• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MHD flow of a visco-elastic fluid through a porous medium between infinite parallel plates with time dependent suction*

    2015-11-25 11:31:35BAAGACHARYADASHMISHRA

    BAAG S., ACHARYA M. R., DASH G. C., MISHRA S. R.

    1. Department of Physics, College of Basic Science and Humanities, OUAT, Bhubaneswar-751003, India,E-mail: sbaag22@gmail.com

    2. Department of Mathematics, ITER, SOA University, Bhubaneswar-751030, India

    MHD flow of a visco-elastic fluid through a porous medium between infinite parallel plates with time dependent suction*

    BAAG S.1*, ACHARYA M. R.1, DASH G. C.2, MISHRA S. R.2

    1. Department of Physics, College of Basic Science and Humanities, OUAT, Bhubaneswar-751003, India,E-mail: sbaag22@gmail.com

    2. Department of Mathematics, ITER, SOA University, Bhubaneswar-751030, India

    2015,27(5):738-747

    This work provides a comprehensive theoretical analysis of MHD unsteady free convection viscoelastic fluid flow through a porous medium. The medium is treated as incompressible and optically transparent. The flow of the fluid is initiated by shearing action of the moving wall with time dependent suction. Radiative heat flow is considered in temperature equation. The coupled nonlinear problem has been solved asymptotically. Approximate solutions have been obtained for the mean velocity, mean temperature using multi parameter perturbation technique. The originality of the present study is to investigate the effect of viscoelastic property of the fluid (WaltersB′model) on the flow and heat transfer phenomena when the flow is permeated through a porous medium with uniform porous matrix subject to transverse magnetic field and time dependent fluctuative suction at the boundary surface. The case of viscous flow has been discussed as a particular case on comparison with the result reported earlier and it is in good agreement. Flow reversal is indicated incase of viscoelastic fluid with high heat capacity in the presence of magnetic field. The higher cooling of the plate in case of viscoelastic flow also causes a flow reversal.

    viscoelastic liquid, porosity, radiation parameter, time dependent suction

    Introduction

    Numerous applications of viscoelastic fluid in several manufacturing processes have led scientist to investigate viscoelastic boundary layer flow. The boundary layer analysis of idealized viscoelastic fluid was introduced by Beard and Walters[1]. Subsequently great interest has been shown in the investigation of natural convection of heat transfer of viscoelastic fluid. An extensive range of physical models has been developed to stimulate the diverse hydrodynamic behavior of viscoelastic (non-Newtonian) fluid. Viscoelastic fluid flow through porous media has received special attention because of increasing practical application in oil reservoir technology. The oil displacement efficiency may be improved by using non-Newtonian fluids. In view of above application, it is justified to have an adequate understanding of the flow behavior of viscoelastic fluids. Literature has witnessed a number of studies in this matter. Recent studies include the work of Choudhury and Islam[2]. They studied MHD free convection flow of viscoelastic fluid past an infinite vertical porous plate.

    Abel et al.[3]have reported viscoelastic fluid flow and heat transfer over stretching sheet with variable viscosity. Later on Asghar et al.[4]studied the flow of non-Newtonian fluid induced due to oscillation of a porous plate. Stretching of porous plate is also another important aspect. Viscoelastic boundary layer MHD flows over a porous quadratic stretching sheet have been reported by Khan and Sanjayanand[5]. Khan[6]considered radiation effect on heat transfer in a viscoelastic fluid flow over a stretching surface. By using Darcy’s law Yamamoto and Yoshida[7]considered suction and injection flow with convective acceleration through a plane porous wall. Chawla and Singh[8]studied oscillatory flow past a porous bed. The steady two-dimensional free convective flow of a viscous fluid through a porous medium bounded by a porous surface subjected to a constant suction velocity wasstudied by Raptis et al.[9].

    Singh et al.[10]discussed the oscillatory suction velocity in presence of time dependent viscosity along magnetic field. Ferdows et al.[11]analyzed free convection flow with variable suction in presence of thermal radiation. Mishra et al.[12]have studied MHD flow of a viscoelastic fluid through porous medium with oscillatory suction.

    In many instances coal slurries exhibit non-Newtonian characteristics. This is an integral part of coal based fuel production with low pollutants. This led Massoudi and Phuoe[13]to study unsteady motion of nonlinear viscoelastic fluid. A review article on single phase flow of non Newtonian fluids in porous media was addressed by Sochi[14]. In this article the flow through porous media in general are examined. Alharbi et al.[15]considered chemical reaction in heat and mass transfer of a MHD viscoelastic fluid flow. Kumar et al.[16]discussed unsteady motion in their research. Attempt was made by Sivraj et al.[17]to solve viscoelastic fluid flow in irregular channel. Recently,a visco-elastic fluid model known as Phan-Thien-Tanner (PTT) model[18]is widely used for wire coating.

    In the present work an attempt has been made to study MHD free convection flow of viscoelastic fluid(WaltersB′model) with time dependent suction in presence of radiative heat transfer through a porous medium. In the physical model the plate at y =0is at very high temperature Twand the plate at y=h is at a temperature T∞such that Tw?T∞. The originality of the present study is to investigate the effect of viscoelastic property of the fluid (Walters B′model)on the flow and heat transfer phenomena when the flow is permeated through a porous medium with uniform porous matrix subject to transverse magnetic field and time dependent fluctuative suction at the boundary surface. The case of viscous flow has been discussed as a particular case in comparison with the result reported earlier and it is in good agreement with the present one.

    The present study is of great importance in the movement of oil, gas and water through the reservoir of an oil or gas to the hydrologist in his study of the migration of underground water, and to the chemical engineer in connection with filtration processes. Beyond this, the study is widely applicable in soil mechanics, water purification, ceramic engineering and powder metallurgy. The results of the problem are also of great interest in geophysics in the study of the interaction of the geomagnetic field with the fluid in geothermal region. Water in the geothermal region is an electrical-conducting liquid because of high temperature. With the fuel crisis deepening all over the developed world, attention is turning to the utilization of the enormous power beneath the Earth’s crust in the geothermal region.

    The analytical solutions for the velocity field and temperature distribution are obtained by perturbation technique. The effect of the flow parameters on the velocity field and temperature distribution are presented with the aid of graphs.

    1. Mathematical formulation

    Free convection flow of an electrically conducting viscoelastic fluid between infinite vertical parallel porous plates with time dependent suction has been considered. The flow of the fluid is initiated by the shearing action of the moving wall with resulting suction and small pressure gradients along the direction of motion (see Fig.1). A magnetic field of uniform strength B0is applied normal to the plate. The induced magnetic field is neglected as the magnetic Reynolds number of the flow is taken to be very small. All the fluid properties are constant and the influence of density variation with temperature is considered only in the body force term. The flow is assumed to be in thex′direction, which is along the vertical plate in the upward direction and y′-axis is taken to be normal to the plate. The moving electric field is produced due to flow of electrically conducting viscoelastic fluid in a magnetic field which produces a current called the conduction current. We have assumed the magnetic field diffuses easily through the medium and when the condition is violated the Hall current is produced. Therefore, we have neglected Hall current. We have considered Darcian model to account for the permeability of the medium.

    Following Hassanien[19]for unsteady two dimensional flow of a viscous and electrically conducting fluid through a porous medium and free convection flow Alagoa et al.[20]the governing equations for above flow are

    such that εA=1

    Fig.1 Flow geometry

    The terms of Eq.(3) for two dimensional boundary layer equations for flow over plane wall are of orderandand henc[1e9]Eq.(3) has not[20]been considered,Hassanien and Alagoa et al.. WhereA is the small positive parameter,g is the acceleration due to gravity,ε is the small positive number,βis the volumetric expansion coefficient for thermal expansion,T′is the fluid temperature,k0is the rotational viscosity component,kpis the permeability parameter,αis the absorption coefficient. The radiative heat flux equation for an optically thin environment(α?1) such as intergalactic layers for which plasma gas is assumed to be of low density is given by

    where T∞denotes temperature at equilibrium. Substituting Eq.(5) in Eq.(4), we have

    The corresponding boundary conditions are

    whereh is the characteristic width of the channel,k is the thermal conductivity,cpis the specific heat,σ is the electrical conductivity and Re=v0h/n, suction Reynolds number. Introducing new variables in the non dimensional form as

    where u0and v0are the mean velocities ofu′and non-zero constant suction velocityv′.n is the kinematic viscosity (=μ/ρ),μis the dynamic viscosity,ρis the density of fluid. Substituting Eq.(1) in Eqs.(2)and (6) and introducing new variables given in Eq.(8)as well as dropping the dashes, we find

    where

    On introducing the non dimensional variables given in Eqs.(8), boundary conditions given in Eqs.(7) reduce to

    where χ2is the dimensionless porosity parameter,M2is the non dimensional magnetic parameter,is the Grashof number,Rcis the visco-elastic parameter,Pr is the Prandtl number,θis the dimensionless temperature,N2is the radiation parameter.

    2. Method of solution

    Equations (9) and (10) representing the flow variables are highly non-linear. So solutions to these non-linear equations are obtained by perturbation method. The parameters Rc,ε andA are assumedsmall such that Rc?1andε?1. Velocity and temperature in the neighborhood of the plate can be expressed as:

    where u0and θ0are the mean velocity and mean temperature respectively. Using Eqs.(13) and (14) in third order differential Eq.(9), equating harmonic and non-harmonic terms for mean velocity and mean temperature, after neglecting coefficient ofε2, we get

    with corresponding boundary conditions

    and

    with corresponding boundary conditions

    Equations (15) and (18) are third order differential equations due to presence of viscoelastic parameter. There are only two boundary conditions. Therefore, it needs one boundary condition more for unique solution. Thus, to avoid this difficulty, we adopt perturbation method. Here u0and u1are expanded following Beard and Walters[1].

    Substituting Eq.(21) in Eq.(15) and equating coefficients of zeroth order and first order of Rcwe get

    The corresponding boundary conditions are

    Substituting Eq.(21) in Eq.(15) and equating coefficients of zeroth order and first order of Rc

    The corresponding boundary conditions are

    Solution of these equations for the flow variables are obtained starting with the temperature in Eq.(16). Assuming that the temperature difference between the plate at y=0and its neighbouring point is small, the temperatureθ0can be expanded following Bestmann[21]as

    whereψis the small correction factor such that O(θw)<ψ<O(1).

    Neglecting squares and products ofψ, Eq.(15)becomes

    where

    3. Results and discussion

    In this paper the MHD boundary layer problem for momentum and heat transfer with thermal radiation in viscoelastic fluid flow through a channel embedded in a porous medium is investigated. In order to verify the accuracy we have compared our results with the results of previous authors. During the discussion we have considered the real part of the solution unless it is mentioned otherwise. The value of ε=0.01.

    Fig.2 Effect of M ,Pr and Rcon velocity profile (Gr=5,N2=5,χ2=10,ωT=π/2)

    Figure 2 displays the velocity variation for various values ofPr,M and Rcfor fixed values of Gr=5,N2=5,χ2=10,ωt=π/2. It is seen that the velocity increases almost exponentially from zero at the lower wall to unity at the upper wall. Further, it is seen that the elasticity property of the fluid(Rc= 0.2) in the presence of magnetic field causes a decrease in the velocity at all points. Moreover, higher Prandtl number fluid also decreases the velocity at all points. One remarkable finding is that when a higher Prandtl number (fluid with higher heat capacity) viscoelastic fluid is subjected to magnetic field a flow reversal is indicated.

    Fig.3 Effect of χ2,M andPr on velocity profile (G=5,r N2=5,ωT=π/2)

    Therefore, the present study suggests that a right choice of viscoelastic fluid with a controlled magnetic field strength prevents the flow reversal in the flow domain. On a careful analysis it is further revealedthat Prandtl number is a salient characteristic number based upon pure physical property (Pr=μcp/k) whereasis a resistive force of electromagnetic origin, acting along the main direction of the flow perpendicular to the direction of the magnetic field which decreases in the proportion to square of the suction velocity and elastic parameter Rc,(Rc=)which grows in proportion to square of the suction velocity. The same observation in respect of magnetic parameter and Prandtl number was observed by[19]in the study of MHD flow through a porous medium.

    Figure 3 depicts a two layer velocity profile due to high (χ2=10)and low (χ2=5)value of suction Reynolds number. High suction Reynolds number implies larger suction velocity (Re=v0h/n). As χ2is inversely proportional to square ofRe , the higher value of χ2implies low suction velocity. It is clear that for low suction velocity has a thinning effect over the boundary layer thickness and it is further reduced by higher Prandtl number and magnetic parameter. The special feature of the high χ2velocity profiles is that it steadily increases whereas for low value, it increases and slightly decreases near the upper plate. Thus, it is inferred that low suction has a decelerating effect near the permeable surface. The crossing of curves IV and VI in Fig.3 may be attributed to the interplay of Prandtl number and magnetic effects.

    Fig.4 Mean velocity profile with M =2,Rc=0.2

    Figure 4 primarily exhibits the effect of Grashof number and radiation parameter (N2)for cooling and heating of the plate. It is evident from curves II and VI,one for heating (Gr>0)and other for cooling (Gr<0) that the heating of the fluid exerts greater buoyancy force which accelerates the fluid motion and cooling acts adversely resulting a flow reversal in the presence of elasticity of the fluid. The flow reversal increases with higher value of Gr<0. The instability of the flow may be attributed to the non linearity in the constitutive equations. The flow reversal increases with higher Gr<0. These instabilities may not depend on inertia, they are mainly driven by the fluid normal stresses (elasticity), or by the boundary conditions[19]. Further it is seen that an increase in radiation parameter N2is to reduce the velocity throughout the flow field. This observation coincides with the work of Alagoa et al.[20].

    Fig.5 Effect of Rc,ωandt on velocity profile (Pr =0.71,N2=0.5,χ2=10,M =2,Gr=5)

    Fig.6 Effect ofPrand N2on temperature profile

    From Fig.5 it is seen that there is no significant variation in velocity due to variation in the values of ω, the frequency or timet as the physical property of the fluid such as elasticity associated in the flow phenomena overrides their effects.

    Figure 6 displays the temperature variation in thermal boundary layer. This two layer profile is mainly due t o hig her va lues ofPr an d lower v alues of Pr . Thenonlineardistributionisattributedduetohigher value of Pralso. The contribution of the radiation parameterN2is to increase the thermal boundary layer thickness preserving the linearity of the distribution. Equation (16) represents the steady temperature distribution. In the absence of radiation parameter(N2=0)this reduces to a simple equation for temperature distribution which varies exponentially with respect to Prandtl number which is comparable to the classical property of fluid temperature distribution.

    Table 1 shows the variation of skin friction coefficient, a measure of boundary phenomena coefficient,with phase angleωtand other pertinent parameters. It is observed that an increase in phase fromπ/4to π/2for a viscous fluid (Rc=0), skin friction decreases slightly but in case of viscoelastic fluid this decrease is significant. It is further noticed that when Rc, the elastic parameter, increases from 0.2 to 0.4 the skin friction reduces to negligibly small. This result infers that an increase in phase angle as well as elastic parameter is found to be favorable in reducing the skin friction significantly which is desirable for streamline flow. The decrease in skin friction is also noted due to the presence of porous medium as well as increase in magnetic parameter and radiation parameter. All the above results hold good for a heated plate(Gr>0). One interesting result is that for a cooled plate(Gr<0), a negative value of skin friction is recorded. This observation is important in view of flow reversal. This fact is concomitant with the observation made from Fig.3 curve VI, for (Gr<0)indicating a flow reversal.

    Table 1 Skin friction coefficient

    Table 2 presents the variation of Nusselt numberNu. It is seen that an increase in radiation parameter and suction parameter increasesNuslightly but the reverse effect is marked in case of Prandtl number. It is further noticed that phase change has no significant contribution in the variation of Nusselt number.

    Table 2 Nusselt number

    4. Conclusion

    Flow reversal is indicated incase of viscoelastic fluid with high heat capacity in the presence of magnetic field. The higher cooling of the plate in case of viscoelastic flow also causes a flow reversal. The non linearity of temperature distribution is concomitant with higher heat capacity of the fluid i.e., higherPr and the increasing radiation contributes to linearity. Increase in phase angle as well as elastic parameter isfound to be favorable in reducing the skin friction significantly in case of heated plate. For a cooled plate,negative skin friction is recorded. Suction parameter slightly increases the Nusselt number.

    Acknowledgement

    Authors express their deepest sense of gratitude to the authorities of SOA University for providing facilities to carry on the research work and thankful to the reviewers for the constructive comments.

    References

    [1] BEARD D. W., WALTERS K. Elastico-viscous boundary layer flow. Two dimensional flow near a stagnation point[J]. Proceedings of the Cambridge Philosophical Society, 1964, 60(3): 667-674.

    [2] CHOWDHURY M. K., ISLAM M. N. MHD free convection flow of viscoelastic fluid past an infinite vertival porous plate[J]. Heat and Mass Transfer, 2000,36(5): 439-447.

    [3] ABEL M. S., KHAN S. K. and PRASAD K. V. Study of viscoelastic fluid flow and heat transfer over a stretching sheet with variable viscosity[J]. International Journal of Non-Linear Mechanics, 2002, 37(1): 81-88.

    [4] ASGHAR S., MOHYUDDIN M. R. and HAYAT T. et al. The flow of non-Newtonian fluid induced due to oscillation of a porous plate[J]. Mathematical Problems in Engineering, 2004, 2: 133-143.

    [5] KHAN S. K., SANJAYANAND E. Viscoelastic boundary layer MHD flow through a porous medium over a porous quadratic stretching sheet[J]. Archives of Mechanics, 2004, 56(3): 191-204.

    [6] KHAN S. K. Heat transfer in viscoelastic fluid flow over a stretching surface with heat source/sink, suction/ blowing and radiation[J]. International Journal of Heat and Mass transfer, 2006, 49(3): 628-639.

    [7] YAMAMOTO K., YOSHIDA Z. Suction and injection flow with convective acceleration through porous wall[J]. Journal of the Physical Society of Japan,1974, 37(3): 774-779.

    [8] CHAWLA S. S., SINGH S. Oscillatory flow past a porous bed[J]. Acta Mechanics, 1979, 34(3-4): 205-213.

    [9] RAPTIS A., PEREDIKIS C. and TZIVANIDIS G. Free convection flow through a porous medium bounded by a vertical surface[J]. Journal of Physics D Applied Physics, 1981, 14(7): L99-L102.

    [10] SINGH A. K., SINGH A. K. and SINGH N. P. Heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity[J]. Indian Journal of Pure and Applied Mathematics,2003, 34(3): 429-442.

    [11] FERDOWS M., SATTAR M. A. and SIDDIQUI M. N. A. Numerical approach on parameters of the thermal radiation interaction with convection in boundary layer flow at a vertical[J]. Thammasat International Journal of Non-Linear Mechanics, 2004, 9(3): 19-23.

    [12] MISHRA S. R., DASH G. C. and ACHARYA M. Mass and heat transfer effect on MHD flow of a visco-elastic fluid through porous medium with oscillatory suction and heat source[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 433-438..

    [13] MASSOUDI M., PHUOE T. X. Unsteady motion of a non-linear viscoelastic fluid[J]. International Journal of Non-Linear Mechanics, 2009, 44(10): 1063-1072.

    [14] SOCHI T. Non-Newtonian flow in porous media[J]. Polymer, 2010, 51(22): 5007-5023.

    [15] ALHARBI S., BAZID M. and GENDY M. Heat and mass transfer in MHD visco-elastic fluid flow through a porous medium over a stretching sheet with chemical reaction[J]. Applied Mathematics, 2010, 1(6): 446-455.

    [16] KUMAR J. G., SATYANARAYAN P. V. Mass transfer effect on MHD unsteady free convective Walters memory flow with constant suction and heat sink[J]. International Journal of Applied Mathematics and Mechanics, 2011, 7(19): 97-109.

    [17] SIVRAJ R., RUSHI KUMAR B. Unsteady MHD dusty visco-elastic fluid Couette flow in an irregular channel with varying mass diffusion[J]. International Journal of Heat and Mass Transfer, 2012, 55(11-12): 3076-3089.

    [18] Nhan-Phan-Thein. Understanding viscoelasticity. An introduction to Rheology[M]. 2nd Edition, Berlin,Germany, Springer.

    [19] HASSANIEN I. A. Unsteady hydromagnetic flow through a porous medium between two infinite parallel porous plates with time varying suction[J]. Astrophysucs and Space Science, 1991, 175(1): 135-147.

    [20] ALAGOA K. D., TAY G. and ABBEY T. M. Radiative and free convective effects of a MHD flow through a porous medium between infinite parallel plates with time dependent suction[J]. Astrophysics and Space Science, 1998, 260: 455-468.

    [21] BESTMANN A. R. Free convection effects on the flow past a vertical porous plate set impulsively into motion with negligible dissipation[J]. Acta Physical Academiae Scientiarum Hungaricae, 1979, 46(3): 129-136.

    Appendix

    The following are the constants that appear in Eqs.(26), (27), (29), (30).

    10.1016/S1001-6058(15)60536-4

    (December 15, 2013, Revised May 20, 2014)

    * Biography: BAAG S. (1976-), Female, Ph. D.,Assistant Professor

    国产成人av激情在线播放| 亚洲狠狠婷婷综合久久图片| 怎么达到女性高潮| 美女扒开内裤让男人捅视频| 男人的好看免费观看在线视频| 19禁男女啪啪无遮挡网站| 国产私拍福利视频在线观看| 国产伦精品一区二区三区视频9 | 亚洲欧美一区二区三区黑人| 嫩草影院精品99| 最近视频中文字幕2019在线8| АⅤ资源中文在线天堂| 国产免费av片在线观看野外av| 精华霜和精华液先用哪个| 亚洲成人精品中文字幕电影| 亚洲美女黄片视频| 免费看a级黄色片| 亚洲av成人不卡在线观看播放网| 黄色 视频免费看| 亚洲成人久久性| 大型黄色视频在线免费观看| 国产高清视频在线播放一区| 国产高清视频在线播放一区| 一进一出抽搐gif免费好疼| 一进一出抽搐gif免费好疼| 97碰自拍视频| 久久久久亚洲av毛片大全| 波多野结衣高清无吗| 亚洲 国产 在线| 大型黄色视频在线免费观看| 成人av一区二区三区在线看| 日韩中文字幕欧美一区二区| 一个人看的www免费观看视频| 欧美日韩国产亚洲二区| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久久免费视频| 91老司机精品| 欧美一级a爱片免费观看看| 两个人看的免费小视频| 91老司机精品| 精品一区二区三区av网在线观看| 日本一本二区三区精品| 人妻丰满熟妇av一区二区三区| 亚洲在线观看片| 国产在线精品亚洲第一网站| 中文字幕久久专区| 国产精品电影一区二区三区| 亚洲av中文字字幕乱码综合| 国产激情偷乱视频一区二区| 欧美乱码精品一区二区三区| 日本熟妇午夜| 老熟妇乱子伦视频在线观看| 超碰成人久久| 中文亚洲av片在线观看爽| 亚洲va日本ⅴa欧美va伊人久久| 成人精品一区二区免费| 亚洲一区二区三区不卡视频| 日韩精品中文字幕看吧| 国产精品一区二区三区四区免费观看 | 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| av天堂中文字幕网| 麻豆一二三区av精品| 日韩人妻高清精品专区| 日日摸夜夜添夜夜添小说| 亚洲国产精品合色在线| avwww免费| 成年版毛片免费区| 免费av不卡在线播放| 色哟哟哟哟哟哟| 身体一侧抽搐| 久久久国产欧美日韩av| 搡老岳熟女国产| 国产伦精品一区二区三区视频9 | 一二三四在线观看免费中文在| 全区人妻精品视频| 男女午夜视频在线观看| 国产欧美日韩一区二区三| 国产亚洲欧美在线一区二区| 久久中文字幕人妻熟女| 中亚洲国语对白在线视频| 成年人黄色毛片网站| 很黄的视频免费| 亚洲一区二区三区色噜噜| www.自偷自拍.com| 久久亚洲精品不卡| 国产av不卡久久| 久久中文字幕一级| 又大又爽又粗| 国内精品久久久久久久电影| 久久人妻av系列| 亚洲成av人片在线播放无| 变态另类成人亚洲欧美熟女| 国产精品综合久久久久久久免费| 久久欧美精品欧美久久欧美| 在线观看一区二区三区| 亚洲中文av在线| 国产成人精品无人区| 男人和女人高潮做爰伦理| 久久这里只有精品19| 亚洲avbb在线观看| xxx96com| 欧美日韩国产亚洲二区| 国产精品久久久久久久电影 | 亚洲真实伦在线观看| 男女床上黄色一级片免费看| 91av网站免费观看| 桃红色精品国产亚洲av| 91麻豆av在线| 亚洲在线观看片| 日韩精品中文字幕看吧| 亚洲成人久久性| 色在线成人网| 老汉色av国产亚洲站长工具| 国产精品久久视频播放| 午夜激情欧美在线| 精品久久久久久久久久久久久| 看免费av毛片| 超碰成人久久| 999久久久国产精品视频| 久久精品国产亚洲av香蕉五月| 中文字幕熟女人妻在线| 久久久久九九精品影院| 国产日本99.免费观看| 国内久久婷婷六月综合欲色啪| 亚洲av成人一区二区三| 又紧又爽又黄一区二区| 神马国产精品三级电影在线观看| 久久这里只有精品中国| 琪琪午夜伦伦电影理论片6080| 国产成人精品无人区| 欧美日韩一级在线毛片| 欧美3d第一页| 九色国产91popny在线| 日本熟妇午夜| 999久久久国产精品视频| 黄色女人牲交| 天天添夜夜摸| 最近在线观看免费完整版| 老司机福利观看| 日韩大尺度精品在线看网址| 香蕉久久夜色| 精品国产亚洲在线| 人人妻人人澡欧美一区二区| 免费av毛片视频| 90打野战视频偷拍视频| 一个人观看的视频www高清免费观看 | 一夜夜www| 国产成人av教育| 最近最新中文字幕大全电影3| 国产熟女xx| 每晚都被弄得嗷嗷叫到高潮| 在线永久观看黄色视频| 91av网站免费观看| 中亚洲国语对白在线视频| 免费观看的影片在线观看| 99热这里只有精品一区 | 国产精品综合久久久久久久免费| 国产91精品成人一区二区三区| 国产精品自产拍在线观看55亚洲| 桃红色精品国产亚洲av| 亚洲男人的天堂狠狠| 久久精品国产综合久久久| 999久久久精品免费观看国产| www日本黄色视频网| 国产欧美日韩精品亚洲av| 国产精品久久久久久人妻精品电影| 欧美日韩福利视频一区二区| 99久久成人亚洲精品观看| 亚洲专区字幕在线| 国产高潮美女av| 国产伦精品一区二区三区视频9 | 日韩三级视频一区二区三区| 两个人视频免费观看高清| 黄色片一级片一级黄色片| 观看免费一级毛片| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 久久久成人免费电影| 久久久国产精品麻豆| 麻豆成人午夜福利视频| 国产精品 欧美亚洲| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 欧美午夜高清在线| 免费看美女性在线毛片视频| 免费观看的影片在线观看| 成人三级做爰电影| 人人妻人人看人人澡| 国产一区二区三区视频了| 久久亚洲精品不卡| 淫秽高清视频在线观看| 俺也久久电影网| 欧洲精品卡2卡3卡4卡5卡区| 韩国av一区二区三区四区| 国产精品一区二区免费欧美| 曰老女人黄片| 97碰自拍视频| 十八禁网站免费在线| 麻豆av在线久日| 老司机午夜十八禁免费视频| 怎么达到女性高潮| 亚洲欧美精品综合一区二区三区| 国产精品影院久久| 国产午夜精品久久久久久| 又大又爽又粗| 国产成人欧美在线观看| 人人妻人人看人人澡| 国产高清视频在线播放一区| 91麻豆精品激情在线观看国产| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| av天堂中文字幕网| 精华霜和精华液先用哪个| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 国产又黄又爽又无遮挡在线| www日本在线高清视频| 亚洲 国产 在线| 99热只有精品国产| 国产精品 国内视频| 美女高潮的动态| 日日摸夜夜添夜夜添小说| 麻豆成人av在线观看| 巨乳人妻的诱惑在线观看| 极品教师在线免费播放| 中文字幕精品亚洲无线码一区| 高潮久久久久久久久久久不卡| 在线观看66精品国产| 国产高清激情床上av| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 精品国内亚洲2022精品成人| 一个人看的www免费观看视频| 欧美av亚洲av综合av国产av| 叶爱在线成人免费视频播放| 性欧美人与动物交配| 国产免费男女视频| 日本五十路高清| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 高清在线国产一区| 曰老女人黄片| 在线观看一区二区三区| 我要搜黄色片| 国产亚洲欧美98| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 黄色 视频免费看| 男女床上黄色一级片免费看| 黄片大片在线免费观看| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 久久久水蜜桃国产精品网| av女优亚洲男人天堂 | 亚洲成人中文字幕在线播放| 观看美女的网站| 亚洲男人的天堂狠狠| h日本视频在线播放| 免费av毛片视频| 久久午夜亚洲精品久久| 国产欧美日韩精品一区二区| av中文乱码字幕在线| 午夜福利免费观看在线| 一进一出抽搐动态| 欧美高清成人免费视频www| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 日本黄色片子视频| 精品福利观看| 国产高清激情床上av| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 757午夜福利合集在线观看| avwww免费| 男女视频在线观看网站免费| 亚洲天堂国产精品一区在线| 18禁观看日本| 叶爱在线成人免费视频播放| 中出人妻视频一区二区| 成人国产综合亚洲| 亚洲激情在线av| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| av天堂在线播放| 一夜夜www| 欧美国产日韩亚洲一区| 黑人巨大精品欧美一区二区mp4| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 级片在线观看| 夜夜看夜夜爽夜夜摸| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 国产99白浆流出| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 99久久综合精品五月天人人| 国产熟女xx| 国产真人三级小视频在线观看| 夜夜爽天天搞| 天堂影院成人在线观看| 身体一侧抽搐| 国产精品一区二区三区四区久久| 午夜精品在线福利| 亚洲在线观看片| 神马国产精品三级电影在线观看| 国产精品av久久久久免费| 特级一级黄色大片| 麻豆久久精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| 亚洲九九香蕉| 人妻久久中文字幕网| 婷婷精品国产亚洲av| 五月玫瑰六月丁香| 女警被强在线播放| 国产精品99久久久久久久久| 热99在线观看视频| 这个男人来自地球电影免费观看| 亚洲av成人精品一区久久| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 国产精品一区二区三区四区久久| 美女 人体艺术 gogo| 日本熟妇午夜| 一进一出好大好爽视频| 亚洲成av人片免费观看| 国产精品野战在线观看| 亚洲精品一区av在线观看| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 精品久久久久久,| 欧美成人一区二区免费高清观看 | 九九久久精品国产亚洲av麻豆 | 91老司机精品| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 九色国产91popny在线| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| xxx96com| 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 国产野战对白在线观看| 午夜福利在线观看吧| 成人一区二区视频在线观看| 日韩成人在线观看一区二区三区| 欧美黑人巨大hd| 日日夜夜操网爽| 中文字幕人成人乱码亚洲影| 欧美乱妇无乱码| 欧美乱色亚洲激情| 精品国产美女av久久久久小说| 国产成人aa在线观看| 国产毛片a区久久久久| 天堂动漫精品| 国产视频内射| 日韩国内少妇激情av| 久久久久久久久久黄片| 国产亚洲欧美98| 动漫黄色视频在线观看| 99国产综合亚洲精品| 天堂影院成人在线观看| 女人高潮潮喷娇喘18禁视频| 香蕉国产在线看| 国内精品一区二区在线观看| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 又粗又爽又猛毛片免费看| 久久久久国内视频| 亚洲av片天天在线观看| 香蕉av资源在线| 中出人妻视频一区二区| 色哟哟哟哟哟哟| 免费搜索国产男女视频| 麻豆一二三区av精品| 精品国产三级普通话版| 成年免费大片在线观看| 亚洲成人免费电影在线观看| 99国产综合亚洲精品| 级片在线观看| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 最近最新中文字幕大全电影3| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站 | 色综合亚洲欧美另类图片| 两人在一起打扑克的视频| 日本黄大片高清| 天天躁日日操中文字幕| 最新美女视频免费是黄的| 日本与韩国留学比较| 久99久视频精品免费| 久久国产精品影院| 我要搜黄色片| 美女被艹到高潮喷水动态| 香蕉av资源在线| 欧美另类亚洲清纯唯美| 91字幕亚洲| 欧美xxxx黑人xx丫x性爽| 在线观看舔阴道视频| 午夜免费观看网址| 成人三级做爰电影| av天堂在线播放| 一边摸一边抽搐一进一小说| 成人一区二区视频在线观看| 宅男免费午夜| 国产精品 欧美亚洲| 亚洲真实伦在线观看| 国产成人aa在线观看| 身体一侧抽搐| a在线观看视频网站| 在线国产一区二区在线| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 亚洲欧美一区二区三区黑人| 少妇的逼水好多| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 怎么达到女性高潮| 久久天堂一区二区三区四区| 亚洲精品乱码久久久v下载方式 | 久久久成人免费电影| 国产一区二区三区视频了| 久久天堂一区二区三区四区| 免费看日本二区| 欧美一区二区精品小视频在线| 又大又爽又粗| 欧美不卡视频在线免费观看| 亚洲九九香蕉| 中文字幕高清在线视频| 床上黄色一级片| 人妻丰满熟妇av一区二区三区| 免费av毛片视频| svipshipincom国产片| 欧美在线黄色| 又爽又黄无遮挡网站| 国产高清视频在线播放一区| 美女cb高潮喷水在线观看 | 欧美在线一区亚洲| 欧美精品啪啪一区二区三区| 精品国产乱码久久久久久男人| 国产熟女xx| 免费大片18禁| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| 在线观看一区二区三区| 少妇的丰满在线观看| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产 | 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 男女视频在线观看网站免费| 日韩国内少妇激情av| 露出奶头的视频| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 九色国产91popny在线| 宅男免费午夜| 日韩欧美国产在线观看| 国产高清激情床上av| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| www.精华液| 黄色女人牲交| 黄色丝袜av网址大全| 国产精品一及| 中文在线观看免费www的网站| 国产欧美日韩一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 欧美丝袜亚洲另类 | 精品国产美女av久久久久小说| 国产成人啪精品午夜网站| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 美女午夜性视频免费| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 成年免费大片在线观看| 国产男靠女视频免费网站| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 久久久久性生活片| 亚洲美女黄片视频| 久久久国产成人精品二区| 精品久久久久久,| 首页视频小说图片口味搜索| 国产av在哪里看| 欧美丝袜亚洲另类 | 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区久久| 久久久久久久久免费视频了| 99精品欧美一区二区三区四区| 怎么达到女性高潮| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 国产精品日韩av在线免费观看| 国产成人精品久久二区二区免费| 天天添夜夜摸| 国产伦在线观看视频一区| 性色av乱码一区二区三区2| 又黄又粗又硬又大视频| 亚洲精品中文字幕一二三四区| 亚洲自偷自拍图片 自拍| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 欧美黑人巨大hd| 又紧又爽又黄一区二区| 毛片女人毛片| 999精品在线视频| 女警被强在线播放| 午夜免费成人在线视频| 欧美3d第一页| 日韩 欧美 亚洲 中文字幕| 久久久久精品国产欧美久久久| av欧美777| 99久久综合精品五月天人人| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 午夜a级毛片| 国产人伦9x9x在线观看| 88av欧美| 国产精品电影一区二区三区| 亚洲狠狠婷婷综合久久图片| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 一二三四在线观看免费中文在| 久久性视频一级片| 国内少妇人妻偷人精品xxx网站 | 老熟妇仑乱视频hdxx| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 午夜福利成人在线免费观看| 久久精品国产清高在天天线| 亚洲 欧美一区二区三区| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 中国美女看黄片| 国产午夜福利久久久久久| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品v在线| svipshipincom国产片| www.999成人在线观看| 99国产精品99久久久久| 免费大片18禁| 国产精品1区2区在线观看.| 精品欧美国产一区二区三| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 久久中文看片网| 国产探花在线观看一区二区| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 中国美女看黄片| 男人舔女人的私密视频| 中出人妻视频一区二区| 久久99热这里只有精品18| 国产av麻豆久久久久久久| 日本a在线网址| 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 亚洲欧美日韩无卡精品| 高清在线国产一区| 久久精品影院6| 欧美日韩国产亚洲二区| 国产精品久久久久久人妻精品电影| 国产一区二区三区视频了| 夜夜夜夜夜久久久久| 国产免费av片在线观看野外av| 日韩大尺度精品在线看网址|