• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    2015-11-25 03:59:42吳世凱謝平倪樂(lè)意張
    集成技術(shù) 2015年6期
    關(guān)鍵詞:中等水平長(zhǎng)江中下游地區(qū)淺水

    吳世凱謝 平倪樂(lè)意張 琳

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    吳世凱1,2謝 平3倪樂(lè)意3張 琳1,2

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    2003年夏和 2004年夏對(duì)中國(guó)長(zhǎng)江中下游地區(qū)的 30 個(gè)淺水湖泊的浮游植物類群進(jìn)行調(diào)查。為了研究不同氮磷比(TN/TP)對(duì)浮游植物組成的影響,將浮游植物的六個(gè)門,分別在 TN/TP>30、12<TN/TP<30、TN/TP<12 三個(gè)區(qū)間隨總磷的變化規(guī)律進(jìn)行研究。當(dāng) TN/TP 從高水平(>30)降到中等水平(12~30)時(shí),除藍(lán)藻門外的其他五個(gè)浮游植物門的斜率均隨總磷的升高而增加。但是當(dāng) TN/TP從中等水平(12~30)降到低水平(<12)時(shí),除綠藻和隱藻門外,其他浮游植物門的斜率均隨總磷的升高呈下降趨勢(shì)。當(dāng) TN/TP 從高水平(>30)降到降至低水平(<12)時(shí),藍(lán)藻門的斜率不斷降低,說(shuō)明藍(lán)藻在較高 TN/TP 有更好的生長(zhǎng)潛力。同樣發(fā)現(xiàn),綠藻和隱藻門則隨 TN/TP 的降低有更好的生長(zhǎng)潛力。當(dāng) TN/TP 在高水平(>30)和低水平(<12)時(shí),硅藻、甲藻和裸藻門的斜率均發(fā)生下降,說(shuō)明這三個(gè)門的藻類在 TN/TP 為中等水平(12~30)的環(huán)境中有更好的生長(zhǎng)潛力。

    氮磷比;浮游植物;淺水湖泊;類群;長(zhǎng)江

    1 Introduction

    Transitions between nitrogen and phosphorus limitation for phytoplankton growth are common in lakes[1,2]noted that the chlorophyll in Japanese lakes was a logarithmic function of both total phosphorus(TP) and total nitrogen (TN), and concluded that over the range of 10TN/TP17, chlorophyll was very nearly balanced with respect to both TP and TN but that chlorophyll was dependent only on TN when TN/TP ratio was below 10, and only on TP when TN/TP ratio was above 17 (>17). Dillon and Rigler[3]dealt with the problem of nitrogen limitation by restricting their analysis to lakes where TN/TP ratios were above 12. Thus, variability of the TN/TP ratios may provide an explanation for the variability in phosphorus-chlorophyll relationships.

    Numerous corresponding studies have shown the TN/TP ratios were related with structure of phytoplankton community. Smith[4]found that cyanobacteria dominated when the epilimnetic TN/TP ratios had values less than 29:1 and when TN/TP ratios had values greater than 29:1, noncyanobacteria became the dominated species. Bulgakow and Levich[5]reported that high TN/TP ratio (20-50) was benefit for the growth of Chlorococcales, whereas Cyanophyta dominated in the community when TN/TP ratios decreased to 5-10. Yang et al.[6]proved that Cyanophyta subjoined with the increase of nitrogen and phosphorus when TN/TP ratios had values greater than 28:1 and Euglenophyta dominated in the community with higher content of nitrogen and phosphorus.

    Several studies have described the biomass of cyanobacteria and other groups increased with the increase of total phosphorus in north temperate[7-10]and subtropical lakes[11]. And some other studies have measured the changes of the average proportions of some algal groups with TP[12-14]. Furthermore,the balance of TN, TP and SRSi-ratios was used to determine whether the phytoplankton communities are influenced by nutrient stoichiometry[15].

    However, there are limited information about the quantitative comparisons of the changes of phytoplankton taxonomic groups affected by TP in different TN/TP ratios[16], especially in subtropical shallow lakes.

    The purpose of this paper is to investigate six predominance phytoplankton taxonomic groups of 30 shallow Chinese lakes changed with different TN/TP ratios. So, the data of the study were divided into three groups according to three TN/TP ratios intervals: >30, 12-30 and <12.

    2 Materials and Methods

    2.1 Study area

    The Yangtze River is the biggest river in China and the third biggest river in the world. Thirty shallow lakes (28.5°N-32.5°N, 113.7°E-119.2°E) included in this study ranged in size from about 1 to 3 914 km2in the middle and lower reaches of the Yangtze River area (Fig. 1). The climate is generally subtropical monsoon, and the climate is divided into dry season(November to April) and rainy season (May to October) commonly.

    All of the 30 shallow lakes are located in five provinces (Hubei, Hunan, Jiangxi, Anhui and Jiangsu) and most of these lakes are eutrophic or hypereutrophic[17]and manipulated (e.g. fertilized,dredged, acidifi ed, stocked, etc.).

    2.2 Sample collection and analysis

    Fig. 1 Geographic location of the lakes surveyed

    Considering environmental heterogeneity and surface area of the lakes, sampling sites were set from 2 to 22 in each lake. The positions were directed by a GPS system. These lakes were sampled from July to September in 2003 and 2004. Water samples in these lakes were collected each site with tygon tubing fitted with a one-way valve. Samples collected from a combination of surface, middle and bottom layers. Water samples collected were analyzed for TN, TP and phytoplankton biomass.Total nitrogen was determined by alkaline potassium persulfate digestion[18]with absorbance measured at 220 nm[19]. TP was analyzed by colorimetric methods after potassium persulfate digestion[20,21]. The water was filtered through a membrane filter(?=0.45 μm) for dissolved inorganic nitrogen and phosphorus, ammonium ion (NH4-N) by the Nessler method[22], nitrite (NO2-N) by the a-naphthylamine method[23], nitrate (NO3-N) by the UV spectro photometric method[23], and orthophosphate (PO4-P)were determined by the molybdenum blue reaction described by Koroleff[24].

    Phytoplankton were preserved in Lugol's solution from the mixed water samples. Phytoplankton were identified based on descriptions of Prescott[25]and enumerated with a microscope equipped with a calibrated micrometer[26].

    2.3 Statistics

    Data of all sites were used to analysis. STATISTICA for Windows statistical software (version 6.0) was used for all analyses. To characterize the effects of the six taxonomic groups by TP in different TN/ TP ratios, polynomial curve was used. In order to stabilize the variance for correlation and regression analysis, all the variables were log-transformed.

    3 Results

    The mean nutrient values were high in these lakes(Table 1). Linear correlation analyses show that over the entire TP range, the summer biomass of each phytoplankton taxonomic group and total phytoplankton biomass were significantly and positively related to TP. However, through the polynomial regression analysis, six mainly taxonomic groups increased differently with TP in different TN/TP ratios (Fig. 2 and 3). There are three growth fashions: exponential growth, logarithmic growth and linear growth.

    Table 1 Nutrient characteristics for the data sets of the study lakes

    Table 2 Linear correlation between phytoplankton biomass and TP in different TN/TP

    Fig. 2 Ploynolmial regression analysis in six mainly taxonomic group summer biomass with total phosphorus (TP)

    Cyanophyta showed lower biomass but distinctly sharp exponential growth with TP when TN/TP were above 30 (Table 2, Fig. 2). The exponential growth of Cyanophyta biomass changed more evenly with TP in the mediate TN/TP (12-30) (Fig. 2 and 3). When TN/TP ratio was below 12, the increase of Cyanophyta changed to a logarithmic growth fashion, although the change was not significant in slope (Fig. 2). Linear correlation shows similar tendency about the change of Cyanophyta with TP. The slope of cyanobacterial biomass decreases from 1.604 (TN/TP>30) to 0.971 (12<TN/TP<30) and further to 0.461 (TN/TP<12).

    Fig. 3 Contribution(%) of phytoplankton taxonomic groups to total summer biomass

    Bacillariophyta showed more interestingchange with TN/TP ratios: when TN/TP>30,Bacillariophyta showed a quick exponential growth with TP, but when TN/TP ratios were between 12-30,the increase of Bacillariophyta biomass were faster;however, when TN/TP<12, Bacillariophyta showed a slower logarithmic growth with TP. In contrast, the linear correlation showed a similar tendency with TP. The slope of Bacillariophyta biomass increased from 0.758 (TN/TP>30) to 1.490 (12<TN/TP<30) and then decreases to 1.215 (TN/TP<12).

    However, in linear correlation mode, Chlorophyta showed a steady increase with TP from high TN/ TP ratio (>30) to low TN/TP ratio (<12), and the biomass of Chlorophyta showed exponential growth when TN/TP ratio was above 12, and linear growth with TP when TN/TP ratio was less than 12.

    As to linear correlation model, Pyrrophyta and Euglenophyta showed similar change with diatom, Cryptophyta showed similar change with Chlorophyta. However, from the polynomial curve,the three groups increased more quickly in mediate TN/TP ratios (12-30) than in high TN/TP ratios(>30). When TN/TP ratios were less than 12, these three groups all showed exponential growth with TP.

    Under different TN/TP ratios, the changes of the relative proportions about phytoplankton taxonomic groups show how summer phytoplankton community composition was relative to TP (Table 2, Fig. 3). Some groups maintained a fairly constant representation in the community. Among these,Bacillariophyta accounted for a consistently large proportion (30%-40%) of summer phytoplankton biomass from TN/TP ratios above 30 to TN/ TP ratios below 12. Crytophyta and Pyrrophyta showed constant fractions of the total biomass with increasing TP in the three TN/TP intervals, although the fraction was much smaller (<10%).

    On the other hand, the relative proportion of cyanobacteria increased at first and dominated when TN/TP ratios were in mediate (12-30) and low (<12)levels with TP, but tended to decrease in high TP concentrations. Chlorophyta maintained a constant representation in the community when TN/TP ratios were above 12, but when TN/TP ratios were below 12, Chlorophyta tended to dominate in phytoplankon groups. Euglenophyta decreased its proportion from high TN/TP ratios (>30) to mediate TN/TP level(12-30) and showed only a smaller fraction (<10%)when TN/TP was high (>30).

    Strongly significant relationships existed between TP and PO4, and between TN and NH4in these lakes(Fig. 4).

    Fig.4 Correlations between TP and PO4-P, TN and NH4-N. The circle area shows the low values of PO4-P and NH4-N

    4 Discussion

    The results of this study, as well as Downing and Mccauley[27], suggest that the sites with lower TN/ TP ratios often have higher TP concentration. Enrichment-related changes in the taxonomic composition of summer phytoplankton communities are widely documented[9,28-31]. However, the present study shows that the biomass of taxonomic groups changed in summer with different TN/TP ratios:when TN/TP ratios were high (>30), Cyanophyta,Bacillariophyta and Cholophyta showed positive regression with TP(Cyanophyta exhibited the most rapid increase), but Crytophyta, Pyrrophyta and Euglenophyta showed little TP-related change; in contrast, when TN/TP ratios were in mediate level(12-30), all taxonomic groups increased sharply with TP except Crytophyta; and when TN/TP ratios were below 12, Cyanophyta showed little TP-related changes, but others groups increased with TP,especially for Crytophyta (r=0.74, P<0.001).

    In the present study, the proportion of Cyanophyta showed different change with other groups in the three TN/TP ratios intervals. Species of this taxa are frequently responsible for noxious bloom in eutrophic lakes but are also an important component of phytoplankton in summer[4,5,32]. The TN/TP theory which suggests that cyanobacteria dominate in low TN/TP lakes, has been widely used to explain why cyanobacteria dominate in lakes. Also, Bulgakov and Levich[5]reported that high TN/TP ratios (20-50) favor the development of chlorococcales, while a reduction of the ratios to 5-10 frequently leads to a community dominated by Cyanophyta. Our results show that, in the mediate TN/TP ratios (12-30), cyanobacteria dominates in the phytoplankton groups, but as TN/TP ratios were below 12,proportion and increasing rate of cyanobacteria had a decrease trend. Similar results can be found in recent research by Liu, that found when N/P= 3.84, Dactylococcopsis sp. showed lowest growth rate than others higher N/P[33]. Therefore, our results may suggest that cyanobacteria tend to be restricted by TP as TN/TP ratios are above 30 and by nitrogen as TN/TP ratios are below 12. Although it is commonly accepted that cyanobacteria are abundant in hypereutrophic lakes, cyanobacteria are poor competitors in nutrient replete system, because of less light in hypereutrophic lakes and competition with bacteria for nutrition[34,35].

    As with cyanbacteria, nutrition (especially P and Si)[36]may select for the predominant diatom morphology. Diatoms generally predominate summer phytoplankton communities at intermediate TP levels[9], and efficient nutrient uptake may favor pinnate diatoms in oligotrophic environments[37]. The experiment results show that Bacillariophyta dominate as TN/TP ratios are above 30, which also indicates that Bacillariophyta tends to dominate in lower TP values.

    Chlorophyta, on the other hand, is a very diverse group[38], with a broad range of morphotypes,including both edible and inedible forms for herbivorous zooplankton. Nevertheless, this group rarely dominates in phytoplankton communities of temperate lakes, except at nutrient extremes[38],and the results also show that in low TN/TP ratio(<12), Chlorophyta increases quickly with TP, and dominates when TP>1.0 mg/L.

    Because actual limitation of phytoplankton growth will be determined by the concentrations of available dissolved inorganic nitrogen and phosphorus, theTN/TP ratios may be very important when the dissolved inorganic forms falls below limiting level. Although, in the present study, many values of NH4and PO4concentrations are very low in summer,probably due to active assimilation by phytoplankton and water bacteria in this season, the significant correlations between TN and NH4, and between TP and PO4show that the TN/TP ratio can reflect the dissolved inorganic nutrient limitation in a sense.

    In our study, Cryptophyta were abundant in oligotrophic and eutrophic waters, which in agreement with the observations of Ilmavirta[39]. Cryptophyta were found in different types of waters,with a tendency for small-sized cells to occur in less productive waters[36,40]. The result shows that Cryptophyta increases quickly as the TN/TP ratios decrease from above 30 to below 30, indicating that Cryptophyta is favoured by low TN/TP ratio(especially <12) and suggesting Cryptophyta prefers to live in high nutrition level if it don't be restricted by nitrogen and light intensity.

    Though Euglenophyta are almost entirely restricted to eutrophic lakes[41-43], our result shows that Dinophycease and Euglenophyceae increase quickly in the mediate TN/TP ratios (12-30),indicating that these taxa prefer to the middle TN/TP ratios.

    It is beyond our scope to examine the many factors that affect individual taxonomic group dynamics. A number of these factors, however, which influence phytoplankton growth and loss rate (e.g. light,nutrition uptake, division rates, motility, sinking,and grazing losses), interact with both taxon size and morphology[44].

    The ratios of TN/TP are one of the most commonly used methods to assess phytoplankton limitation in aquatic ecosystems[45]. Our study firstly applies this method in evaluating the phytoplankton taxonomic composition in different nutrient level,and the data suggest that the water column TN/ TP ratio can be an effective tool for assessing the structure of phytoplankton taxonomic composition.

    [1] Rhee GY. Effect of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake [J]. Limnology and Oceanography,1978, 23(1): 10-25.

    [2] Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth [J]. Archiv für Hydrobiologie, 1966, 62: 1-28.

    [3] Dillon PJ, Rigler FH. The chlorophyll-phosphorous relationship in lakes [J]. Limnology and Oceanography, 1974, 19: 767-773.

    [4] Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science, 1983, 221(4611): 669-671.

    [5] Bulgakov NG, Levich AP. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure: nutrient ratios [J]. Archiv für Hydrobiologie, 1999, 146(1): 3-22.

    [6] Yang J, Yu XQ, Liu LM, et al. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China [J]. Environmental Science and Pollution Research, 2012, 19(5): 1432-1442.

    [7] Smith VH. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(1): 148-153.

    [8] McQueen DJ, Lean DRS. Influence of water temperature and nitrogen to phosphorus ratios on the dominanceof blue-green algae in Lake St.George, Ontario [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44(3): 598-604.

    [9] Watson SB, McCauley E, Downing JA. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status [J]. Limnology and Oceanography, 1997, 42(3): 487-495.

    [10] Eggert A, Schneider B. A nitrogen source in spring in the surface mixed-layer of the Baltic Sea:Evidence from total nitrogen and total phosphorus data [J]. Journal of Marine Systems, 2015, 148:39-47.

    [11] Canfield Jr DE, Philips E, Duarte CM. Factors influencing the abundance of blue-green algae in Florida lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(7): 1232-1237.

    [12] Smith VH. Phytoplankton responses to eutrophication in inland waters [J]. Introduction to Applied Ecology, 1990: 231-249.

    [13] Duarte CM, Agusti S, Canjield Jr DE. Patterns in phytoplankton community structure in Florida lakes[J]. Limnology and Oceanography, 1992, 37(1):155-161.

    [14] Chow-Frazer P, Trew DO, Findlay D, et al. A test of hypotheses to explain the sigmoidal relationship between total phosphorus and chlorophyll a concentrations in Canadian lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994,51(9): 2052-2065.

    [15] Teubner K, Dokulil MT. Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages[J]. Archiv für Hydrobiologie, 2002, 154(4):625-646.

    [16] Rojo C. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps [J]. Hydrobiologia, 1998, 369: 1-9.

    [17] Wu SK, Xie P, Wang SB, et al. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River [J]. Science in China Series D,2006, 49(1): 126-134.

    [18] Steudler PA, Corwin N. Determination of total nitrogen in aqueous samples using persulfate digestion [J]. Limnology and Oceanography, 1977,22(4): 760-764.

    [19] Rand MC, Greenberg AE, Taras MJ. Standard Methods for Examination of Water and Wastewater[M] American: American Public Health Association, 1985.

    [20] Menzel DW, Corwin N. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation[J]. Limnology and Oceanography, 1965, 10(2):280-282.

    [21] Prepas EE, Rigler FH. Improvements in quantifying the phosphorus concentration in lake water[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(6):822-829.

    [22] Ebina J, Tsutsui T, Shirai T. Simulaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation [J]. Water Research, 1983, 17(12): 1721-1726.

    [23] Eaton AD, Clesceri LS, Greenberg AE. Standard Methods for the Examination of Water and Wastewater [M].Washington: American Public Health Association, 1995.

    [24] Gresshoff K, Ehrhardt M, Kremling K. Methods in Seawater Analysis [M]. Germany: Verlag Chemie,1976.

    [25] Prescott GW. How to Know the Freshwater Phytoplankton [M]. Cambridge: Cambridge University Press, 1978.

    [26] Kotak BG, Lam AKY, Prepas EE, et al. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes [J]. Journal of Phycology, 1995, 31: 248-263.

    [27] Downing JA, Mccauley E. The nitrogen:phosphorus relationship in lakes [J]. Limnology and Oceanography, 1992, 37(5): 936-945.

    [28] Reynolds CS. The Ecology of Freshwater Phytoplankton [M]. Cambridge: Cambridge Unversity Press, 1984.

    [29] Reynolds CS. What factors influence the species composition of phytoplankton in lakes of different status [J]. Hydrobiologia, 1998, 369: 11-26.

    [30] Reynolds CS, Petersen AC. The distribution ofplanktonic Cyanobacteria in Irish lakes in relation to their trophic states [M] // The Trophic Spectrum Revisited. Springer Netherlands, 2000: 91-99.

    [31] Izaguirre I, Vinocur A, Mataloni P. Phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antarctic Peninsula) [J]. Hydrobiologia, 1988, 369: 73-87.

    [32] Reynolds CS. Non-determinism to probability, or N: P in the community ecology of phytoplankton:Nutrient ratios [J]. Archiv für Hydrobiologie, 1999,146(1): 23-35.

    [33] Liu L, Zhou XY, Zhao LJ, et al. Effect of nitrogen and phosphorus ratios on the growth of cyanobacteria and chlorophyta [J]. Journal of Shanghai Ocean University, 2014, 23(4): 574-581.

    [34] Blomqvist P, Petterson A, Hyenstrand P. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems [J]. Archiv für Hydrobiologie, 1994, 132(2): 141-164.

    [35] Jensen JP, Jeppesen E, Olrik K. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(8): 1692-1699.

    [36] Willén E. Planktonic diatoms-an ecological review[J]. Algological Studies, 1991, 62: 69-106.

    [37] Sterner RW. Resource competition and the autecology of pennate diatoms [J]. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 1990, 24(1): 518-523.

    [38] Happey-Wood CM. Ecology of freshwater planktonic green algae [J]. Growth and Reproduc-Tive Strategies of Freshwater Phytoplankton, 1988:175-226.

    [39] Ilmavirta V. The role of flagellated phytoplankton in chains of small brown-water lakes in Southern Finland [C] // Fennici Botanical Publishing Board,1983: 187-195.

    [40] Brettum P.Algae as indicators of water quality [J]. Phytoplankton. Norsk instiut for vannforskning,1989: 1-111.

    [41] Hutchinson GE. A Treatise on Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton [M]. New York: John Wiley & Sons, 1967.

    [42] Tikkanen T, Willen T. Vaxtplanktonflora [Z]. Eskilstuna: Naturv?rdsverket, 1992.

    [43] Jiang YJ, He W, Liu WX, et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu) [J]. Ecological Indicators, 2014, 40: 58-67.

    [44] Hecky RE, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment [J]. Limnology and Oceanography, 1988, 33(4): 796-822.

    [45] Dzialowski AR, Wang SH, Lim NC, et al. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA [J]. Journal of Plankton Research,2005, 27(6): 587-595.

    Patterns of Phytoplankton Taxonomic Composition Affected by Different Nitrogen Phosphorus Ratios in Shallow Lakes of the Yangtze River Area

    WU Shikai1,2XIE Ping3NI Leyi3ZHANG Lin1,2

    1( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )
    2( Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China )
    3( Donghu Experimental Station of Lake Ecosystems, The State Key Laboratory for Freshwater Ecology and Biotechnology of China,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China )

    The phytoplankton groups were investigated in 30 shallow Chinese lakes in the middle and lowerreaches of the Yangtze River area in the summer of 2003 and 2004. To explore the effects of different nitrogen phosphorus ratios (TN/TP ratios) on the phytoplankton taxonomic composition of these study sites, six main taxonomic groups were studied with three TN/TP ratios intervals: TN/TP>30, 12<TN/TP<30 and TN/ TP<12. The biomass curves of these taxonomic groups showed corresponding increases or decreases with different TN/TP ratios. When TN/TP ratios declined from high (>30) to medium (12-30), the slopes of the total biomass curve increased, as did the relative abundances of all groups except Cyanophyta. But when the TN/TP declined from medium (12-30) to low (<12) levels, the slopes of most groups decreased except Chlorophyta and Cryptophyta. The amount of Cyanophyta increased with TP when TN/TP ratios declined from above 30 to below 12, suggesting that cyanobacteria adapted to higher TN/TP ratios. However, Chlorophyta and Cryptophyta tended to be restricted by phosphorus when TN/TP ratios declined from above 30 to below 12, and these groups adapted to lower TN/TP ratios. The biomass of Bacillariophyta, Pyrrophyta and Euglenophyta tended decreased when TN/TP ratios were above 30 and below 12, suggesting that medium TN/ TP ratios (12-30) favoured these groups.

    nitrogen phosphorus ratio, phytoplankton, shallow lakes, taxonomic groups, the Yangtze River

    X 524

    A

    Received: 2015-08-28 Revised: 2015-10-08

    Foundation: Shenzhen Science and Technology Innovation Committee Funds(Shenfagai[2014]1857);Guangdong Provincial Department of Science and Technology Funds(2013B091300015)

    Author: Wu Shikai(corresponding author), Senior Engineering. His research interests include ecological restoration and the application of algae resources,E-mail: sk.wu@giat.ac.cn; Xie Ping, Research Professor. His research interests include freshwater ecosystems and ecotoxicology of microcystins; Ni Leyi, Research Professor. Her research interests are aquatic plants and ecology; Zhang Lin, Assistant Engineer. Her research interest is water ecological restoration.

    猜你喜歡
    中等水平長(zhǎng)江中下游地區(qū)淺水
    新型淺水浮托導(dǎo)管架的應(yīng)用介紹
    云南化工(2021年10期)2021-12-21 07:33:40
    2017年長(zhǎng)江中下游地區(qū)一次持續(xù)性異常降水過(guò)程分析
    “1萬(wàn)小時(shí)定律”不靠譜?
    長(zhǎng)江中下游地區(qū)梅雨期異常年降水及大氣熱源分布特征
    青藏高原春季土壤濕度對(duì)長(zhǎng)江中下游地區(qū)初夏短期氣候影響的數(shù)值模擬
    帶阻尼的隨機(jī)淺水波方程的隨機(jī)吸引子
    意神吐槽
    意林繪閱讀(2016年5期)2016-06-13 09:52:52
    論青藏高原溫度對(duì)長(zhǎng)江中下游地區(qū)降水的影響
    (2+1)維廣義淺水波方程的Backlund變換和新精確解的構(gòu)建
    找不同
    亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 三级毛片av免费| 黄片播放在线免费| 亚洲专区国产一区二区| 一区二区日韩欧美中文字幕| 男女下面插进去视频免费观看| 国产成人av教育| 成人18禁高潮啪啪吃奶动态图| 国产精品亚洲美女久久久| 97人妻天天添夜夜摸| 亚洲伊人色综图| 99精品欧美一区二区三区四区| 日韩av在线大香蕉| 亚洲avbb在线观看| 天天一区二区日本电影三级 | 国产一区二区激情短视频| 色播亚洲综合网| 久久久久久亚洲精品国产蜜桃av| 亚洲国产日韩欧美精品在线观看 | 精品乱码久久久久久99久播| 男女下面插进去视频免费观看| 国产亚洲欧美98| 久久热在线av| 欧美日韩黄片免| 午夜a级毛片| 亚洲av日韩精品久久久久久密| 日韩大码丰满熟妇| 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 亚洲成人国产一区在线观看| 午夜免费激情av| 亚洲精品国产一区二区精华液| 亚洲国产日韩欧美精品在线观看 | 国产精品日韩av在线免费观看 | 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 亚洲第一欧美日韩一区二区三区| 一本综合久久免费| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 99国产精品免费福利视频| 久久香蕉国产精品| 在线观看日韩欧美| 在线国产一区二区在线| 国产野战对白在线观看| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 黄色成人免费大全| 色综合亚洲欧美另类图片| 亚洲黑人精品在线| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 国产亚洲精品第一综合不卡| 亚洲一码二码三码区别大吗| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 成人亚洲精品av一区二区| 法律面前人人平等表现在哪些方面| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 人成视频在线观看免费观看| svipshipincom国产片| 曰老女人黄片| 国产精品,欧美在线| 18美女黄网站色大片免费观看| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 久久久久国内视频| 精品久久久久久久久久免费视频| 纯流量卡能插随身wifi吗| 国产三级黄色录像| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频 | 亚洲国产欧美日韩在线播放| 午夜福利免费观看在线| aaaaa片日本免费| 搡老熟女国产l中国老女人| 日本五十路高清| 成在线人永久免费视频| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 天堂√8在线中文| 在线观看日韩欧美| 搞女人的毛片| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜一区二区| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 美女午夜性视频免费| 一个人观看的视频www高清免费观看 | 日本一区二区免费在线视频| 黑人操中国人逼视频| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全免费视频| 欧美大码av| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| bbb黄色大片| netflix在线观看网站| 亚洲国产精品999在线| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 露出奶头的视频| 女人精品久久久久毛片| av免费在线观看网站| 亚洲激情在线av| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 免费高清视频大片| 国产成人欧美在线观看| 一二三四在线观看免费中文在| 欧美午夜高清在线| 18禁裸乳无遮挡免费网站照片 | 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| 日本a在线网址| aaaaa片日本免费| 免费观看精品视频网站| 又紧又爽又黄一区二区| 91成年电影在线观看| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 美女午夜性视频免费| 中国美女看黄片| 日韩大尺度精品在线看网址 | 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 黑丝袜美女国产一区| 中出人妻视频一区二区| 精品国产亚洲在线| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 老司机靠b影院| 露出奶头的视频| 中出人妻视频一区二区| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 国产av精品麻豆| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| 露出奶头的视频| 色综合欧美亚洲国产小说| 在线观看66精品国产| 欧美日本中文国产一区发布| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| av福利片在线| 午夜激情av网站| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人精品二区| 麻豆成人av在线观看| 啦啦啦 在线观看视频| 性欧美人与动物交配| 国产精品爽爽va在线观看网站 | 91大片在线观看| 久久人人97超碰香蕉20202| 日本免费a在线| 国内久久婷婷六月综合欲色啪| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 级片在线观看| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 91大片在线观看| 日韩欧美国产一区二区入口| 一个人观看的视频www高清免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 国产免费av片在线观看野外av| 真人一进一出gif抽搐免费| 香蕉久久夜色| 在线天堂中文资源库| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 日本a在线网址| 亚洲在线自拍视频| 午夜福利18| 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 一a级毛片在线观看| 一区二区三区精品91| 精品国产国语对白av| av视频免费观看在线观看| 黄色片一级片一级黄色片| 女性被躁到高潮视频| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 黑人欧美特级aaaaaa片| 亚洲国产看品久久| 精品无人区乱码1区二区| 欧美日韩精品网址| or卡值多少钱| 午夜久久久久精精品| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 色综合亚洲欧美另类图片| 日韩一卡2卡3卡4卡2021年| 一二三四在线观看免费中文在| 久久久国产精品麻豆| 日本在线视频免费播放| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| 亚洲专区国产一区二区| av在线天堂中文字幕| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 国产亚洲精品综合一区在线观看 | 欧美大码av| 女人高潮潮喷娇喘18禁视频| 午夜免费激情av| 亚洲自偷自拍图片 自拍| 岛国视频午夜一区免费看| 亚洲免费av在线视频| 亚洲中文字幕日韩| 人成视频在线观看免费观看| 美国免费a级毛片| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 久久亚洲真实| 亚洲自偷自拍图片 自拍| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区中文字幕在线| 黄片大片在线免费观看| 手机成人av网站| 久久精品人人爽人人爽视色| 脱女人内裤的视频| 国产又色又爽无遮挡免费看| 99久久精品国产亚洲精品| 亚洲三区欧美一区| av网站免费在线观看视频| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 欧美另类亚洲清纯唯美| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 欧美不卡视频在线免费观看 | 亚洲久久久国产精品| 精品欧美一区二区三区在线| 免费看a级黄色片| 国产精华一区二区三区| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 久久精品aⅴ一区二区三区四区| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 波多野结衣一区麻豆| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 一本综合久久免费| 国产三级黄色录像| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 天天一区二区日本电影三级 | 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 欧美久久黑人一区二区| 午夜免费观看网址| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 亚洲成国产人片在线观看| 国产高清视频在线播放一区| 好男人在线观看高清免费视频 | 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 村上凉子中文字幕在线| bbb黄色大片| 精品国产亚洲在线| 亚洲五月婷婷丁香| 一级黄色大片毛片| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| videosex国产| 成人欧美大片| 老汉色av国产亚洲站长工具| 两个人看的免费小视频| 1024香蕉在线观看| 午夜久久久久精精品| 日韩精品免费视频一区二区三区| 老司机福利观看| 欧美日本亚洲视频在线播放| av片东京热男人的天堂| av天堂在线播放| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 少妇 在线观看| 日日干狠狠操夜夜爽| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 可以在线观看毛片的网站| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 国产高清激情床上av| 亚洲成国产人片在线观看| 久久欧美精品欧美久久欧美| 国产成人av教育| 悠悠久久av| 欧美成人一区二区免费高清观看 | 久久午夜亚洲精品久久| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| 国产精品 欧美亚洲| 精品国产一区二区三区四区第35| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| 日韩一卡2卡3卡4卡2021年| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 悠悠久久av| 18禁裸乳无遮挡免费网站照片 | 色哟哟哟哟哟哟| av超薄肉色丝袜交足视频| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 国产不卡一卡二| 欧美乱妇无乱码| 咕卡用的链子| 国产精品,欧美在线| 精品国产一区二区久久| 高潮久久久久久久久久久不卡| 国产熟女xx| 一区二区三区高清视频在线| 婷婷精品国产亚洲av在线| 国产伦一二天堂av在线观看| 18禁观看日本| 久久精品影院6| 中亚洲国语对白在线视频| 一进一出抽搐动态| 亚洲在线自拍视频| 天天一区二区日本电影三级 | 色在线成人网| www.999成人在线观看| 这个男人来自地球电影免费观看| 看免费av毛片| 亚洲国产看品久久| 国产极品粉嫩免费观看在线| 曰老女人黄片| 国产一区二区三区在线臀色熟女| 亚洲欧洲精品一区二区精品久久久| 波多野结衣高清无吗| 丝袜人妻中文字幕| 亚洲一区二区三区不卡视频| 99热只有精品国产| 欧美丝袜亚洲另类 | 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 国内久久婷婷六月综合欲色啪| 精品电影一区二区在线| 一夜夜www| 国产成人免费无遮挡视频| 精品人妻在线不人妻| e午夜精品久久久久久久| 悠悠久久av| 亚洲精品久久国产高清桃花| 欧美久久黑人一区二区| 搡老岳熟女国产| 桃红色精品国产亚洲av| 国产免费男女视频| www.999成人在线观看| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 久久九九热精品免费| 亚洲国产精品合色在线| 视频区欧美日本亚洲| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 免费无遮挡裸体视频| 黄频高清免费视频| 男男h啪啪无遮挡| 深夜精品福利| 亚洲精品国产一区二区精华液| 少妇粗大呻吟视频| 一个人观看的视频www高清免费观看 | 精品国产乱子伦一区二区三区| 久久人人97超碰香蕉20202| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 久久中文字幕一级| 国产熟女xx| 免费高清在线观看日韩| 成人精品一区二区免费| 长腿黑丝高跟| 熟女少妇亚洲综合色aaa.| 涩涩av久久男人的天堂| 制服诱惑二区| 在线国产一区二区在线| 午夜精品久久久久久毛片777| 久久久久久久久中文| 日韩精品青青久久久久久| 一区福利在线观看| 一夜夜www| 欧美一级毛片孕妇| 欧美国产精品va在线观看不卡| 一进一出抽搐gif免费好疼| 国产真人三级小视频在线观看| 欧美日韩精品网址| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 久久伊人香网站| 老司机在亚洲福利影院| 久久婷婷人人爽人人干人人爱 | 可以免费在线观看a视频的电影网站| 超碰成人久久| 久久精品国产亚洲av香蕉五月| 久久久久九九精品影院| 国产精品亚洲一级av第二区| aaaaa片日本免费| 国产精品影院久久| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 国语自产精品视频在线第100页| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 搡老妇女老女人老熟妇| 免费在线观看视频国产中文字幕亚洲| av在线天堂中文字幕| 热re99久久国产66热| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 国产91精品成人一区二区三区| 国产av一区在线观看免费| 国产精品久久久人人做人人爽| 欧洲精品卡2卡3卡4卡5卡区| 色在线成人网| 最新在线观看一区二区三区| 男女午夜视频在线观看| 性少妇av在线| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 亚洲专区国产一区二区| 日本a在线网址| 色播在线永久视频| 国产精品九九99| 久久影院123| 日韩欧美一区视频在线观看| 99久久综合精品五月天人人| 国产精品影院久久| 一进一出抽搐动态| 成人av一区二区三区在线看| 1024视频免费在线观看| 手机成人av网站| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| or卡值多少钱| 亚洲中文日韩欧美视频| 美女高潮到喷水免费观看| 国内精品久久久久精免费| 日韩欧美三级三区| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 国产成人啪精品午夜网站| 中文字幕人成人乱码亚洲影| 亚洲成国产人片在线观看| 91成人精品电影| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 男人的好看免费观看在线视频 | 老司机午夜十八禁免费视频| 久久精品国产亚洲av香蕉五月| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 亚洲一区中文字幕在线| 制服诱惑二区| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 中文字幕人妻丝袜一区二区| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 国产男靠女视频免费网站| 日本在线视频免费播放| 成人免费观看视频高清| 97人妻天天添夜夜摸| 99香蕉大伊视频| 日本欧美视频一区| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 黄色成人免费大全| 可以在线观看的亚洲视频| 亚洲国产看品久久| 可以在线观看毛片的网站| 亚洲精品中文字幕一二三四区| 中文亚洲av片在线观看爽| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆 | 嫁个100分男人电影在线观看| 黄网站色视频无遮挡免费观看| 91国产中文字幕| 色哟哟哟哟哟哟| 久99久视频精品免费| 日韩精品青青久久久久久| 精品国产一区二区久久| 日本免费一区二区三区高清不卡 | 亚洲国产欧美日韩在线播放| 日韩有码中文字幕| 精品人妻1区二区| x7x7x7水蜜桃| 最好的美女福利视频网| 久久久国产成人精品二区| 国产真人三级小视频在线观看| 午夜久久久在线观看| 在线观看免费视频网站a站| 亚洲精品国产色婷婷电影| 日本精品一区二区三区蜜桃| 精品久久久久久久人妻蜜臀av | 性少妇av在线| 国产真人三级小视频在线观看| 日本三级黄在线观看| 国产欧美日韩一区二区三| 国产av一区在线观看免费| 免费在线观看完整版高清| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区 | 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 一区二区三区高清视频在线| 午夜成年电影在线免费观看| 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 国产亚洲精品av在线| 高清毛片免费观看视频网站| 成人三级黄色视频| 啦啦啦韩国在线观看视频| 欧美成人性av电影在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品 欧美亚洲| 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区激情短视频| 久热爱精品视频在线9| 国产亚洲欧美98| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一出视频| 日本一区二区免费在线视频| 午夜免费观看网址| 欧美性长视频在线观看| 女警被强在线播放| 国产精品,欧美在线| 不卡av一区二区三区| 免费在线观看黄色视频的| 两个人免费观看高清视频| 精品国产国语对白av| 成年人黄色毛片网站| 日韩精品免费视频一区二区三区| 国产亚洲精品综合一区在线观看 | 电影成人av| 涩涩av久久男人的天堂| 免费观看精品视频网站| 中亚洲国语对白在线视频| 亚洲美女黄片视频| 国产精品电影一区二区三区| 18美女黄网站色大片免费观看| 国产亚洲精品第一综合不卡| 精品国内亚洲2022精品成人| av网站免费在线观看视频| 国产男靠女视频免费网站| 中文字幕久久专区| 日本 欧美在线| 国产亚洲精品第一综合不卡| 国产99久久九九免费精品| 中国美女看黄片| 丁香欧美五月| 国产成人精品久久二区二区免费| 成人手机av| 久热这里只有精品99| 一本大道久久a久久精品| 久久香蕉激情| 91麻豆精品激情在线观看国产| 少妇熟女aⅴ在线视频| 三级毛片av免费| 国产精品二区激情视频| 激情在线观看视频在线高清| 性少妇av在线|