• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance ImProvement Method of CFRP with Embedded OPtical Fiber

    2015-11-21 07:56:24LiuRongmei劉榮梅XiaoJunLiangDakai梁大開WangGuina王桂娜

    Liu Rongmei(劉榮梅),Xiao Jun(肖 軍),Liang Dakai(梁大開),Wang Guina(王桂娜)

    1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Performance ImProvement Method of CFRP with Embedded OPtical Fiber

    Liu Rongmei(劉榮梅)1*,Xiao Jun(肖 軍)2,Liang Dakai(梁大開)1,Wang Guina(王桂娜)1

    1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Optical fiber-based sensors are usually applied in structural health monitoring(SH M)as part of smart materials.The weak interface between the optical fiber and the host material will reduce the mechanical performance of the smart materials.Normally,the principal parts of the optical fibers are inorganic,while the matrix of host material is organic.These two kinds of materials can not be combined.Micro-fracture can be found in smart materials.Two methods for improving the interface are proposed.Eirstly,the influence of the interface size on the strength is studied.Secondly,interfacial treatment before embedding the optical fiber into the composite is analyzed.Compressive tests of composite laminated specimens are conducted to evaluate the proposed methods.The specimens are produced from T300 Carbon/epoxy prepreg,with different treated optical fiber embedded inside. The experimental results indicate that smaller interface size and proper treatment will strengthen the whole structure.

    optical fiber;smart material;interface;carbon fiber reinforced plastics(CERP);chemical treatment

    0 Introduction

    Individual optical fiber or fiber networks are often applied in structural health monitoring(SHM)[1-2],thanks to their advantages,including capability of embedded inside composite and immunity to electromagnetic interference.Recently,intelligent structures have been developed with optical fiber sensors embedded inside composites[3-6].

    The diameter of the optical fiber is usually 100μm to 200μm,while reinforcing fibers are 5μm to 10μm in general.Therefore,the embedded optical fiber will influence the mechanical performance of the host material.The interaction between a composite material and optical fiber sensors is very significant and depends on many factors[7].

    The mechanical effects of embedded optical fiber(OE)on smart materials have been a research concern for years[8-10].Lee et al.[10]revealed that the optical fiber had no significant effect on static properties of composite specimen. However,significant reduction of fatigue life was observed.Hadzic et al.[11]pointed out that approximately 33%reduction in failure load was observed if the composite laminates had more densely embedded OE.Surgeon and Wevers[12]reported the similar observation.However,they emphasized that interface played a role in structural mechanical performance.Eriebele et al.[13]embedded OE into composite laminate and studied the tensile and compression performance of the laminate.They pointed out that the strength and the modulus would not be degraded by optical fi-bers parallelly embedded to the reinforcing fiber. However,the properties would be degraded as optical fibers transversely embedded to the reinforcement fibers.A compression strength reduction of 40%was even observed by Shivakumar et al.[14].

    In the former study,we studied the static[15]and impact[16]performance of a laminate,which was made of a carbon fiber reinforced plastics(CERP),with optical fibers embedded inside different layers of the laminate.It was concluded that different kinds of interfacial structures were formed around the embedded OE inside the composite[15].The different interfacial structures had effect on the mechanical properties of the host material.The larger the interface was,the weaker the material was.

    The component and the strength of the interface have effect on composite performance[17]. Many studies focus on the interface strength tests[18-20].Chean et al.[21]studied the interfacial adhesion between the embedded OE and composite material.The testing results showed that the interfacial debonding shear stresses were constant as the embedded length of OE was different. However,the curing time seems to influence the interfacial adhesion between the thermoplastic coating of OE and vinylester resin.

    In order to further understand the effect of embedded optical fiber on the mechanical behavior of composites,the interface improvements are studied.Eirstly,influence of interface size on the host structure is investigated.Secondly,chemical treatment to the interface is analyzed.Experiments are performed on CERP plates in order to verify the methods.

    1 Methodology

    1.1 Interface structure influence

    The interfacial micro-structure plays an important role in determining smart composite behavior[14,15].According to studies of Shivakumar et al.[14],the disturbance angle(asθin Eig.1)changes with the across angle of embedded OE to reinforced fibers.The bigger the across angle is, the smaller the disturbance angle is.The tensile strength decreases most as OE is vertical to the reinforced fibers.The results are coincident with our former studies[15].We take the resin accumulative length R into account.The bigger the across angle is,the longer R is,and the more influence the embedded OE has on the host material.

    Eig.1 Interfacial structure around embedded OE

    The area between the optical fiber and the host matrix,including the resin rich area,is defined as interface hereby.The resin accumulative length R,which plays an important role in mechanical determination of the host structure,depends on many parameters,such as the across angle and the diameter of the embedded OE.The smaller the crossing angle is,the higher the strength will be[15].

    The influence of the diameter of the embedded OEis analyzed by finite element method.The plate is 40 mm long,25 mm wide and 2 mm high.Only a quarter of the section is taken into account since the studied plate is doubly symmetric.Keeping the size and the ratio R/r the same,the plates holding OE in different diameters are analyzed.The simulated von-Mises stresses of the structures,at the compressive stress of 100 MPa,are shown in Eig.2.

    The finite element analysis results indicate that stress concentration will appear at the interface around OE.As the host structure is loaded,higher stress may appear at the sharp corner of the interface.Therefore,crack will come into being at the interface.The whole strength of the main structure will be weakened consequently. As shown in Eig.2,the plate will be subject tohigher stress concentration if it holds a bigger OE inside.

    Eig.2 Simulation results of plates with OEs at different diameters

    Accordingly,the smaller-diameter OEs are preferred when composing a smart structure with the fibers embedded inside.

    1.2 Chemical imProvement of interface

    The former studies showed that the interfacial strength was unfavorable[22].The ingredient of the embedded OE is studied consequently.

    The common used of is pulverized with potassium bromide.Afterwards,the sample is put inside an infrared Raman Spectrometer at grain size of less than 2.5μm.The tested absorbance is shown in Eig.3.Obviously,there are peak absorbance at three wave numbers,which were 465.64,799.75 and 1 100.4 cm-1.It explains that the main ingredient of the common OE is silicon dioxide(SiO2).

    The main material of core and cladding is silicon dioxide,which is inorganic.However,the coating and the matrix of composite,polymer usually,are organic.The crystal structures of organic and inorganic materials are different. Therefore,the inorganic core cannot be compound well with cladding or the polymer matrix. Due to weak bonding between embedded optical fiber and host material,micro-crack will arise at the interface firstly.Therefore,the strength of the structure will be reduced.

    Eig.3 Raman spectrum of optical fiber

    Nevertheless,the inorganic core can be coupled with organic by coupling agent,such as silane coupling agent.The general formula of the silane coupling agent is RSiX3.Hereby R presents organic perssad,which can be combined with organic coating of OE.X stands for hydrolyzable group,which can chemically react with the core of OE.

    The coupling procedure is explicated as below.Eirstly,the hydroxyl will be generated on the surface of OE and the coupling agent.Secondly,the hydroxyl of the silanol and the Si-OH on the OE combine togethe,as sketched in Eig.4.

    Eig.4 Hydrogen bonded

    After dehydration,a new molecular structure will be formed on the surface of the optical fiber at last(Eig.5).Hereby,R is an active group,which can react with organic material.

    Accordingly,the inorganic optical fiber can be combined with organic resin after coupling by silane.

    Eig.5 Sketch of molecular layer on OE

    2 ExPeriment of Interface ImProvement

    Laminated specimens are produced from a Toray T300 Carbon/epoxy prepreg.The prepreg is cut and laid up by hand.The laminate stacking sequence is[0/90/0/90/02/902]s.

    Eour OEs,5 mm apart,are embedded inside the middle layer of the plate,distributed along the width of the sample evenly.OEs are along the 0°direction(the loading direction)for each test type during lamination process.OE used in the experiment is supplied by Lucent Company.

    Two sets of testing samples are designed. The first set is designed to study the influence of the embedded OE size.The carbon fiber reinforced plastic plates are embedded with differentsize-OEs.The OE samples with diameter D of 250μm are denoted as Type 1,and those with OEs at 160μm are denoted as Type 2.A small piece of each material type is cut for the purpose of observing the interface structure around the embedded OEs.The HIROX 3-D video-microscope is applied in the observation.

    The second set is designed to study the interface chemical modification.Three kinds of specimen are manufactured.One of the sampling types have OEs without chemical treatment.The other two treated by titanate coupling agent KR-41B and silane coupling agent A1100,respectively. Moreover,the coating is removed before the OE is chemical treated and placed.

    The different experimental sets are summarized in Table 1.

    Table 1 ExPerimental sets

    During the lay-up,the edge of each prepreg is aligned.Once OE is placed on the carbon prepreg,its two ends are fixed.After finishing lay-up,an electric iron is used in order to eliminate air bubbles inside.The laminates are placed into an auto-clave and vacuum-bagged.After slowly heated upto 125°C and held at the same condition for 24 h,the laminates are cooled slowly in the auto-clave to room temperature.

    The cured laminates are cut into samples. Eor each testing type,five samples are prepared. The samples are 165 mm long,25 mm wide and 2 mm thick.

    Afterward,four plates,as sketched in Eig.6,are fixed to both sides of each specimen. The reinforced patches,made of epoxy resin,are of the size of 65 mm×25 mm×2 mm.

    Eig.6 Sketch of testing sample

    The prepared test specimens are undergoing compressive load.The loading velocity is 1 mm/ min.Data are collected by a computer data acquisition system automatically.

    3 Test Results

    3.1 Interface structural influence

    The destruct specimen after compression is shown in Eig.7.

    Obviously,the reinforced patches can fulfill the reinforcement during the experiment.The destruction shape demonstrats that the specimen is broken without buckling when compressed.

    Eig.7 Broken specimen

    The compressive results are listed in Table 2.Based on the results,the average compressive strength can be calculated.Eor Type 1,with 250 mm OEs inside,the strength is 514.76 MPa;while for Type 2,with smaller OEs,the strength is 523.90 MPa.

    Table 2 ComPressive results

    It is obvious that the strength will be higher for the host material if the size of embedded optical fibers is smaller.Therefore,embedding smaller-size OEs causes less influence on mechanical performance of the host structure.

    The cross sections of the tested specimen with OEs at different diameters,which are magnified 50 times,are shown in Eig.8.

    The measured interfacial length for the structure with OEs at 250μm is 3 560.961 mm;while for the one with fibers at 160μm,the length is 3 393.789 mm.

    It can be concluded that if the host plate has OEs in smaller diameter,the interface size around the embedded OE will be smaller.Therefore,the degree of degradation on the compressive strength of the host plate will be smaller.

    3.2 Chemical treatment influence

    Experimental results for different chemical treated specimen types are shown in Tables 3—5.

    Eig.8 Sections of samples with different-size OEs

    Table 3 Results for samPles without interfacial treatment

    Table 4 Results for samPles after treated by KR-41B

    Table 5 Results for samPles after treated by A1100

    The average strength is 462.92 MPa for the structure with untreated OE.However,the strength is 523.35 MPa and 537.38 MPa as the OE is treated by KR-41B and A1100,respectively.The value of the strength can be 16.1%higher,if the embedded OE is chemically treated.

    4 Conclusions

    Micro-methods to improve the mechanical properties of smart composite are proposed. Eirstly,the interface structure is studied.Secondly,the chemical treatment of the interface is discussed.

    Since the interface size plays an important role in determining the characteristic of the host structures,the method to cut down the interface size is studied.Reducing the intersecting angle between the embedded OE and the resin fiber can decrease the interface length.Moreover,OEs in smaller diameter are preferred.The finite element analysis results indicate that stress concentration will be reduced if the composite holds OE in smaller diameter.Experimental tests validate the results since the material displays smaller degree of degradation on the compressive strength of the host plate.Therefore,the intelligent composite materials,which host OE in small diameter,will be one of the future research focuse.

    Chemical treatment on the interface is proposed.Experimental tests indicate that the strength of the host structures is improved if the embedded OE is treated by coupling agent in advance.The samples after silane coupling show higher mechanical performance.However,the hydrone inside the agent may weaken the sensibility of OE.More appropriate coupling methods,like surface modified technique,should be studied and applied in the improvement of optical-fiber sensor based smart materials.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(No.11402112)and the Postdoctoral Science Eoundation of Jiangsu Province(No. 1302071B).

    [1] Putha K,Dantala D,Kamineni S,et al.Etched optical fiber vibration sensor to monitor health condition of beam like structures[J].Photonic Sensors,2013,3(2):124-130.

    [2] Zhou Z,Liu W Q,Huang Y,et al.Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement[J]. Mechanical Systems and Signal Processing,2012,28:36-49.

    [3] Vieira J C,Morais O M E,Vasques C M A,et al.A laboratorial prototype of a weight measuring system using optical fiber Bragg grating sensors embedded in silicone rubber[J].Measurement,2015,61:58-66.

    [4] Lammens N,Kinet D,Chah K,et al.Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings[J].Composites Part A:Applied Science and Manufacturing,2013,52:38-44.

    [5] Ramly R,Kuntjoro W,Abd-Rahman M K.Using embedded fiber Bragg grating(EBG)sensors in smart aircraft structure materials[J].Procedia Engineering,2012,41:600-606.

    [6] Thakur Harneet V,Nalawade Sandipan M,Saxena Yogesh,et al.All-fiber embedded PM-PCE vibration sensor for structural health monitoring of composite[J].Sensors and Actuators A:Physical,2011,167(2):204-212.

    [7] Lesiak P,Szelag M,Budaszewski D,et al.Influence of lamination process on optical fiber sensors embedded in composite material[J].Measurement,2012,45(9):2275-2280.

    [8] Canal L P,Sarfaraz R,Violakis G,et al.Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors[J].Composite Structures,2014,112:241-247.

    [9] Ling Hang-yin,Lau Kin-tak,Lam Chun-ki.Effects of embedded optical fibre on mode II fracture behaviours of woven composite laminates[J].Composites Part B:Engineering,2005,36(6/7):534-543.

    [10]Lee D C,Lee J J,Yun S J.The mechanical characteristics of smart composite structures with embedded optical fiber sensors[J].Composite Structures,1995,32(1/4):39-50.

    [11]Hadzic R,John S,Herszberg I.Structural integrity analysis of embedded optical fibres in compositestructures[J].Composite Structures,1999,47(1/ 4):759-765.

    [12]Surgeon M,Wevers M.Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres[J].Composites:Part A,1999,30(3):317-324.

    [13]Eriebele E J,Askins C G,Bosse A B,et al.Optical fiber sensors for spacecraft applications[J].Smart Materials and Structures,1999,8(6):813-838.

    [14]Shivakumar K,Emmanwori L.Mechanics of failure of composite laminates with an embedded fiber optic sensor[J].Journal of Composite Materials,2004,38(8):669-680.

    [15]Liu R M,Liang D K.Experimental study of carbon fiber reinforced plastic with embedded optical fibers[J].Materials&Design,2010,31(2):994-998.

    [16]Liu R M,Liang D K.Study of influence on bending performance of CERP with embedded optical fibers[C]∥International Conference on Experimental Mechanics 2008.Nanjing,China:SPIE,2008:73755z.

    [17]Gozluklu B,Uyar I,Coker D.Intersonic delamination in curved thick composite laminates under quasistatic loading[J].Mechanics of Materials,2015,80(Part B):163-182.

    [18]Kuo H Y,Chen C Y.Decoupling transformation for piezoelectric-piezomagnetic fibrous composites with imperfect interfaces[J].International Journal of Solids and Structures,2015,54:111-120.

    [19]Joffe R,Andersons J,Wallstr?m L.Interfacial shear strength of flax fiber/thermoset polymers estimated by fiber fragmentation tests[J].Journal of Materials Science,2005,40(9):2721-2722.

    [20]Kelly A,Tyson W R.Tensile properties of fibre-reinforced metals:Copper/tungsten and copper/molybdenum[J].Journal of the Mechanics and Physics of Solids,1965,13(6):339-350.

    [21]Chean V,Matadi B R,El A R,et al.Experimental characterization of interfacial adhesion of an optical fiber embedded in a composite material[J].International Journal of Adhesion and Adhesives,2013,41:144-151.

    [22]Liu Rongmei,Liang Dakai.Interfacial shear strength between optical fiber and resin[J].Journal of Nanjing University of Aeronautics&Astronautics,2010,42(6):758-763.(in Chinese)

    (Executive editor:Zhang Bei)

    *CorresPonding author:Liu Rongmei,Associate Professor,E-mail:romme@nuaa.edu.cn.

    How to cite this article:Liu Rongmei,Xiao Jun,Liang Dakai,et al.Performance improvement method of CERP with embedded optical fiber[J].Trans.Nanjing U.Aero.Astro.,2015,32(3):261-267.

    http://dx.doi.org/10.16356/j.1005-1120.2015.03.261

    (Received 18 Eebruary 2015;revised 20 April 2015;accepted 2 May 2015)

    TB332 Document code:A Article ID:1005-1120(2015)03-0261-07

    校园人妻丝袜中文字幕| 午夜激情av网站| 日本与韩国留学比较| 伦理电影大哥的女人| 中文字幕久久专区| 久久人人爽人人片av| 国产精品女同一区二区软件| 最新中文字幕久久久久| 男女边摸边吃奶| 国产精品国产av在线观看| 国产日韩欧美视频二区| 简卡轻食公司| 视频中文字幕在线观看| 如日韩欧美国产精品一区二区三区 | 久久久久久伊人网av| 性高湖久久久久久久久免费观看| 一区二区日韩欧美中文字幕 | 久久久久久久久久成人| 飞空精品影院首页| 久久久精品区二区三区| 老司机亚洲免费影院| 2018国产大陆天天弄谢| 日本午夜av视频| 中文欧美无线码| 亚洲精品视频女| 亚洲成人av在线免费| 色婷婷久久久亚洲欧美| 国产精品三级大全| 69精品国产乱码久久久| 一级,二级,三级黄色视频| 人成视频在线观看免费观看| 午夜福利,免费看| 99热国产这里只有精品6| 91成人精品电影| 少妇高潮的动态图| 亚洲国产精品专区欧美| 热99国产精品久久久久久7| 国产亚洲精品第一综合不卡 | 国产极品粉嫩免费观看在线 | 日韩在线高清观看一区二区三区| av免费观看日本| 日本av手机在线免费观看| 欧美丝袜亚洲另类| 国产精品.久久久| 观看av在线不卡| 观看美女的网站| 国产视频内射| 成年人免费黄色播放视频| 免费观看a级毛片全部| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 久久青草综合色| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 桃花免费在线播放| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花| 极品人妻少妇av视频| 成人无遮挡网站| 亚洲国产精品国产精品| 免费av不卡在线播放| 精品久久久久久久久亚洲| 日本av手机在线免费观看| 91精品国产九色| 在线精品无人区一区二区三| 久久久久精品久久久久真实原创| 一本大道久久a久久精品| 91成人精品电影| 日本-黄色视频高清免费观看| 在线观看三级黄色| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡 | 国产成人精品无人区| 国产精品免费大片| 国产黄色视频一区二区在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男女无遮挡免费网站观看| 天天操日日干夜夜撸| 国产男女内射视频| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 精品国产国语对白av| 亚洲少妇的诱惑av| 国产精品 国内视频| 国产亚洲最大av| 一边摸一边做爽爽视频免费| 大香蕉久久网| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 久久狼人影院| 国产精品无大码| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 黄色一级大片看看| 最近最新中文字幕免费大全7| av不卡在线播放| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 91在线精品国自产拍蜜月| 18禁观看日本| 欧美精品一区二区大全| xxxhd国产人妻xxx| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 国语对白做爰xxxⅹ性视频网站| 一级爰片在线观看| 日韩一本色道免费dvd| a级毛片免费高清观看在线播放| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区 | 国产精品久久久久久av不卡| 国产亚洲精品第一综合不卡 | 国产亚洲午夜精品一区二区久久| 在线观看www视频免费| 国产一区二区三区综合在线观看 | 美女内射精品一级片tv| av专区在线播放| 久久久久久久久久久久大奶| 午夜免费鲁丝| 在线观看人妻少妇| 蜜臀久久99精品久久宅男| 日本爱情动作片www.在线观看| 亚洲美女搞黄在线观看| 美女脱内裤让男人舔精品视频| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| 2021少妇久久久久久久久久久| 久热这里只有精品99| 国产一区二区三区av在线| 91精品伊人久久大香线蕉| 老女人水多毛片| 久久久久久久久久久久大奶| 视频中文字幕在线观看| 日本欧美视频一区| 久久久亚洲精品成人影院| 少妇人妻 视频| 久久久久久久久久久久大奶| 久久精品熟女亚洲av麻豆精品| 99精国产麻豆久久婷婷| 久久精品久久久久久噜噜老黄| 啦啦啦中文免费视频观看日本| 成人二区视频| 国产免费又黄又爽又色| 国产白丝娇喘喷水9色精品| 精品国产乱码久久久久久小说| 自线自在国产av| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 色哟哟·www| 中文字幕最新亚洲高清| 91久久精品国产一区二区成人| 麻豆乱淫一区二区| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 久久久久久伊人网av| 久久午夜福利片| 九九爱精品视频在线观看| 九草在线视频观看| 亚洲精品久久久久久婷婷小说| 国产男女内射视频| 老司机影院成人| 日本91视频免费播放| 中文字幕人妻丝袜制服| 女人精品久久久久毛片| 丰满少妇做爰视频| 亚洲av在线观看美女高潮| 老司机影院毛片| 成人国产麻豆网| 久久国产亚洲av麻豆专区| 99热全是精品| 国产高清不卡午夜福利| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 人人澡人人妻人| 国产乱人偷精品视频| a级毛片在线看网站| 啦啦啦中文免费视频观看日本| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 国产成人91sexporn| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 国产成人av激情在线播放 | 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 欧美一级a爱片免费观看看| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 乱码一卡2卡4卡精品| 一区二区三区精品91| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 18禁观看日本| 国产午夜精品久久久久久一区二区三区| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 高清av免费在线| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 日韩成人伦理影院| 国产精品三级大全| 亚洲欧美色中文字幕在线| 只有这里有精品99| a级毛片黄视频| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 国产深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 男女高潮啪啪啪动态图| 亚洲第一av免费看| 精品国产乱码久久久久久小说| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 国产精品女同一区二区软件| 赤兔流量卡办理| 我的女老师完整版在线观看| 久久久久久久国产电影| 2022亚洲国产成人精品| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 久久久久久久精品精品| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 一个人免费看片子| 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 成人18禁高潮啪啪吃奶动态图 | 日韩制服骚丝袜av| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 老司机影院成人| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频 | 欧美 亚洲 国产 日韩一| 免费大片黄手机在线观看| √禁漫天堂资源中文www| videos熟女内射| 亚洲熟女精品中文字幕| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 精品久久久精品久久久| 黄色一级大片看看| av国产精品久久久久影院| 另类亚洲欧美激情| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 久热久热在线精品观看| 亚洲色图 男人天堂 中文字幕 | 嘟嘟电影网在线观看| 伊人亚洲综合成人网| 婷婷色综合www| 大香蕉久久网| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 男女国产视频网站| 日韩一区二区视频免费看| 亚洲综合色惰| 九九爱精品视频在线观看| 国产精品一国产av| 韩国av在线不卡| av网站免费在线观看视频| 日韩欧美精品免费久久| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 久久ye,这里只有精品| 成人综合一区亚洲| 在线观看三级黄色| 亚洲第一av免费看| 成人国产av品久久久| 国产欧美日韩综合在线一区二区| 成人二区视频| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 久久99蜜桃精品久久| 最近的中文字幕免费完整| 天堂中文最新版在线下载| 一区二区三区免费毛片| 亚洲成人av在线免费| 黄色毛片三级朝国网站| 成年人免费黄色播放视频| 一级二级三级毛片免费看| 国产精品99久久99久久久不卡 | 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 少妇 在线观看| 欧美精品一区二区大全| 午夜激情av网站| 日本黄大片高清| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 久久久国产精品麻豆| 国产av国产精品国产| 99re6热这里在线精品视频| 成人影院久久| 午夜福利,免费看| 国产高清国产精品国产三级| 国产成人午夜福利电影在线观看| 欧美另类一区| 免费人成在线观看视频色| 免费不卡的大黄色大毛片视频在线观看| 自线自在国产av| 久久精品国产自在天天线| 丝袜在线中文字幕| 欧美bdsm另类| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 一边摸一边做爽爽视频免费| 日本与韩国留学比较| 99热全是精品| 91aial.com中文字幕在线观看| 99热6这里只有精品| 日韩av不卡免费在线播放| 日韩亚洲欧美综合| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 国产永久视频网站| 秋霞在线观看毛片| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| 日韩一本色道免费dvd| 水蜜桃什么品种好| 国产永久视频网站| 国产日韩欧美视频二区| 最新的欧美精品一区二区| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 51国产日韩欧美| 美女大奶头黄色视频| 一本一本综合久久| 男的添女的下面高潮视频| a 毛片基地| 久久免费观看电影| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 在线观看www视频免费| 黄片无遮挡物在线观看| 纯流量卡能插随身wifi吗| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 成年av动漫网址| 一区二区av电影网| 午夜福利视频在线观看免费| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 爱豆传媒免费全集在线观看| 一级毛片aaaaaa免费看小| 国产精品免费大片| 久久亚洲国产成人精品v| 免费大片18禁| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 夜夜骑夜夜射夜夜干| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 国产 精品1| 视频在线观看一区二区三区| 亚洲精品中文字幕在线视频| 亚洲av成人精品一二三区| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 亚洲成人av在线免费| 我要看黄色一级片免费的| 人妻夜夜爽99麻豆av| 亚洲国产色片| 国产黄色免费在线视频| 特大巨黑吊av在线直播| 美女国产视频在线观看| 精品视频人人做人人爽| 成人漫画全彩无遮挡| 亚洲性久久影院| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 美女cb高潮喷水在线观看| 国产成人精品无人区| 久久精品夜色国产| 如日韩欧美国产精品一区二区三区 | 免费看光身美女| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 午夜老司机福利剧场| 日本黄大片高清| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 亚洲图色成人| 高清av免费在线| 亚洲精华国产精华液的使用体验| 亚洲,一卡二卡三卡| 黑丝袜美女国产一区| 99久国产av精品国产电影| 久久免费观看电影| 美女视频免费永久观看网站| 亚洲怡红院男人天堂| av在线老鸭窝| 一级a做视频免费观看| 国产精品国产av在线观看| 午夜免费鲁丝| 九九在线视频观看精品| 亚洲av福利一区| videos熟女内射| 国产精品免费大片| 在线精品无人区一区二区三| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片 | 大码成人一级视频| 久久久欧美国产精品| 在线观看国产h片| 91精品三级在线观看| 精品卡一卡二卡四卡免费| 国产成人精品久久久久久| 久久人人爽人人片av| av福利片在线| 日本欧美视频一区| 国产高清国产精品国产三级| videosex国产| 简卡轻食公司| 69精品国产乱码久久久| 国产高清三级在线| 精品久久国产蜜桃| 黄色配什么色好看| 亚洲成人手机| 国产成人精品无人区| 曰老女人黄片| 日本av免费视频播放| 中文字幕制服av| 亚洲精品色激情综合| 少妇被粗大的猛进出69影院 | 一本久久精品| 亚洲精品久久久久久婷婷小说| 国产一级毛片在线| 女人精品久久久久毛片| 热99久久久久精品小说推荐| 免费观看性生交大片5| videosex国产| 午夜激情av网站| 亚洲美女黄色视频免费看| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 老女人水多毛片| 伦理电影免费视频| 久久精品人人爽人人爽视色| 欧美日韩av久久| 免费观看a级毛片全部| 午夜福利视频在线观看免费| 久久影院123| 国产成人aa在线观看| 哪个播放器可以免费观看大片| 老女人水多毛片| 搡老乐熟女国产| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 日产精品乱码卡一卡2卡三| 久久久久久久国产电影| 日韩av免费高清视频| 伦精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久久久按摩| 精品99又大又爽又粗少妇毛片| 十分钟在线观看高清视频www| 免费看不卡的av| 嫩草影院入口| 男的添女的下面高潮视频| 欧美日韩亚洲高清精品| 欧美精品国产亚洲| 亚洲精品美女久久av网站| 亚洲四区av| 久久热精品热| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| www.av在线官网国产| 2021少妇久久久久久久久久久| 91国产中文字幕| 国产亚洲av片在线观看秒播厂| 亚洲欧洲精品一区二区精品久久久 | 婷婷色综合大香蕉| 国产日韩欧美在线精品| 久久99热这里只频精品6学生| 天堂中文最新版在线下载| 妹子高潮喷水视频| 国产一区亚洲一区在线观看| 十八禁网站网址无遮挡| 精品一区二区三区视频在线| 看非洲黑人一级黄片| 亚洲第一av免费看| 国产黄片视频在线免费观看| 我的老师免费观看完整版| 欧美日韩亚洲高清精品| 有码 亚洲区| 女性生殖器流出的白浆| 51国产日韩欧美| 亚洲国产av新网站| 日韩在线高清观看一区二区三区| 精品卡一卡二卡四卡免费| 婷婷色麻豆天堂久久| 极品少妇高潮喷水抽搐| 制服人妻中文乱码| 熟女电影av网| 婷婷色av中文字幕| 大片电影免费在线观看免费| 少妇高潮的动态图| 久久久久国产精品人妻一区二区| 少妇人妻久久综合中文| 91精品一卡2卡3卡4卡| 午夜91福利影院| freevideosex欧美| 日本91视频免费播放| 综合色丁香网| 国产女主播在线喷水免费视频网站| 国产精品久久久久久久久免| 日本猛色少妇xxxxx猛交久久| 成人免费观看视频高清| 99热全是精品| 亚洲精品乱久久久久久| 国产成人freesex在线| 五月天丁香电影| 国产欧美日韩综合在线一区二区| 考比视频在线观看| 精品久久久精品久久久| 国产精品无大码| 男人添女人高潮全过程视频| 午夜福利视频精品| 国产精品国产三级专区第一集| 丝袜喷水一区| 国产av国产精品国产| 日韩一本色道免费dvd| 新久久久久国产一级毛片| 视频中文字幕在线观看| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 9色porny在线观看| 人妻夜夜爽99麻豆av| 九九爱精品视频在线观看| av天堂久久9| 永久网站在线| 免费黄网站久久成人精品| 制服人妻中文乱码| 男女免费视频国产| 丝瓜视频免费看黄片| 成人影院久久| 永久网站在线| 亚洲精品乱码久久久v下载方式| 成人18禁高潮啪啪吃奶动态图 | 嫩草影院入口| av播播在线观看一区| 久久精品熟女亚洲av麻豆精品| 18禁在线无遮挡免费观看视频| freevideosex欧美| 精品久久久噜噜| 热re99久久国产66热| 国产精品偷伦视频观看了| 男人添女人高潮全过程视频| 精品卡一卡二卡四卡免费| 国产精品一国产av| 午夜视频国产福利| 国语对白做爰xxxⅹ性视频网站| 成人黄色视频免费在线看| 成年女人在线观看亚洲视频| 精品国产国语对白av| 亚洲精品日韩av片在线观看| 80岁老熟妇乱子伦牲交| 我要看黄色一级片免费的| 久久久久精品久久久久真实原创| 国产精品不卡视频一区二区| 国产片特级美女逼逼视频| 99热网站在线观看| 亚洲在久久综合|