• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time domain simulations of radiation and diffraction by a Rankine panel method*

    2015-11-25 11:31:22ZHANGWei張偉ZOUZaojian鄒早建
    關(guān)鍵詞:四市防城港煙酒

    ZHANG Wei (張偉), ZOU Zaojian (鄒早建),2

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China, E-mail: drwood@sjtu.edu.cn

    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    Time domain simulations of radiation and diffraction by a Rankine panel method*

    ZHANG Wei (張偉)1, ZOU Zaojian (鄒早建)1,2

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China, E-mail: drwood@sjtu.edu.cn

    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    The radiation and the diffraction of a ship with a forward speed are studied by using a time domain Rankine panel method. The free surface conditions are linearized onto an undisturbed free surface based on the double body flow. The linearized body boundary condition is applied on the mean wetted hull surface. The fluid domain boundary is discretized by a collection of quadric panels. The unknown quantities, including the free surface elevation, the normal flux over the free surface and the potential on the fluid domain boundary, are determined at each time step. The numerical results are compared with experimental data and other numerical solutions, showing satisfactory agreements.

    radiation, diffraction, Rankine source, panel method, time domain analysis

    Introduction0F

    In the past two decades, the three-dimensional panel method combined with the time domain analysis techniques finds increasingly wider applications in simulating the free surface flow around a ship. Based on the choices of the elementary singularity, there are two general categories of the time domain panel methods for the ship hydrodynamics studies.

    The first category employs the transient Green function. The methods of this category have the advantages of the free surface integration being avoided and the radiation condition satisfied automatically. But the integration of the transient Green function is made difficult, especially when the ship is not wallsided. Recent progresses in this area were reported,such as Datta and Sen[1], Duan and Dai[2], Zhu et al.[3].

    The second category of the methods uses the Rankine source as the elementary singularity. Since the Rankine source satisfies only the far field decay condition, the singularities must be distributed on both the body surface and a part of the free surface. A numerical scheme is also needed to treat the temporal discretization. However, the advantage of the Rankine panel methods (RPM) is twofold: the Rankine source is simple to evaluate, and the distribution of the panels over the free surface provides a great deal of flexibility for different kinds of free surface boundary conditions. Nakos et al.[4]presented their numerical solutions of the linear transient wave-body interaction problems, using the RPM with a neutrally stable time discretization scheme. Their work was extended to the nonlinear cases by Huang[5]. The same discretization scheme was also used by Kim et al.[6]. Zhang et al.[7]conducted the time domain simulations of the radiation and diffraction forces by using the desingularized boundary integral methods and the mixed Euler-Lagrange time stepping technique. The wave-induced ship motions were also simulated using the time domain RPM by other researchers, such as Yasukawa[8],He and Kashiwagi[9]and Chen and Zhu[10-12].

    This study carries out the numerical simulation of the radiation and the diffraction of a ship with a forward speed, using a time domain Rankine panel method. The free surface conditions are linearized ontothe undisturbed free surface based on the double body flow. The linearized body boundary condition is applied on the mean wetted hull surface. The discretization algorithms are based on the work of Nakos et al.[4]. However, different from their original method,the present study uses a collection of quadric panels instead of the plane quadrilateral panels to discretize the fluid domain boundary. Such modification is to enhance the geometrical continuity between panels,and subsequently increase the accuracy of the numerical results. Simulations of the radiation and diffraction waves are carried out for the Wigley I hull and the S-175 container ship. The numerical results of the hydrodynamic coefficients and the wave-exciting forces are compared with experimental data and other numerical solutions to verify the effectiveness of the present numerical method.

    1. Mathematical formulation

    The ship is assumed rigid and traveling at a speed U=(U0,0,0)in regular waves. The water depth is assumed to be infinite. A ship-fixed right-handed coordinate systemO-xyz is used. The positivexis towards the bow and the positivez points upward. The xyplane is coincident with the calm water level and the origin is at the midship.

    Under the assumption that the fluid is inviscid and incompressible, and the flow is irrotational, the fluid velocity potentialΨcan be introduced, to establish the following boundary value problem:

    where nis the inward unit normal vector on the hull surface (out of fluid),δis the oscillatory displacement of the hull surface,η(x,y,t)is the free surface elevation andgis the gravitational acceleration.

    To linearize the free surface boundary conditions(2) and (3), the total potentialΨis decomposed into a double-body basis flow ΦD(x)and a perturbation flowφ(x ,t),

    The double body flow is assumed to be the main component of the order of O(1). It can be expressed asandΦsatisfies the following boundary conditions

    The perturbation potentialφand the free surface elevationηare assumed small and are of the order of O(ε). By substituting Eq.(5) into Eq.(2) and Eq.(3),keeping the leading-order terms and neglecting the terms higher thanO(ε), the linearized free surface conditions can be obtained as follows:

    The perturbation flow φ(x,t)and the wave elevationηare further decomposed as:

    where φI(x ,t)is the incident wave potential and ζI(x,y,t)is the incident wave elevation.φr(x, t)and φd(x,t)stand for the radiation and diffraction potentials, respectively.ζr(x,y,t)and ζd(x,y,t)are the radiation and diffraction wave elevations, respectively.

    To evaluate the diffraction, the ship is assumed to advance in regular waves, but without any oscillation. The incident wave potential of unit amplitude in deep water is

    where ω0is the frequency of the incident wave,k is the wave number,for deep water,βis the angle between the phase velocity of the incident wave and the ship velocity,β=πfor the head sea,andωis the encounter frequency defined as

    The boundary value problem for the diffraction potential φd(x, t)is summarized as follows:

    For the radiation potential due to the unit amplitude ship motion in the i thdegree of freedom, the ship is given a forced harmonic oscillation

    The exact body boundary condition (4) is linearized about the mean wetted body position following Newman[13]. Then the boundary value problem for the radiation potentialtakes the form:

    where δT=(δ1,δ2,δ3)is the rigid body translational displacement,δR=(δ4,δ5,δ6)is the rotational displacement,(n1,n2,n3)=n,(n4,n5,n6)=x×n,x=(x,y,z)is the position vector and mjis the so-called m-terms, which can be evaluated as follows:

    To complete the boundary value problems (13)and (15), the far field boundary conditions are also necessary for each unknown perturbation potential, to insure that the ship-generated wave propagates only outward. Additionally, the initial condition is

    Once the potential functionφis solved, the unsteady pressure on the hull can be computed by using the linearized Bernoulli’s equation

    and the unsteady hydrodynamic force F=(F1,F(xiàn)2,F(xiàn)3)and the moment M =(F4,F(xiàn)5,F(xiàn)6)acting on the hull can be determined as a generalized force

    2. Numerical implementation

    2.1 Boundary integral equation

    The fluid domain is bounded by the hull surface), the undisturbed free surfaceand a control surface at infinity (S∞). By applying the Green second theorem, the Laplace equation can be put into the integral equation form as

    通過(guò)選取的樣本,使用以北海、南寧、欽州、防城港四市的6種商品(糧食、油脂類、肉類、煙酒類、服裝鞋帽類、醫(yī)療用品類以及日用品類)在2008年—2011年期間的價(jià)格數(shù)據(jù)并對(duì)其進(jìn)行相應(yīng)的差分處理,南寧、欽州以及防城港三市數(shù)據(jù)求平均,從而得到相對(duì)價(jià)格指標(biāo)最后經(jīng)過(guò)計(jì)算到如下表:

    where G(x′,x)is the Rankine source defined by

    where C(x)is the solid angle at the field pointxand the subscriptnmeans the derivative along the outer normal of the fluid domain boundary. The contribution of the control surface at infinity (S∞)vanishes owing to the decay of bothG(x′,x)and φ(x ,t)as

    The integral Eq.(20) together with the corresponding linearized boundary conditions constitute a system of equations for the solutions with respect to the free surface elevationη, the normal flux φZ(yǔ)over the free surface and the potentialφon the fluid domain boundary.

    2.2 Panel generation

    The hull surface and the truncated free surface are discretized by a collection of quadric panels. Each panel is represented in the parametric form as

    where Pi,jare the control points of the panel, and Ni,2(u)are the 2nd degree B-Spline basis function[14]defined on the knot vector0.5,0.5}. To determine the values of Pi,jof a panel, a 3×3 given data point array0,1,2) is needed. The determination process is outlined as follows (see Fig.1):

    (1) Assigning the parameter values)for the data pointsis computed by averaging across allThe computation ofis analogous.

    Fig.1 Panel generation

    Fig.2 A typical grid arrangement

    A typical arrangement of the whole grid, on both the free surface and the hull surface, is illustrated in Fig.2, in which the free surface grid extends1.0L(ship length) in the transverse direction,0.5L upstream and1.0L downstream. The half ship is represented by Ns×Mspanels, while the panels on the free surface are aligned with those on the hull. The bold line in Fig.2 represents the boundary of the numerical damping zone, which will be discussed in a later section.

    Fig.3 Image of thefunction

    2.3 The discretization algorithm

    The discretization algorithm used in the present study is based on the work of Nakos[4]. The unknown quantities on the panels are assumed slowly varying along the parameter directions uandv . The variation is approximated by a linear superposition of the two dimensional basis functions B(2,2).

    The spline coefficients on each panel,andcan be considered as the spatially discrete unknowns. A major advantage of introducing this quadratic basis function, is the effective treatment of the differential operators. From Eq.(24) it can be seen that the basis function can be differentiated analytically up to two times. Hence, in the treatment of the free surface conditions (7) and (8),the spatial gradients of theζandφcan be simply written as:

    and the use of a finite difference scheme is avoided.

    For the temporal discretization, a neutrally stable scheme named the “Emplicit Euler (EE)” is applied. The kinematic and dynamic free surface conditions are satisfied through the explicit and implicit schemes,respectively.

    The discrete equations may be summarized as follows:

    where the superscripts are the temporal indices and other terms are defined as

    The evaluation of the integral in Eq.(30) over the panel is obtained by a Guassian quadrature rule.

    In order to satisfy the radiation condition, the numerical damping beach approach is applied. Over the outer part of the free surface (see Fig.2), two numerical damping items are added into the kinematic free surface boundary condition as follows wheren is the so-called damping strength. Details about the numerical damping beach approach can be found in Huang[5].

    3. Numerical results

    3.1 Convergence study

    The radiations of the Wigley I hull in heave and pitch are selected to test the convergence with respect to the mesh size and the time step. The Wigley I hull,defined in Journée[15], is expressed as

    whereL is the model length,B is the full beam,and T is the draft. For the Wigley I hull,L/B=10 and B/T =1.6.

    Fig.4 Spatial convergence of force and moment for Wigley I hull heaving at

    Figure 4 illustrates the spatial convergence of the vertical radiation force and moment for the Wigley model in heave atand the nondimensional frequencyThree different grids are tested with a common nondimensional time-step size ofThe grid numbers are shown in Table 1.

    Table 1 The grids for the test of the spatial convergence

    It can be seen that even when the hull grid is relatively coarse, namely, 20×10 panels on the half hull,the forces are already good with respect to convergence for both the heave-heave force (F3)and the heave-pitch moment (F5). This reflects the advantage of employing the quadric curved panel.

    Fig.5 Temporal convergence of force and moment for Wigley I hull pitching at

    Figure 5 illustrates the temporal convergence of the vertical radiation force and moment for the Wigley model in pitch at Fr =0.3andNumerical tests are conducted by using the same geometric discretization, namely, grid “B”, but different time steps of0.018 and 0.036. From Fig.5, it can be seen that the temporal convergence is adequate.

    Table 2 Main particulars of the S-175 container ship

    3.2 Radiation problem

    After convergence studies, numerical simulations of the radiation are carried out to validate the aforementioned numerical method. Both the Wigley I hull and the S-175 container ship are tested. Compared with the Wigley hull, the S-175 containership has a significant flare at its bow and stern. The main particulars of the S-175 hull are listed in Table 2, and the line plan can be found in Fonseca and Guedes Soares[16].

    The simulation time for each case is set to be ten times of the period of the forced oscillatory motion,and the second halves of the time histories of the radiation force are transformed into the frequency domain to evaluate the added mass and damping coefficients. The m-terms are determined by solving the boundary value problems of Dirichlet type, using the method proposed by Wu[17].

    Fig.6 Hydrodynamic coefficients due to unit amplitude heave motion for the Wigley I model at Fr=0.2

    Fig.7 Hydrodynamic coefficients due to unit amplitude pitch motion for the Wigley I model at Fr=0.2

    The added mass and damping coefficients due to the forced heave and pitch motions for the Wigley I hull advancing at Fr =0.2are illustrated in Figs.6 and 7, which are compared with the experiments by Journée[15]. In order to identify the effect of the double body flow on the radiation forces, the Neumann-Kelvin (N-K) results are also included in the figures. It should be noted that the boundary value problem resulted from the classical N-K linearization is similar to Eq.(15), except the basis flow is simply set to be the uniform flow, i.e.Φ=0. Correspondingly, the mterms are simplified as

    The comparisons show that the present results using the double-body linearization are in general better than the results using the N-K approach, especially for the prediction of the cross-coupling hydrodynamic coefficients (i.e.,a35,b35,a53and b53). The advantage of the present double body results is due to both the double-body m-term evaluations and the leading-order terms retained in the free surface boundary conditions (7) and (8) based on the double-body linearization.

    For the diagonal coefficients, the present double body results and the N-K results compare well. However, a discrepancy can be found between the numerical results and the experimental ones, especially for the pitch-pitch coefficients a55and b55.

    Fig.8 The exact and error vertical forces for the Wigley I hull inheave

    Fig.9 The exact and error vertical forces for the Wigley I hull in pitch

    The discrepancy may be mainly due to the linearization of the boundary conditions. In order to make a clear explanation, denote Psand Pbas the resultantsof the exact z - component of the hydrodynamic pressures acting on the fore and aft parts of the hull, respectively,and the centers of the pressures on the fore and aft parts of the hull are assumed to be at the middle point of that section. It is reasonable to assume that the error forces, which are brought in by the linearization, act only on the bow and the stern, because the nonlinearities at the bow and the stern are muchstronger than at the middle part of the hull. In the following analysis, these error forces are denoted by?Psand ?Pb, for the stern and the bow, respectively.

    Fig.10 Hydrodynamic coefficients due to unit amplitude heave motion for the S-175 at Fr=0.275

    Fig.11 Hydrodynamic coefficients due to unit amplitude pitch motion for the S-175 advancing at Fr=0.275

    When the Wigley I hull is forced to heave (see Fig.8),?Psand ?Pb.are of the same sign, therefore the summation of error forces will be added into the heave-heave force, which will result in an error in a33and b33. However, the error moments caused by ?Psand ?Pbwill cancel each other, so the prediction of the pitch-heave coefficients a53and b53is satisfactory. When the Wigley I hull is forced to pitch (see Fig.9),?Psand ?Pbare of the similar magnitude but of opposite sign. In this case, the prediction of the heave-pitch coefficients a35and b35is good because?Psand ?Pbcancel each other. But an error moment will be introduced. Although the magnitudes of ?Psand ?Pbare small, the long arm of the force (almost two times of the arm between Psand Pb) will amplify the error greatly. Therefore, the discrepancies in a55and b55between the numerical results and the experimental ones are more remarkable than those in a33and b33. For a more accurate prediction of these coefficients, a nonlinear computation might be necessary.

    The hydrodynamic coefficients due to the forced heave and pitch motions for the S-175 container ship are shown in Figs.10 and 11. Since experimental data are not available, the numerical results by Zhang et al.[7]are used to validate the present numerical calculation. Their solution is based on the linearized free surface conditions and the exact body boundary condition.

    In general, good agreement can be found between the numerical results from the present double body method and the method of Zhang et al.[7]. Discrepancies mainly occur in the prediction of the damping coefficients b53and b33. The reason for these discrepancies can be probably attributed to the different treatment of the body boundary condition.

    Fig.12 Heave and pitch exciting forces and moments acting on Wigley I model at Fr=0.2

    3.3 Diffraction problem

    Numerical simulations of the diffraction are carried out for the Wigley I hull advancing in a regular head wave, with the forward speeds Fr =0.2 and 0.3. The nondimensional incident wave length λ/Lvaries from 0.75 to 2.0. Similar to the radiation force,the wave exciting force is also transformed into the frequency domain and compared with the N-K solutions and with the experimental data[15].

    Fig.13 Heave and pitch exciting forces and moments acting on Wigley I model at Fr=0.3

    Figures 12 and 13 show the results of the wave exciting forces and moments in heave and pitch, where c33and c55are hydrostatic coefficients,k is the incident wave number,A is the incident wave amplitude. From these comparisons it can be seen that the difference between the results obtained by using the double-body linearization and the N-K linearization is slight. Both sets of numerical results show good agreements with the experiments, for the force amplitude in both heave and pitch, as well as the phase lag angle in heave. However, discrepancies occur in the prediction of the phase lag angle in pitch. Similar discrepancies are also found in the results of Zhang et al.[18]. The reasons of these discrepancies are still unclear.

    Fig.14 A snapshot of the heave radiation wave field

    Fig.15 A snapshot of the diffraction wave field

    3.4 Wave patterns

    Figures 14 and 15 are the snapshots of the computed wave field for the heave radiation at4.0 and the diffraction at λ/L=1.25, respectively. The Froude number isFr=0.3. The effectiveness of the numerical damping bench is demonstrated since no reflection of waves is observed at the free surface truncation.

    4. Concluding remark

    A three-dimensional time domain Rankine panel method is used for solving the radiation and diffraction problems of a ship with a forward speed. A computer program is developed based on the algorithm. Numerical computations are carried for the Wigley I hull and the S-175 container ship, and the numerical results of the hydrodynamic coefficients and the wave exciting forces are compared with experimental results and other numerical solutions. The comparisons demonstrate that the present approach is promising.

    Acknowledgement

    This work was supported by the Lloyd?s Register Foundation (LRF). LRF helps to protect life and property by supporting engineering-related education,public engagement and the application of research.

    References

    [1] DATTA R., SEN D. A b-spline solver for the forwardspeed diffraction problem of a floating body in the time domain[J]. Applied Ocean Research, 2006, 28(2): 147-160.

    [2] DUAN W., DAI Y. Integration of the time-domain Green function[C]. Twenty-second International Workshop on Water Waves and Floating Bodies. Plitvice, Croatia, 2007.

    [3] ZHU Ren-chuan, ZHU Hai-rong and SHEN Liang et al. Numerical treatments and applications of the 3D transient green function[J]. China Ocean Engineering,2007, 21(4): 92-101.

    [4] NAKOS D. E., KRING D. C. and SCLAVOUNOS P. D. Rankine panel methods for transient free-surface flows[C]. Sixth International Conference on Numerical Ship Hydrodynamic. Iowa City, USA, 1993.

    [5] HUANG Y. Nonlinear ship motions by a Rankine panel method[D]. Doctoral Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 1997.

    [6] KIM Y., KIM K. and KIM J. et al. Time domain analysis of nonlinear motion responses and structural loads on ships and offshore structures: Development of WISH programs[J]. International Journal of Naval Architecture and Ocean Engineering, 2011, 3(1): 37-52.

    [7] ZHANG X., BANDYK P. and BECK R. F. Time-domain simulations of radiation and diffraction forces[J]. Journal of Ship Research, 2010, 54(2): 79-94.

    [8] YASUKAWA H. Time domain analysis of ship motions inwaves using BEM (2nd Report: Motions in regular head waves)[J]. Transactions of the West-Japan Society of Naval Architects, 2001, 101: 27-36.

    [9] HE G., KASHIWAGI M. A time-domain higher-order boundary element method for 3D forward-speed radiation and diffraction problems[J]. Journal of Marine Science and Technology, 2014, 19(2): 228-244.

    [10] CHEN Jing-pu, ZHU De-xiang. Numerical simulations of wave-induced ship motions in time domain by a Rankine panel method[J]. Journal of Hydrodynamics,2010, 22(3): 373-380.

    [11] CHEN Jing-pu, ZHU De-xiang. Numerical simulations of wave-induced ship motions in regular oblique waves by a time domain panel method[J]. Journal of Hydrodynamics, 2010, 22(5): 419-426.

    [12] CHEN Jing-pu, ZHU De-xiang. Numerical simulations of nonlinear ship motions in waves by a Rankine panel method[J]. Chinese Journal of Hydrodynamics, 2010,25(6): 830-836(in Chinese).

    [13] NEWMAN J. N. The theory of ship motions[J]. Advances in Applied Mechanics, 1978, 18: 221-283.

    [14] SALOMON D. Curves and surfaces for computer graphics[M]. New York, USA: Springer, 2005.

    [15] JOURNéE J. M. J. Experiments and calculations on four Wigley hull forms[R]. Technical Report 909. Delft,The Netherlands: Delft University of Technology, 1992.

    [16] FONSECA N., GUEDES SOARES C. Comparison of numerical and experimental results of nonlinear waveinduced vertical ship motions and loads[J]. Journal of Marine Science and Technology, 2002, 6(4): 193-204.

    [17] WU G. A numerical scheme for calculating the mjterms in wave-current-body interaction problem[J]. Applied Ocean Research,1991, 13(6): 317-319.

    [18] ZHANG X., BANDYK P. and BECK R. F. Seakeeping computations using double-body basis flows[J]. Applied Ocean Research, 2010, 32(4): 471-482.

    (April 3, 2014, Revised August 16, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279106).

    Biography: ZHANG Wei (1983-), Male, Ph. D. Candidate

    ZOU Zao-jian,

    E-mail: zjzou@sjtu.edu.cn

    猜你喜歡
    四市防城港煙酒
    防城港供電局:多措并舉助力地方經(jīng)濟(jì)發(fā)展
    3.主動(dòng)拒絕煙酒與毒品 第一課時(shí)
    中秋的月
    重型高架移動(dòng)銅精礦石漏斗應(yīng)用設(shè)計(jì)
    異地用血將有望實(shí)現(xiàn)就地報(bào)銷(xiāo)
    初遇防城港海味珍饈
    防城港玩海之旅
    賀州市召開(kāi)兩廣四市聯(lián)合打擊非法生產(chǎn)經(jīng)營(yíng)煙花爆竹聯(lián)席會(huì)議
    蘇州市農(nóng)民培訓(xùn)狀況分析——基于蘇州四市三區(qū)的調(diào)查
    成人教育(2015年7期)2015-12-21 05:05:39
    行政決策法治化實(shí)證研究——對(duì)四市法治政府指標(biāo)體系的文本分析
    日韩欧美一区二区三区在线观看| 成人一区二区视频在线观看| 婷婷精品国产亚洲av| 97人妻精品一区二区三区麻豆| 变态另类丝袜制服| 国产真实乱freesex| 99热这里只有精品一区| .国产精品久久| av在线观看视频网站免费| 精品久久久久久久久av| 久久精品夜色国产| 国产午夜精品一二区理论片| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 久久韩国三级中文字幕| 97人妻精品一区二区三区麻豆| 99热精品在线国产| 精品久久久噜噜| 中文资源天堂在线| 大又大粗又爽又黄少妇毛片口| 色播亚洲综合网| 国产一区二区亚洲精品在线观看| а√天堂www在线а√下载| 国产黄色视频一区二区在线观看 | 亚洲最大成人av| 国产精品精品国产色婷婷| 69av精品久久久久久| 六月丁香七月| 18禁在线无遮挡免费观看视频| 国产视频首页在线观看| 一本久久精品| 能在线免费看毛片的网站| 欧美成人精品欧美一级黄| 一本精品99久久精品77| 亚洲在线观看片| 在线观看66精品国产| 日本与韩国留学比较| 色吧在线观看| 变态另类丝袜制服| 我要看日韩黄色一级片| av卡一久久| 国产精品久久视频播放| 日本撒尿小便嘘嘘汇集6| 如何舔出高潮| 亚洲精华国产精华液的使用体验 | 日日摸夜夜添夜夜爱| 天美传媒精品一区二区| 国产高清有码在线观看视频| 午夜老司机福利剧场| 国产亚洲精品久久久com| 99在线视频只有这里精品首页| 韩国av在线不卡| 成人一区二区视频在线观看| 97超碰精品成人国产| 国产白丝娇喘喷水9色精品| 久久精品人妻少妇| 一区福利在线观看| 男女做爰动态图高潮gif福利片| 激情 狠狠 欧美| 69av精品久久久久久| 简卡轻食公司| 国产视频内射| 熟女人妻精品中文字幕| 久久精品国产亚洲网站| 人妻少妇偷人精品九色| 成人无遮挡网站| 亚洲人与动物交配视频| 亚洲国产精品成人久久小说 | 成人毛片a级毛片在线播放| 久久热精品热| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 免费在线观看成人毛片| 亚洲精品乱码久久久v下载方式| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| 免费av不卡在线播放| 91久久精品国产一区二区成人| 美女cb高潮喷水在线观看| 99热这里只有是精品在线观看| 国产高清三级在线| 赤兔流量卡办理| 伦理电影大哥的女人| 22中文网久久字幕| 国产伦精品一区二区三区视频9| 亚洲欧洲日产国产| 男女边吃奶边做爰视频| 嫩草影院精品99| 久久午夜福利片| 男人狂女人下面高潮的视频| 又黄又爽又刺激的免费视频.| 久久久久久久久久成人| 亚洲一区二区三区色噜噜| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品久久国产高清桃花| 夜夜夜夜夜久久久久| 中文在线观看免费www的网站| 天天一区二区日本电影三级| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| 日韩人妻高清精品专区| 嫩草影院精品99| 中出人妻视频一区二区| 亚洲色图av天堂| 日韩制服骚丝袜av| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 亚洲无线在线观看| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 久久精品久久久久久噜噜老黄 | 日韩欧美国产在线观看| 日本黄大片高清| 久久精品综合一区二区三区| 久久99热6这里只有精品| 天天一区二区日本电影三级| 九九久久精品国产亚洲av麻豆| 国产精华一区二区三区| 亚洲丝袜综合中文字幕| 99国产极品粉嫩在线观看| 嫩草影院新地址| 国产精品久久电影中文字幕| 国产精品久久久久久久电影| 天堂√8在线中文| 少妇人妻精品综合一区二区 | 久久久久久大精品| 婷婷色av中文字幕| 国产黄片美女视频| 亚洲av男天堂| 久久久久网色| 欧美日本视频| 日韩精品有码人妻一区| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 国产三级在线视频| 国产黄色小视频在线观看| 亚洲美女搞黄在线观看| 熟女电影av网| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 久久久久久久久久久免费av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美人与善性xxx| 久久精品国产亚洲av香蕉五月| 最近手机中文字幕大全| 国产av麻豆久久久久久久| 久久99蜜桃精品久久| 男女视频在线观看网站免费| av在线老鸭窝| 欧美+亚洲+日韩+国产| а√天堂www在线а√下载| 天堂影院成人在线观看| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| 亚洲一区二区三区色噜噜| 舔av片在线| 国产91av在线免费观看| 日本黄大片高清| 欧美一区二区亚洲| 久久精品国产亚洲av天美| av天堂中文字幕网| 久久婷婷人人爽人人干人人爱| 国产老妇女一区| 黄色日韩在线| 国产真实伦视频高清在线观看| av又黄又爽大尺度在线免费看 | 国产探花在线观看一区二区| 久久久欧美国产精品| 人体艺术视频欧美日本| 精品久久久久久久久亚洲| 亚洲国产欧美在线一区| 国产亚洲欧美98| av福利片在线观看| 男女边吃奶边做爰视频| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 国产高清视频在线观看网站| 久久99热6这里只有精品| 国产高清不卡午夜福利| 色综合站精品国产| 校园春色视频在线观看| 国产女主播在线喷水免费视频网站 | 国产一区二区三区av在线 | 91狼人影院| 午夜a级毛片| 亚洲av熟女| 嘟嘟电影网在线观看| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 黄片无遮挡物在线观看| 97热精品久久久久久| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 黑人高潮一二区| 亚洲一区高清亚洲精品| 亚洲人成网站在线播放欧美日韩| 丰满乱子伦码专区| 国产久久久一区二区三区| 久久热精品热| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 久久这里只有精品中国| 国产精品一区www在线观看| 少妇高潮的动态图| 亚洲欧洲日产国产| 亚洲不卡免费看| 亚洲精品自拍成人| 欧美成人一区二区免费高清观看| 18+在线观看网站| 国产精品一及| 久久久国产成人精品二区| 欧美三级亚洲精品| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久 | 99国产极品粉嫩在线观看| 午夜免费激情av| 欧美人与善性xxx| 国产成人精品婷婷| 国产精品久久电影中文字幕| 亚洲av中文av极速乱| 在线观看午夜福利视频| kizo精华| 国产一区亚洲一区在线观看| 晚上一个人看的免费电影| 一区二区三区高清视频在线| 亚洲欧美日韩卡通动漫| 亚洲av中文字字幕乱码综合| 亚洲av男天堂| 男人狂女人下面高潮的视频| 亚洲成人久久性| 岛国在线免费视频观看| 久久这里有精品视频免费| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 赤兔流量卡办理| 国产精品,欧美在线| 如何舔出高潮| 此物有八面人人有两片| 99久久精品国产国产毛片| 看免费成人av毛片| 亚洲无线在线观看| 男女那种视频在线观看| 亚洲精品成人久久久久久| 51国产日韩欧美| 国产熟女欧美一区二区| 搡老妇女老女人老熟妇| 亚洲丝袜综合中文字幕| 久久精品国产清高在天天线| 免费看日本二区| 在线观看av片永久免费下载| 能在线免费看毛片的网站| 内射极品少妇av片p| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 亚洲性久久影院| 长腿黑丝高跟| 在线播放国产精品三级| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 亚洲人成网站在线播放欧美日韩| 久久6这里有精品| 亚洲精华国产精华液的使用体验 | 搞女人的毛片| 97在线视频观看| 国产又黄又爽又无遮挡在线| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看 | 99在线人妻在线中文字幕| 国产在视频线在精品| 五月伊人婷婷丁香| 99热全是精品| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 黄色视频,在线免费观看| 免费人成在线观看视频色| 我的女老师完整版在线观看| 国产91av在线免费观看| 91aial.com中文字幕在线观看| 精品人妻熟女av久视频| 国产一级毛片七仙女欲春2| 欧美xxxx黑人xx丫x性爽| 人妻制服诱惑在线中文字幕| 中文字幕熟女人妻在线| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 欧美色欧美亚洲另类二区| 22中文网久久字幕| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 岛国在线免费视频观看| 国产免费男女视频| 中文字幕熟女人妻在线| 99久久精品一区二区三区| 精品午夜福利在线看| 精品久久久久久久久久久久久| 看非洲黑人一级黄片| 免费看av在线观看网站| 国产极品天堂在线| 51国产日韩欧美| 日韩欧美 国产精品| 亚洲四区av| 欧美区成人在线视频| 夜夜爽天天搞| 亚洲国产精品合色在线| 亚洲av一区综合| 亚洲精华国产精华液的使用体验 | 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| av在线亚洲专区| 激情 狠狠 欧美| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| 一本精品99久久精品77| www.色视频.com| 国产精品久久电影中文字幕| 黄片wwwwww| 国产69精品久久久久777片| 蜜臀久久99精品久久宅男| 少妇人妻精品综合一区二区 | 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频 | 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 我要搜黄色片| 麻豆成人av视频| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 久久久精品94久久精品| 看片在线看免费视频| 长腿黑丝高跟| 99热精品在线国产| 少妇的逼好多水| 欧美一级a爱片免费观看看| 亚洲自偷自拍三级| 久久久久久久亚洲中文字幕| 在线免费观看的www视频| 精品人妻一区二区三区麻豆| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 别揉我奶头 嗯啊视频| 国产不卡一卡二| 成熟少妇高潮喷水视频| 26uuu在线亚洲综合色| 成熟少妇高潮喷水视频| 久久精品久久久久久噜噜老黄 | 在线观看66精品国产| 亚洲五月天丁香| 黄片无遮挡物在线观看| 欧美3d第一页| 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 日本撒尿小便嘘嘘汇集6| 亚洲乱码一区二区免费版| 国产精品一二三区在线看| 中文欧美无线码| 美女高潮的动态| 精品人妻视频免费看| 国产精品久久久久久久久免| 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 久久久久久久久久久丰满| www.色视频.com| 国产大屁股一区二区在线视频| 日韩欧美三级三区| 中文字幕久久专区| 九色成人免费人妻av| 国产精品野战在线观看| 一级毛片电影观看 | 波野结衣二区三区在线| 97热精品久久久久久| 成人特级黄色片久久久久久久| 日本欧美国产在线视频| 一进一出抽搐gif免费好疼| 亚洲国产色片| 男人舔奶头视频| 99热这里只有是精品在线观看| 日韩欧美精品v在线| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一电影网av| 爱豆传媒免费全集在线观看| 99热精品在线国产| a级毛片a级免费在线| 国产伦在线观看视频一区| 日本av手机在线免费观看| 少妇熟女aⅴ在线视频| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 精品久久久久久久末码| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 久久精品人妻少妇| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线在精品| 亚洲国产欧洲综合997久久,| 波多野结衣巨乳人妻| 一级毛片久久久久久久久女| 欧美激情久久久久久爽电影| 亚洲精品久久国产高清桃花| 1000部很黄的大片| 久久精品国产亚洲网站| 亚洲精品成人久久久久久| 国产精品永久免费网站| 亚州av有码| 国产伦精品一区二区三区四那| 国产精品精品国产色婷婷| 看免费成人av毛片| 一级毛片我不卡| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区 | 非洲黑人性xxxx精品又粗又长| 国产精品无大码| 高清毛片免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 搡女人真爽免费视频火全软件| 国产色爽女视频免费观看| 毛片一级片免费看久久久久| 99精品在免费线老司机午夜| 高清日韩中文字幕在线| 国产亚洲欧美98| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产| 亚洲自拍偷在线| 九九爱精品视频在线观看| 亚州av有码| 少妇的逼水好多| 91在线精品国自产拍蜜月| 在线观看66精品国产| 精品一区二区三区视频在线| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 亚洲av成人av| 中国美白少妇内射xxxbb| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 一级黄片播放器| 少妇丰满av| 亚洲在线观看片| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 免费观看的影片在线观看| 91午夜精品亚洲一区二区三区| 国产单亲对白刺激| 久久中文看片网| 国产伦精品一区二区三区四那| 观看美女的网站| 成人亚洲欧美一区二区av| 午夜爱爱视频在线播放| 3wmmmm亚洲av在线观看| 天堂网av新在线| 深爱激情五月婷婷| 99视频精品全部免费 在线| 亚洲欧美中文字幕日韩二区| 欧美日韩在线观看h| 天堂影院成人在线观看| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 午夜精品在线福利| 国产一区二区三区av在线 | 男女做爰动态图高潮gif福利片| 中文字幕久久专区| 日本爱情动作片www.在线观看| 免费av不卡在线播放| 成人av在线播放网站| 日本色播在线视频| 天堂网av新在线| 免费大片18禁| av.在线天堂| 国产视频内射| 99久久中文字幕三级久久日本| 精品久久久久久久人妻蜜臀av| 69人妻影院| 高清午夜精品一区二区三区 | 亚洲美女视频黄频| 成人午夜精彩视频在线观看| 岛国在线免费视频观看| 12—13女人毛片做爰片一| 国产精品久久久久久久久免| 亚州av有码| 麻豆成人av视频| 男人的好看免费观看在线视频| 日产精品乱码卡一卡2卡三| 亚洲精品乱码久久久v下载方式| 国产黄a三级三级三级人| 国内精品一区二区在线观看| 国产淫片久久久久久久久| 亚洲国产精品sss在线观看| 男女那种视频在线观看| 欧美日韩乱码在线| 不卡一级毛片| 欧美成人精品欧美一级黄| 精品午夜福利在线看| 一个人看视频在线观看www免费| 性色avwww在线观看| 国产极品天堂在线| 国产亚洲av片在线观看秒播厂 | 亚洲欧美精品专区久久| av在线老鸭窝| 校园人妻丝袜中文字幕| 亚洲一区二区三区色噜噜| 国产精品伦人一区二区| 中文精品一卡2卡3卡4更新| 午夜免费男女啪啪视频观看| 天天躁日日操中文字幕| 日韩人妻高清精品专区| 99久久人妻综合| 国产黄a三级三级三级人| 国产探花极品一区二区| 美女cb高潮喷水在线观看| 黄片无遮挡物在线观看| 成人美女网站在线观看视频| а√天堂www在线а√下载| 人妻夜夜爽99麻豆av| 中文字幕制服av| 床上黄色一级片| 欧美不卡视频在线免费观看| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 国产亚洲精品av在线| 一本久久中文字幕| 精品人妻视频免费看| 国内精品久久久久精免费| av在线播放精品| 日韩欧美 国产精品| 亚洲av不卡在线观看| 亚洲内射少妇av| 国产黄片美女视频| 最近的中文字幕免费完整| 日韩制服骚丝袜av| av在线亚洲专区| 亚洲av免费高清在线观看| 日韩中字成人| 小蜜桃在线观看免费完整版高清| 日韩欧美精品免费久久| 中文欧美无线码| 国产色婷婷99| 夜夜爽天天搞| 日本五十路高清| 国产高清三级在线| 一区二区三区四区激情视频 | 男人狂女人下面高潮的视频| 国产av不卡久久| 欧美不卡视频在线免费观看| 99热6这里只有精品| 在线免费观看的www视频| 国产成人freesex在线| 亚洲国产精品成人久久小说 | 精品久久久久久久人妻蜜臀av| 亚洲精品久久国产高清桃花| 国产真实伦视频高清在线观看| 亚洲三级黄色毛片| 天天躁日日操中文字幕| 老司机福利观看| 亚洲内射少妇av| 在线a可以看的网站| 性欧美人与动物交配| 国产国拍精品亚洲av在线观看| 网址你懂的国产日韩在线| 青春草国产在线视频 | 久久精品国产鲁丝片午夜精品| 欧美性感艳星| 国产女主播在线喷水免费视频网站 | 亚洲人成网站在线播| 日韩强制内射视频| 欧美三级亚洲精品| 校园春色视频在线观看| 乱人视频在线观看| 麻豆久久精品国产亚洲av| 高清毛片免费看| 青青草视频在线视频观看| 国产高潮美女av| 99久久人妻综合| 欧美日韩乱码在线| 国产乱人视频| 国产在视频线在精品| 亚洲七黄色美女视频| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 色播亚洲综合网| 亚洲欧美精品专区久久| 国产av麻豆久久久久久久| 久久久久九九精品影院| 黄片wwwwww| 久久亚洲国产成人精品v|