqutra (10.8%) and S. trochoidea (8.1%) (Table 2). Interestingly weobserved low levels of (SFA+MUFA)/PUFA and high ratios of UFA/SFA and (C20:5+C22:6)/ (C16:0+C16:1). These values are reported in Table 5 and corresponded to levels in Dinophyceae and P. tricornutum of Bacillariophyceae, indicating high nutritional value among these microalgae (Table 5).

    4. Discussion

    Our study indicated the distinct patterns of FA composition in twenty different microalgae, showing a species-specific FA composition. For example, C14:0, C16:0, C18:0, C20:4n-6, C20:5n-3 and C22:6n-3 were abundant in Dinophyceae, while C14:0, C16:0, C16:1, C18:0, C20:5n-3 and C22:6n-3 were abundant in Bacillariophyceae. In addition, four Chlorophyceae, two Haptophyceae and one Raphidophyceae species predominantly produce C16:1n-7, C14:0 and C16:0 FAs. In Chlorophyceaen, Raphidophyceae and Haptophyceae members, the prominent fatty acids such as C16:0 and C16:1n-7 were found similar to the earlier report, showing a higher concentration of C16:0 over C16:1n-7. The FA contents in Chlorophyceae were characterized previously by low amounts of 20:5n-3 and C22:6n-3[21]. In addition, previous reports determined that Bacillariophyceae contained high levels of C14:0, C15:0 and C16:1 and low levels of C24:0[20,21]. Moreover, while 20:5 n-3 was high in all species, it was particularly increased in P. tricornutum[22,23]. The Bacillariophyceae species in this study showed similar results.

    On the other hand, The optimal nutritional value of microalgae as a food source is affected by the amino acid composition of proteins and the sugar composition of carbohydrates[24,25], but it is influenced to a greater extent by the FA composition of lipids[24]. The lipid profile of microalgae as a food source indicates that PUFA, especially DHA and EPA, are associated with rapid growth of bivalve larvae and juveniles of many other organisms[26]. When EPA and DHA are not present in microalgae, the growth of juvenile oysters is retarded[24,27]. In fact, it has been reported that low levels of (SFA+MUFA)/PUFA and high ratios of UFA/ SFA and (C20:5+C22:6)/ (C16:0+C16:1) have nutritional value in cultured organisms[28]. Young oysters can elongate or desaturate the carbon chain of dietary FAs, but the rate is too slow to maintain optimal growth[29]. Among the n-3 PUFA, DHA (C22:6n-3) and EPA (C20:5n-3) are essential for growth and development of fish and oysters. Our results demonstrate variations in several factors that contribute to the nutritional value of microalgae, including EPA and DHA contents, as well as the ratio n-3/n-6 fatty acids ratio. In particular, the C22:6n-3 content of I. ganbana was very high at 33.6%, which was similar to previous reports[30]. In addition, arachidonic acid (AA, C20:4n-6) is a precursor of eicosanoid synthesis and an essential FA for marine fish. When turbot juveniles, which prefer food with a high DHA content, were fed only AA, they showed higher growth and survival rates than those fed an AA and DHA mixture or DHA only[31]. Taken together, this is the first report on the FA profiles and nutritional value of microalgae species in South Korea, and it provides information regarding the potential utility of FAs as biomarkers and a basis for the development of more effective culture techniques for marine organisms via microalgae identification.

    Conflict of interest statement

    The authors disclose no conflicts.

    Acknowledgements

    This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (PN65760).

    [1] Ariyadej C, Tansakul R, Tansakul P, Angsupanich S. Phytoplankton diversity and its relationships to the physio-chemical environment in the Banglang Reservoir, Yala Province. Songklanakarin J Sci Technol 2004; 26: 595-607.

    [2] Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muytaert K, Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 2014; 160: 393-400.

    [3] Ronquillo JD, Fraser J, McConkey AJ. Effect of mixed microalgal diets on growth and polyunsaturated fatty acid profile of European oyster (Ostrea edulis) juveniles. Aquaculture 2012; 360: 64-68.

    [4] Brown M, Robert R. Preparation and assessment of microalgal concentrates as feeds for larval and juvenile Pacific oyster (Crassostrea gigas). Aquaculture 2002; 207: 289-309.

    [5] Martinez-Fernandez E, Acosta-Salmon H, Southgate PC. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 2006; 257: 491-503.

    [6] Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muytaert K, Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 2014; 160: 393-400.

    [7] Wang JL, Dong XY, Wei F, Zhong J, Liu B, Yao MH, et al. Preparation and characterization of novel lipid carriers containing microalgae oil for food applications. J Food Sci 2014; 79: 167-177.

    [8] Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, et al. Fatty acids as biomarkers of microalgae. Phytochemistry 2013; 89: 53-58.

    [9] Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 2008; 155: 751-759.

    [10] Martínez-Fernández E, Acosta-Salmón H, Southgate PC. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 2006; 257: 491-1503.

    [11] Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RB, Saxena Ak. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 2013; 53: 440-450.

    [12] Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 2014; 62: 2709-2727.

    [13] Albentosa M, Perez-Camacho A, Labarta U, Fernandez-Reiriz MJ. Evaluation of live microalgae diets for the seed culture of Ruditapes decussates using physiological and biochemical parameters. Aquaculture 1996; 148: 11-23.

    [14] Islam MM, Ahmed ST. Kim YJ, Mun HS, Kim YJ, Yang CJ. Effect of sea tangle (Laminaria japonica) and charcoal supplementation as alternatives to antibiotics on growth performance and meat quality of ducks. Asian-Australas J Anim Sci 2014; 27: 217-224.

    [15] Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr 1999; 70: 560-569.

    [16] Patil V, Gisler?d HR. The importance of omega-3 fatty acids in diet. Curr Sci 2006; 90: 908-909.

    [17] Yang DY, Pan HC, Yen YJ, Wang CC, Chuang YH, Chen SY, et al. Detrimental effects of post-treatment with fatty acids on brain injury in ischemic rats. Neurotoxicology 2007; 28: 1220-1229.

    [18] Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226: 497-509.

    [19] Bell JG, McEvoy LA, Estevez A, Shields RJ, Sargent JR. Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture 2003; 227: 211-220.

    [20] Fernandez-Reiriz MJ, Labarta U, Albentosa M, Perez-Camacho A. Effect of microalgal diets and commercial wheatgerm flours on the lipid profile of Ruditapes decussatus spat. Comp Biochem Physiol A Mol Integr Physiol 1998; 119: 369-377.

    [21] Zhukova NV, Aizdaicher NA. Fatty acid composition of 15 species of marine microalgae. Phytochem 1995; 39: 351-356.

    [22] Pahl SL, Lewis DM, Chen F, King KD. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of some environmental factors. J Biosci Bioeng 2010; 109: 235-239.

    [23] Song M, Pei H, Hu W, Han F, Ji Y, Ma G, et al. Growth and lipid accumulation properties of microalgal Phaeodactylum tricornutum under different gas liquid ratios. Bioresour Technol 2014; 165: 31-37.

    [24] Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixtrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 2012; 118: 61-66.

    [25] Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997; 234: 315-331.

    [26] Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for maricuture. Aquaculture 1997; 151: 315-331.

    [27] Thompson PA, Gua M, Harrison PJ. Nutritional value of diets that vary in fatty acid composition for larval Pacific oyster (Crassostrea gigas). Aquaculture 1996; 143: 379-391.

    [28] Enright CT, Newkirk GF, Craigie JS, Castell JD. Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J Exp Mar Biol Ecol 1986; 96: 1-13

    [29] Sequineau C, Racotta IS, Palacios E, Delaporte M, Moal J, Soudant P. The influence of dietary supplementation of arachidonic acid on prostaglandin production and oxidative stress in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2011; 160: 87-93.

    [30] Gao Y, Yang M, Wang C. Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 2013; 147: 484-491.

    [31] Castell JD, Kennedy EJ, Robinson SMC, Parsons GJ, Blair TJ, Gonzalez-Duran E. Effect of dietary lipids on fatty acid composition and metabolism in juvenile green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 2004; 242: 417-435.

    ent heading

    10.1016/S1995-7645(14)60313-8

    *Corresponding author: Dr. Taek-Kyun Lee, South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea.

    Tel: 82-55-639-8530

    Fax: 82-55-639-8539

    E-mail: tklee@kiost.ac

    日韩中文字幕欧美一区二区| 免费黄频网站在线观看国产| 一本大道久久a久久精品| 欧美少妇被猛烈插入视频| 午夜福利免费观看在线| 中文字幕色久视频| 欧美精品av麻豆av| 男女国产视频网站| av天堂久久9| 亚洲av成人一区二区三| 一区在线观看完整版| 一本综合久久免费| 亚洲欧洲日产国产| 久久久久国产一级毛片高清牌| 欧美日韩一级在线毛片| 国产一区二区三区av在线| bbb黄色大片| 亚洲精品国产一区二区精华液| 91老司机精品| 欧美性长视频在线观看| 九色亚洲精品在线播放| 在线永久观看黄色视频| 精品免费久久久久久久清纯 | 蜜桃国产av成人99| www.999成人在线观看| 天天操日日干夜夜撸| 99久久精品国产亚洲精品| av在线播放精品| 国产视频一区二区在线看| 精品一品国产午夜福利视频| 久久免费观看电影| 欧美大码av| 一级a爱视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线进入| bbb黄色大片| 丁香六月欧美| 极品少妇高潮喷水抽搐| 亚洲七黄色美女视频| 一本色道久久久久久精品综合| 9191精品国产免费久久| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 午夜老司机福利片| 国产成人精品久久二区二区免费| 韩国精品一区二区三区| 99精品欧美一区二区三区四区| 男女边摸边吃奶| 午夜精品久久久久久毛片777| 午夜福利在线观看吧| 伊人久久大香线蕉亚洲五| 亚洲精品一区蜜桃| 1024香蕉在线观看| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 欧美日韩视频精品一区| 精品国产一区二区久久| 国产激情久久老熟女| 国产精品亚洲av一区麻豆| 99精品久久久久人妻精品| 精品一区在线观看国产| 欧美激情久久久久久爽电影 | 少妇猛男粗大的猛烈进出视频| 老司机亚洲免费影院| 妹子高潮喷水视频| www.自偷自拍.com| h视频一区二区三区| 大陆偷拍与自拍| 69精品国产乱码久久久| 午夜成年电影在线免费观看| 欧美日韩国产mv在线观看视频| 国产精品熟女久久久久浪| 国产成+人综合+亚洲专区| 一边摸一边抽搐一进一出视频| 亚洲av成人不卡在线观看播放网 | 一级片'在线观看视频| 久久 成人 亚洲| 九色亚洲精品在线播放| 国产日韩欧美视频二区| 成年av动漫网址| av天堂在线播放| 搡老乐熟女国产| 午夜福利视频精品| 欧美乱码精品一区二区三区| 欧美 亚洲 国产 日韩一| 男女高潮啪啪啪动态图| 高潮久久久久久久久久久不卡| 精品久久久精品久久久| 成人av一区二区三区在线看 | 精品久久蜜臀av无| 91九色精品人成在线观看| 日韩 亚洲 欧美在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久av网站| 亚洲黑人精品在线| 日韩大片免费观看网站| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看| 91精品三级在线观看| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 日日爽夜夜爽网站| 狠狠精品人妻久久久久久综合| 青春草视频在线免费观看| 人妻一区二区av| 精品免费久久久久久久清纯 | 91成年电影在线观看| 99精品久久久久人妻精品| 国产av国产精品国产| av不卡在线播放| 国产日韩欧美亚洲二区| 国产有黄有色有爽视频| 十分钟在线观看高清视频www| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 黑人巨大精品欧美一区二区蜜桃| a级片在线免费高清观看视频| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 大片免费播放器 马上看| av线在线观看网站| 国产伦理片在线播放av一区| 成在线人永久免费视频| 国产精品久久久久久精品古装| 12—13女人毛片做爰片一| 亚洲成人免费av在线播放| 深夜精品福利| 大型av网站在线播放| 极品人妻少妇av视频| 久久青草综合色| 亚洲欧美激情在线| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| 日韩中文字幕视频在线看片| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 亚洲综合色网址| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 国产成人免费观看mmmm| 秋霞在线观看毛片| 国产成人精品在线电影| av天堂久久9| 999久久久国产精品视频| 最近中文字幕2019免费版| 久久久久国产一级毛片高清牌| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 亚洲第一欧美日韩一区二区三区 | 一本久久精品| 黄片小视频在线播放| av福利片在线| 男人爽女人下面视频在线观看| 欧美午夜高清在线| 亚洲av男天堂| 国产精品一区二区精品视频观看| 欧美日韩中文字幕国产精品一区二区三区 | 1024香蕉在线观看| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区 | 可以免费在线观看a视频的电影网站| 精品福利观看| 黑丝袜美女国产一区| av网站在线播放免费| 麻豆乱淫一区二区| 国产精品av久久久久免费| 亚洲avbb在线观看| 在线观看www视频免费| 久久精品人人爽人人爽视色| 亚洲精品国产色婷婷电影| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 免费av中文字幕在线| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 国产成人a∨麻豆精品| 国产精品久久久av美女十八| 欧美日韩视频精品一区| 老熟妇乱子伦视频在线观看 | 欧美精品av麻豆av| 丝袜喷水一区| 麻豆国产av国片精品| 美国免费a级毛片| 国产精品久久久人人做人人爽| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区在线观看av| 亚洲精品国产av成人精品| 男人爽女人下面视频在线观看| 国产男人的电影天堂91| 精品一区在线观看国产| 咕卡用的链子| 嫩草影视91久久| 国产三级黄色录像| 一进一出抽搐动态| 色视频在线一区二区三区| 久热爱精品视频在线9| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 美女视频免费永久观看网站| 51午夜福利影视在线观看| 久久国产精品人妻蜜桃| 国产一区有黄有色的免费视频| 18在线观看网站| 精品少妇内射三级| 在线观看人妻少妇| cao死你这个sao货| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 男女国产视频网站| 飞空精品影院首页| 亚洲精品日韩在线中文字幕| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 我的亚洲天堂| 午夜福利乱码中文字幕| 亚洲av男天堂| 狠狠精品人妻久久久久久综合| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 免费在线观看完整版高清| 女人精品久久久久毛片| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 亚洲欧美清纯卡通| 久久久久精品人妻al黑| www.熟女人妻精品国产| 国产精品国产三级国产专区5o| 乱人伦中国视频| av免费在线观看网站| 国产又色又爽无遮挡免| 51午夜福利影视在线观看| 可以免费在线观看a视频的电影网站| 超碰成人久久| 精品一品国产午夜福利视频| 人成视频在线观看免费观看| 青草久久国产| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 亚洲第一av免费看| 黑丝袜美女国产一区| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| www.av在线官网国产| 一级片'在线观看视频| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 国产免费福利视频在线观看| 欧美大码av| 999久久久国产精品视频| 国产免费福利视频在线观看| 91老司机精品| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 精品第一国产精品| 久久精品国产a三级三级三级| 男女免费视频国产| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看 | 亚洲国产欧美在线一区| 亚洲熟女毛片儿| 国产免费现黄频在线看| av网站在线播放免费| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 别揉我奶头~嗯~啊~动态视频 | 黄片小视频在线播放| 成年人黄色毛片网站| 午夜福利视频精品| www.自偷自拍.com| 最近最新免费中文字幕在线| 99国产精品99久久久久| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 1024香蕉在线观看| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 久热这里只有精品99| 伊人亚洲综合成人网| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 黄色视频,在线免费观看| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 亚洲成人国产一区在线观看| 日韩有码中文字幕| 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 可以免费在线观看a视频的电影网站| 国产一级毛片在线| 精品国产一区二区三区久久久樱花| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 欧美在线一区亚洲| 脱女人内裤的视频| 午夜免费成人在线视频| 免费看十八禁软件| 99久久99久久久精品蜜桃| 午夜免费观看性视频| 最新的欧美精品一区二区| xxxhd国产人妻xxx| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产av国产精品国产| 久久亚洲精品不卡| 99热网站在线观看| 一级a爱视频在线免费观看| 国产成人精品在线电影| 欧美少妇被猛烈插入视频| 国产欧美日韩一区二区三区在线| 69av精品久久久久久 | 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 在线亚洲精品国产二区图片欧美| av欧美777| 天天添夜夜摸| 欧美日韩成人在线一区二区| 狂野欧美激情性xxxx| 黄色怎么调成土黄色| 一边摸一边抽搐一进一出视频| 三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 国产精品一区二区在线观看99| 18在线观看网站| 可以免费在线观看a视频的电影网站| 高潮久久久久久久久久久不卡| 一边摸一边抽搐一进一出视频| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 国产有黄有色有爽视频| 久9热在线精品视频| 亚洲avbb在线观看| 欧美乱码精品一区二区三区| 国产一级毛片在线| 在线永久观看黄色视频| 成年美女黄网站色视频大全免费| 国产熟女午夜一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 夜夜骑夜夜射夜夜干| 飞空精品影院首页| 国产一区二区三区在线臀色熟女 | 欧美另类亚洲清纯唯美| 午夜91福利影院| 少妇 在线观看| 精品一品国产午夜福利视频| 亚洲人成电影免费在线| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 免费不卡黄色视频| 久久人人爽人人片av| 国产av精品麻豆| 国产精品一区二区在线不卡| 乱人伦中国视频| 母亲3免费完整高清在线观看| 精品少妇内射三级| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 久久综合国产亚洲精品| 水蜜桃什么品种好| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲精品一区二区精品久久久| 热99国产精品久久久久久7| 91字幕亚洲| 99re6热这里在线精品视频| 亚洲人成电影观看| 法律面前人人平等表现在哪些方面 | 久久久久国产精品人妻一区二区| 啦啦啦免费观看视频1| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| 午夜福利在线观看吧| 夫妻午夜视频| 老司机在亚洲福利影院| 亚洲国产看品久久| 久久人妻福利社区极品人妻图片| 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 亚洲,欧美精品.| 欧美日韩成人在线一区二区| 欧美大码av| 亚洲三区欧美一区| 一区福利在线观看| 久久久久久久久久久久大奶| www.精华液| 丝袜脚勾引网站| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯 | 午夜免费成人在线视频| 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 大片免费播放器 马上看| 国产深夜福利视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 18禁观看日本| 人人妻人人澡人人爽人人夜夜| 国产精品秋霞免费鲁丝片| 亚洲av成人一区二区三| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 最新在线观看一区二区三区| 欧美人与性动交α欧美软件| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人| 国产男人的电影天堂91| 下体分泌物呈黄色| h视频一区二区三区| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 国产在线视频一区二区| 久久精品久久久久久噜噜老黄| 日日摸夜夜添夜夜添小说| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| 爱豆传媒免费全集在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 99国产综合亚洲精品| 在线av久久热| 色老头精品视频在线观看| 考比视频在线观看| 亚洲美女黄色视频免费看| 亚洲色图综合在线观看| 自线自在国产av| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 精品人妻在线不人妻| 免费高清在线观看视频在线观看| 黄片播放在线免费| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 婷婷丁香在线五月| 国产日韩欧美视频二区| 亚洲精品久久成人aⅴ小说| 9热在线视频观看99| 亚洲av日韩精品久久久久久密| 高清在线国产一区| 国产xxxxx性猛交| 成人国产av品久久久| 多毛熟女@视频| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 一本大道久久a久久精品| 久久精品国产亚洲av香蕉五月 | 曰老女人黄片| 国产精品二区激情视频| 极品人妻少妇av视频| 亚洲国产精品成人久久小说| 亚洲,欧美精品.| 99久久国产精品久久久| 女性被躁到高潮视频| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人看| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 国产老妇伦熟女老妇高清| 宅男免费午夜| 精品久久久久久电影网| 女性被躁到高潮视频| 男女床上黄色一级片免费看| 操美女的视频在线观看| 久久久久国产精品人妻一区二区| av有码第一页| 亚洲avbb在线观看| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 国产一区二区 视频在线| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 久久 成人 亚洲| av欧美777| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影 | 天堂8中文在线网| 国产亚洲精品第一综合不卡| 免费看十八禁软件| 黑人操中国人逼视频| 国产av一区二区精品久久| 亚洲欧美成人综合另类久久久| 97人妻天天添夜夜摸| 大香蕉久久网| 夫妻午夜视频| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 9191精品国产免费久久| 蜜桃在线观看..| 日韩大片免费观看网站| 欧美日韩黄片免| 国产成人精品无人区| 国产免费视频播放在线视频| 两个人免费观看高清视频| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 久久久水蜜桃国产精品网| 国产精品免费大片| 超碰97精品在线观看| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 美女视频免费永久观看网站| 国产不卡av网站在线观看| 成人国产av品久久久| 99国产精品99久久久久| 另类亚洲欧美激情| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 性色av乱码一区二区三区2| 久久久久久久精品精品| 美女午夜性视频免费| 欧美日韩一级在线毛片| 一级黄色大片毛片| 狠狠婷婷综合久久久久久88av| av在线播放精品| 国产精品国产av在线观看| 成人国产av品久久久| 99九九在线精品视频| 欧美激情 高清一区二区三区| 国产精品一二三区在线看| 久久九九热精品免费| 在线观看免费日韩欧美大片| 咕卡用的链子| 亚洲国产日韩一区二区| 久久久精品94久久精品| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 91av网站免费观看| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 欧美在线一区亚洲| 9色porny在线观看| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 99国产精品免费福利视频| svipshipincom国产片| 日本91视频免费播放| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 国产精品 国内视频| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 欧美精品高潮呻吟av久久| 黄色片一级片一级黄色片| 老司机靠b影院| 成人手机av| 午夜两性在线视频| 1024视频免费在线观看| 手机成人av网站| 亚洲精品中文字幕一二三四区 | 午夜久久久在线观看| 国产日韩欧美在线精品| 最新在线观看一区二区三区| av线在线观看网站| 欧美日韩一级在线毛片| 丝袜在线中文字幕| 制服诱惑二区| 激情视频va一区二区三区| 久久精品成人免费网站| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 老司机影院成人| 免费观看av网站的网址| 亚洲欧美清纯卡通| 香蕉丝袜av| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 99九九在线精品视频| 老司机影院毛片| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 免费一级毛片在线播放高清视频 | 两个人看的免费小视频| 热99久久久久精品小说推荐| av一本久久久久| 午夜福利一区二区在线看| 免费av中文字幕在线| 久久久精品免费免费高清| 欧美国产精品一级二级三级| 午夜免费观看性视频| 欧美另类一区| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 窝窝影院91人妻| 欧美日韩亚洲综合一区二区三区_| 97人妻天天添夜夜摸| 亚洲熟女精品中文字幕| 一个人免费看片子| 中国国产av一级| 午夜福利在线免费观看网站| a 毛片基地| 国产欧美日韩一区二区精品|