• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine☆

    2015-11-17 01:23:50JayantGowdaArunkumarBuddanavarSharanappaNandibewoor
    Journal of Pharmaceutical Analysis 2015年4期
    關(guān)鍵詞:李成人才隊(duì)伍淺談

    Jayant I.Gowda,Arunkumar T.Buddanavar,Sharanappa T.Nandibewoor

    P.G.Department of Studies in Chemistry,Karnatak University,Dharwad 580003,India

    Original Article

    Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine☆

    Jayant I.Gowda,Arunkumar T.Buddanavar,Sharanappa T.Nandibewoor*

    P.G.Department of Studies in Chemistry,Karnatak University,Dharwad 580003,India

    A R T I C L E I N F O

    Article history:

    7 January 2015

    Accepted 7 January 2015

    Available online 17 January 2015

    Voltammetry

    Modified electrode

    Diffusion controlled

    4-aminoantipyrine

    Pharmacokinetic study

    A multi-walled carbon nanotube(MWCNT)-cetyltrimethylammonium bromide(CTAB)surfactant composite modified glassy carbon electrode(GCE)was developed as a novel system for the determination of 4-aminoantipyrine(AAP).The oxidation process was irreversible over the pH range studied and exhibited a diffusion controlled behavior.All experimental parameters were optimized.The combination of MWCNT-CTAB endows the biosensor with large surface area,good biological compatibility,electricity and stability,high selectivity and sensitivity.MWCNT-CTAB/GCE electrode gave a linear response for AAP from 5.0×10-9to 4.0×10-8M with a detection limit of 1.63×10-10M.The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility.The present electrochemical sensor based on the MWCNT-CTAB/GCE electrode was applied to the determination of AAP in real samples.

    ?2015 Xi'an Jiaotong University.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Electrochemistry has many advantages,making it an appealing choice for pharmaceutical analysis[1,2].Electrochemistry has always provided analytical techniques characterized by instrumental simplicity,moderate cost,and portability.These techniques have introduced the most promising methods for specific applications[3,4].Due to similarity in the electrochemical and biological reactions,it can be assumed that the oxidation/reduction mechanisms taking place at the electrode and in the body share similar principles.Biologically important molecules can be investigated electroanalytically by voltammetry in order to determine the molecule in different ways.Additional applications of electrochemistry include the determination of electrode mechanisms.The redox properties of drugs can give us insights into their metabolic fate in in vivo redox processes or pharmacological activity[5].

    Further,the electroanalytical techniques have been shown to be excellent for the determination of pharmaceutical compounds in different matrices.Many of the active constituents of formulations,in contrast to excipients,can be readily oxidized.The selectivity of this method is normally excellent because the analyte can be readily identified by its voltammetric peak potential. Experimental electrochemical techniques have advantages in simplicity,cost,and analysis time,compared to other techniques in the field of drug analysis.The use of various electrodes,viz. mercury[6],solids[7,8],and modified electrodes[9-18],for electroanalytical measurements has increased in recent years because of their applicability to the determination of active compounds that undergo oxidation reactions,which is a matter of great importance in the field of clinical and pharmaceutical analysis.

    4-Aminoantipyrine(AAP,as shown in Fig.1)is an aromatic substancewithanalgesic,antipyreticandanti-inflammatory properties[18].However,AAP usually produces side effects such as the risk of agranulocytosis[19].Although AAP is scarcely ever administered as an analgesic because of side effects,as a raw material,it is mostly used to produce 4-aminoantipyrine derivatives,which have better biological activities[20,21].In addition,it is used as a reagent for biochemical reactions producing peroxides or phenols[22,23]and can also be used to detect phenols in the environment[24].Since it is widely used in the pharmaceutical industry,biochemical research and environmental monitoring,AAP has become an environmental pollutant.

    The toxic effect of AAP on experimental animals was reported[25].AAP can reduce blood flow[26]and 13,14-dihydro-15-keto prostaglandin F2 alpha concentration[27]after it is infused into the blood.AAP can form stable complexes with heme[28].

    Different methods have been reported for the determination of AAP including liquid and gas chromatography,spectrophotometricmethod[29-31],liquid chromatography/mass spectrometry[32],capillary electrophoresis[33],solid phase spectrophotommetry[34],different HPLC methods[35-37]and voltammetric method by using graphite pencil electrode[38].The main problems encountered in using some methods are time-consuming extraction and separation procedures.

    Carbon nanotubes have several applications in the field of semiconductor devices,high performance nano-composites,energy conversion devices,sensors,etc.[39,40]because of their nano-scale structure,large surface area,high mechanical strength and extraordinary electronic properties.There are so many results on the modification of the electrode surface using carbon nanotubes[41-44].

    In this paper,we demonstrated a successful way to disperse multiwalledcarbonnanotube(MWCNT)withincetyltrimethylammonium bromide(CTAB)surfactant.In this procedure,the surfactant is adsorbed on the surface of MWCNTs,and subsequent ultrasonication of the solution,which takes several minutes,will cleave apart their aggregations and debundle nanotubes by steric or electrostatic repulsions resulted from the charge of surfactant hydrophilic groups[45-47].The resulted electrochemical sensors exhibited high sensitivity,rapid response,good reproducibility,low detection limit,renewal of the surface and freedom from other potentially interfering species.

    2.Materials and methods

    2.1.Apparatus

    Electrochemical studies were carried out by CH Instruments(Electrochemical Analyzer,Model 630D,USA),a three electrode system consisting of a glassy carbon electrode(GCE)modified with MWCN/CTAB as a working electrode,saturated Ag/AgCl/KCl as a reference electrode and a platinum wire as the counter electrode. Electrode surface morphology study was carried out by SEM instrument model OXFORD instrument INCA PENTA FETX3 CARL ZEISS(Japan)and Nanosurf Easyscan 2 atomic force microscopy(AFM)(Switzerland).An Elico LI-120pH meter(Elico Ltd.Hyderabad,India)was used to determine the pH of the buffer solution.

    2.2.Reagents and chemicals

    4-Aminoantipyrine and MWCNT powders were purchased from Sigma-Aldrich(Mumbai,India).Cetyltrimethylammonium bromide was from Merck(Bengaluru,India).Double distilled water was used throughout the work.All other solvents and materials used throughout this study were of analytical grade.

    2.3.Preparation of modified electrode

    Fig.1.Chemical structure of 4-aminoantipyrine.

    Fig.2.Schematic diagram of the proposed modification steps.

    To get reproducible results,great care was taken in the electrode pre-treatment.The GCE was pre-treated in two ways:(i)mechanical polishing over a velvet micro-cloth with 0.3 and 0.05 μm alumina slurry and(ii)electrochemical treatment by applying a potential of 1.25 V for 10 s vs.Ag/AgCl.The electrochemical pre-treatment was done in the same supporting electrolyte solution in which the measurement was carried out.After that 10 μL of solution containing 0.3 g/L MWCNTs and 0.2 g/L CTAB,which was sonicated for 60 min,was placed on the GCE surface and then evaporated in an oven at 50°C.The ultrasonication of MWCNTs via CTAB will lead to the dispersion of nanotubes,and fix the surfactants on the surface of MWCNTs(possible arrangements of CTAB on MWCNTs are illustrated in Fig.2[48]).It can be described that the cationic surfactant will makethenanotubes positively charged,and thesecharged MWCNTs are driven toward cathode to form a thin layer at the electrode surface.

    Eventually,the coated electrodes(MWCNTs-CTAB/GCE)were immersed in the bicarbonate solution(0.01 M)for 30 min in order to extract the residual surfactants from the surface of electrode. The modified electrodes were washed with distilled water and dried at room temperature(MWCNTs-GCE).Fig.3 shows surface morphology of photography of SEM images of unmodified and modified GCE,and AFM image of modifier.

    The area of the electrode was calculated by the cyclic voltammetric method using 1.0 mM K3Fe(CN)6in 0.1 M KCl by recording the current voltage curve at different scan rates(Supplementary Fig.1).For a reversible process,the following Randles-Sevcik formula can be used[49].

    where Iprefers to the cathodic peak current,n is the number of electrons transferred,A0is the surface area of the electrode,D0is diffusion coefficient,v is the scan rate and C0is the concentration of K3Fe(CN)6.For 1.0 mM K3Fe(CN)6in 0.1 M KCl electrolyte,n=1,DR=7.6×10-6cm2/s,then from the slope of the plot of Ipversus v1/2,the electro active area was calculated.In our experiment,the slope was 0.695 and the area of electrode was calculated to be 0.117 cm2.The area of the unmodified glassy carbon electrode was calculated to be 0.0448 cm2.

    2.4.Plasma sample preparation

    Human plasma sample was prepared as described in the earlier report of our work[50].Human blood samples were collected in dry and evacuated tubes(which contained saline and sodium citrate solution)from a healthy volunteer.The samples were handled at room temperature and centrifuged for 10 min at 1500 rpm for the separation of plasma within 1 h of collection.The samples were then transferred to polypropylene tubes and stored at -20°C until analysis.The plasma samples,0.2 mL,were deprotonised with 2 mL of methanol.After vortexing for 15 min,themixture was then centrifuged for 15 min at 6000 rpm,and supernatants were collected.

    Fig.3.SEM images of bare glassy carbon electrode and MWCN-CTAB modified glassy carbon electrode.(A)SEM image of bare GCE,(B)SEM image of MWCNT-CTAB modified GCE,(C)AFM topography of MWCNTs,and(D)AFM topography of MWCNT-CTAB sample.

    2.5.Pharmacokinetic study

    Serum samples of a healthy volunteer were collected as described in Section 2.4 and stored at-20°C until analysis.Into each of 10 centrifugation tubes(3 mL polypropylene microcentrifuge tubes)containing 1.0×10-8M concentration of AAP,100 μL volume of the human serum was transferred,then mixed well with 1 mL of methanol to denature and precipitate proteins.The solutions were centrifuged for 3 min at 14,000 rpm to separate out the precipitated proteins.The clear supernatant layers of these solutions were filtered through 0.45 μm millipore filters to produce protein-free human serum samples.Each sample was analyzed at different time intervals by using differential pulse voltammetry.

    3.Results and discussion

    3.1.Cyclic voltammetric study of 4-aminoantipyrine

    The electrochemical response of 0.1 mM AAP was investigated by cycle voltammetry between 0.2 and 0.8 V in phosphate buffer solution of pH 3.0 at GCE,MWCNT/GCE and MWCNT-CTAB/GCE(Fig.4).At GCE,a poorly defined oxidation peak was observed and the peak current was smaller.AAP exhibited well defined anodic peak at 0.512 V at MWCNT/GCE.The oxidation peak current increased greatly at MWCNT-CTAB/GCE(the voltammogram as shown in Fig.4).It indicates that MWCNT-CTAB/GCE can make the electron transfer of AAP easily.No reduction peak was observed in the reverse scan,suggesting that the electrochemical reaction was totally irreversible process.

    3.2.Effect of amount of MWCNT-CTAB suspension

    We examined the effect of MWCNT-CTAB suspension amount on the electrochemical behavior of AAP.The results suggested that the amount of MWCNT-CTAB suspension influenced the current responses of AAP.Supplementary Fig.2 demonstrates the relationship between the oxidation peak current of AAP and the amount of MWCNT-CTAB suspension used for coating GC electrode.As can be seen,the peak current gradually increased with increasing the amount of MWCNT-CTAB suspension from 0 to 10 μL,owing to the increased effective electrode surface area for AAP oxidation.Further increasing the amount of MWCNT-CTAB suspension,the peak current almost remained stable.However,when it exceeded 14 μL,the peak current slightly decreased.When the coating film was too thick,the film no longer adhered tightly to the glass carbon,reducing conductivity and part of the MWCNTCTAB left the electrode surface.More excessively coated amount of MWCNT-CTAB suspension led to less adherent film.Accordingly,10 μL of MWCNT-CTAB suspension solution providing the maximum current response was used in further experiments,while the amount of suspension of MWCNT-CTAB had little effect on the oxidation potential of AAP.

    3.3.Effect of pH

    The pH of the supporting electrolyte had a noticeable effect on the electro-oxidation of analyte under investigation.The electrooxidation of AAP was carried out by cyclic voltammetry at the surface of MWCNT-CTAB modified GCE over the pH range 3.0-7.0. The peak potential shifted to more negative values with an increase in solution pH(Fig.5).The sharp and well-defined oxidation peak was observed in phosphate buffer of pH 3.Hence,we selected phosphate buffer of pH 3 for further studies.

    3.4.Effect of scan rate

    The cyclic voltammograms of 0.1 mM AAP on the MWCNTCTAB modified GCE at different scan rates are shown in Fig.6A. The observation was made to investigate the kinetics of the electrode reaction.With the increase of the scan rate,the oxidation peak current also increased gradually,indicating the direct electron transfer between AAP and modified electrode surface.In the range from 10 to 100 mV/s the oxidation peak current was proportional to the scan rate(Ipa(10 μA)=0.043-0.099 v1/2)and the correlation coefficient was 0.984,which indicated that the electron transfer reaction was a diffusion-controlled process[51].A linear relationship was observed between log Ipaand log v(log Ipa(μA)= 0.3088 log v(V/s)+1.275;r=0.976).The slope value of 0.3088 confirmsthattheelectro-oxidationofAAPwasdiffusion controlled.

    A linear relation between peak potential(Epa)and log ν was obtained,Epa=0.018 log v+0.445(Fig.6B).Such behavior revealed the irreversible nature of the electrochemical process for AAP. According to Laviron,for a diffusion-controlled irreversible process[52],Epais defined by the following equation:

    Fig.4.Typical cyclic voltammograms of 0.1 mM 4-aminoantipyrine at(a)bare GCE,(b)GCE+MWCNT and(c)GCE+MWCNT-CTAB.

    Fig.5.Influence of pH on the electro-oxidation of 0.1 mM of AAP.(a)-(e):3.0,4.2,5.0,6.2,7.0.

    where α is the transfer coefficient,k0is the heterogeneous electron transfer rate constant of the reaction,n is the number of transferred electrons,v is the potential scan rate and E0is the formal redox potential.The other symbols have their usual meaning.This relationship allows n to be readily calculated from the slope of the Epavs.logvplot.TakingT=298 K,R=8.314 J/Kmoland F=96480 C and the value α was calculated from Bard and Fualkner equation,which is equal to 1.325,the value of n was calculated to be 2.47≈2 for AAP.

    If E0is known,the value of k0can be estimated from the intercept of the above plot.E0in the above equation can be obtained from the ordinate intercept of the Epavs.v curve at v=0[53].The obtained k0was 9.845×103/s.

    3.5.Calibration curve

    In order to develop the voltammetric method for determination of the drug,we chose the differential pulse voltammetric method for the reason that the peaks were sharper and more distinct at a lower concentration of AAP than those obtained by CV,with a lower background current,resulting in enhanced resolution.In keeping with the obtained results,it was feasible to apply this technique to the quantitative analysis of AAP.The phosphate buffer solution of pH 3.0 was selected as the supporting electrolyte for the quantification as AAP gave maximum peak current.Differential pulse voltammograms obtained with increasing amounts of AAP showed that the peak current increased linearly with increased concentration.Linear calibration curves were obtained for AAP concentration in the range of 5.0×10-9-4.0×10-8M(Fig.7).Linear equation was Ipa=4.47(10-8M)-0.606(r=0.988).Interrelated statistical data of the calibration curves were procured from the three different calibration curves.Limits of detection(LOD)and quantification(LOQ)were calculated based on the peak current using the following equations: where s is the standard deviation of the peak currents of the blank(three replicates),and m is the slope of the calibration curve.The LOD and LOQ values were 1.63×10-10M,and 5.42×10-10M,respectively.The detection limits reported at different analytical methods for AAP related dipyrone derivative drugs are tabulated in Table 1.The proposed method was better than other reported electrochemical methods[31,38,54-56].

    3.6.Robustness and effect of excipients

    The robustness of the method was checked by evaluating the influence of small variations of some of the most important variables,including pH,accumulation time and potential range.The results indicated that none of these variables significantly affected the recovery of AAP.This provided an indication of the dependability of the proposed process for the assay of AAP,and the proposed method could be measured robustly.

    For the possible analytical application of the proposed method,the effect of some common excipients used in pharmaceutical preparations was examined.The tolerance limit was defined as the maximum concentration of the interfering substance that caused an error less than 5%for determination of AAP.The experimental results showed that hundred-fold excess of citric acid,dextrose,glucose,gum acacia,lactose,tartaric acid and sucrose did not interfere with the voltammetric signal of AAP.This showed that the electrode was much selective towards AAP.

    3.7.Reproducibility of the modified electrode

    Fig.6.(A)Cyclic voltammograms of 0.1 mM AAP at different scan rates(1-10:10,20,30,40,50,60,70,80,90,100 mV/s)in 0.2 M phosphate buffer(pH 3.0).(B)Relationship between peak potential and logarithm of scan rate.

    Fig.7.Differential pulse voltammograms of AAP at different concentrations at MWCNT-CTAB/GCE:(1)-(14)0.5×10-8-4.0×10-8M.Inset:plot of the concentration vs.peak current of AAP at MWCNT-CTAB/GCE.

    The renewal and reproducibility of the electrode were investigated.It was found that after determination the surface of the MWCNT-CTAB/GCE could be regenerated by successively cycling between 0 and 1.2 V in 3.0 pH with 0.2 M phosphate buffer afterwashing the electrode with water and acetone.As an example,0.1 mM AAP solution was measured successively for 5 times with the same electrode regenerated through such procedure after every determination,the relative standard deviation(RSD)of the peak current was 1.15%.As to the reproducibility between some days,it was similar to that of within a day,if the temperature was kept almost unchanged.Peak current obtained for 0.1 mM AAP solution on different days is shown in Supplementary Fig.3.Owing to the adsorption of AAP or its reductive products on to the electrode surface,the current response of the modified electrode would decrease after successive use.In this case,the electrode should be prepared again.

    3.8.Determination of AAP in biological samples

    The applicability of the proposed method for the determination of AAP in biological fluid of human urine and plasma samples was attempted.Drug-free human urine and plasma samples,obtained from healthy volunteers,were filtrated through a filter paper and stored frozen until the assay.The developed differential pulse voltammetric method for the AAP determination was applied to urine and plasma samples.The recoveries from urine and plasma were measured by spiking drug-free urine and plasma with known amounts of AAP.The urine and plasma samples were diluted with the phosphate buffer solution before analysis without further pretreatment.A quantitative analysis could be carried out by adding the standard solution of AAP into the detection system of urine and plasma samples.The calibration graph was used for the determination of spiked AAP in urine samples.The detection results of urine and plasma samples are listed in Table 2.The recovery determined was in the range of 98.02%-103.46%for human plasma and 99.16%-102.17%for urine sample.Thus,satisfactory recoveries of the analytes from the real samples and a good agreement between the concentration ranges studied and the real ranges encountered in the urine and plasma samples when treated with the drug made the developed method applicable in clinical analysis.

    淺談加強(qiáng)企業(yè)青年人才隊(duì)伍建設(shè)……………………………………………………………………………………李成麗(4.88)

    3.9.Application to pharmacokinetic studies

    Pharmacokinetics is the study of the time course of drug absorption,distribution,metabolism,and excretion.Clinical pharmacokinetics is the application of pharmacokinetic principles to the safe and effective therapeutic management of drugs in an individual patient.Primary goals of clinical pharmacokinetics include enhancing efficacy and decreasing toxicity of a patient's drug therapy.The development of strong correlations between drug concentrations and their pharmacologic responses has enabled clinicians to apply pharmacokinetic principles to actual patient situations.A drug's effect is often related to its concentration at the site of action,so it would be useful to monitor this concentration.Receptor sites of drugs are generally inaccessible to our observations or are widely distributed in the body,and therefore direct measurement of drug concentrations at these sites is not practicable.However,drug concentration in the blood or plasma,urine,saliva and other easily sampled fluids can be measured.

    The assay results are shown in Supplementary Fig.4,which illustrates the profile of the plasma concentration vs.time for AAP. The results suggested that the disposition of AAP was conformable to a one compartment open model.Table 3 shows the peak response of drug concentration at different time intervals and some the pharmacokinetic parameters for AAP in the plasma sample.

    Table 1Comparison of detection limits for AAP related dipyrone derivative drugs by different methods.

    Table 2Application of DPV to the determination of AAP in spiked human urine and blood plasma samples.

    Table 3Response of peak current of 1×10-8M AAP in urine sample at different time intervals.

    4.Conclusion

    The voltammetric behavior and oxidation mechanism of AAP were investigated at an MWCN-CTAB/GCE by CV in phosphate buffer solution of pH 3.0.Based on this study,influences of several physicochemical parameters such as potential scan rate,pH and concentration were investigated.The oxidation of AAP was found to be an irreversible with diffusion character.MWCNT-CTAB/GCE showed electrocatalytic action for the oxidation of AAP,characterizing by the enhancement of the peak current,which was probably due to the larger effective surface area of MWCNT-CTAB. This method was successfully used to determine AAP in the human urine and plasma samples.The proposed method offered the advantages of accuracy and time saving as well as simplicity of reagents and apparatus.In addition,the results obtained in the analysis of AAP in spiked urine and plasma samples demonstrated the applicability of the method for real sample analysis.

    Acknowledgments

    One of the author(J.I.Gowda)thanks UGC,New Delhi,India,for the award of Research Fellowship in Science for Meritorious Students(RFSMS).

    Appendix A.Supplementary Information

    Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jpha.2015.01.001.

    References

    [1]B.Nigovic,B.Simunic,Determination of 5-aminosalicylic acid in pharmaceutical formulation by differential pulse voltammetry,J.Pharm.Biomed.Anal.31(2003)169-174.

    [3]A.K.Jain,V.K.Gupta,S.Radi,et al.,A comparative study of Pb2+sensors based on derivatized tetrapyrazole and calix[4]arene receptors,Electrochim.Acta 51(12)(2006)2547-2553.

    [4]A.K.Jain,V.K.Gupta,L.P.Singh,et al.,Macrocycle based membrane sensors for the determination of cobalt(II)ions,Analyst 122(1997)583-586.

    [5]J.Wang,Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine,VCH,New York,1988.

    [6]V.K.Gupta,B.Sethi,R.A.Sharma,et al.,Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]-arene as a cationic receptor,J.Mol.Liq.177(2013)114-118.

    [7]R.N.Goyal,V.K.Gupta,S.Chatterjee,Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode,Electrochim.Acta 53(2008)5354-5360.

    [8]V.K.Gupta,A.K.Jain,G.Maheshwari,et al.,Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix,Sens.Actuators B 117(2006)99-106.

    [9]Y.Tang,C.Sun,X.Yang,et al.,Graphene modified glassy carbon electrode for determination of trace aluminium(III)in biological samples,Int.J.Electrochem.Sci.8(2013)4194-4205.

    [10]B.P.Bator,L.Cabaj,M.Ra?,et al.,Potentiometric sensor platform based on a carbon black modified electrodes,Int.J.Electrochem.Sci.9(2014)2816-2823.

    [11]R.N.Goyal,V.K.Gupta,N.Bachheti,F(xiàn)ullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping,Anal.Chim.Acta 597(2007)82-89.

    [12]B.H.Chiou,Y.T.Tsai,C.M.Wang,Phenothiazine-modified electrodes:a useful platform for protein adsorption study,Langmuir 30(2014)1550-1556.

    [13]Q.M.Feng,Q.Zhang,C.G.Shi,et al.,Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices,Talanta 115(2013)235-240.

    [14]S.H.Yu,G.C.Zhao,Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin,Int.J.Electrochem.2012(2012)431253-431259.

    [15]Y.Miao,J.Chen,X.Wu,Electrochemical behaviors of matrine at l-cysteinemodified electrodes,Surf.Rev.Lett.115(2008)537-543.

    [16]A.Balamurugan,S.M.Chen,Silver nanograins incorporated pedot modified electrode for electrocatalytic sensing of hydrogen peroxid,Electroanalysis 21(2009)1419-1423.

    [17]R.N.Goyal,V.K.Gupta,N.Bachheti,et al.,Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60coated gold electrode,Electroanalysis 20(2008)757-764.

    [18]Y.M.Chen,Y.P.Chen,Measurements for the solid solubilities of antipyrine,4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide,F(xiàn)luid Phase Equilib.282(2009)82-87.

    [19]A.Lang,C.Hatscher,C.Wiegert,et al.,Protease-catalysed coupling of Nprotected amino acids and peptides with 4-aminoantipyrine,Amino Acids 36(2009)333-340.

    [20]S.Cunha,S.M.Oliveira,M.T.Rodrigues,et al.,Structural studies of 4-aminoantipyrine derivatives,J.Mol.Struct.752(2005)32-39.

    [21]S.Prasad,R.K.Agarwal,Cobalt(II)complexes of various thiosemicarbazones of 4-aminoantipyrine:syntheses,spectral,thermal and antimicrobial studies,Transit.Met.Chem.32(2007)143-149.

    [22]J.F.Van Staden,N.W.Beyene,R.I.Stefan,et al.,Sequential injection spectrophotometric determination of ritodrine hydrochloride using 4-aminoantipyrine,Talanta 68(2005)401-405.

    [23]J.Kasthuri,J.Santhanalakshmi,N.Rajendiran,Platinum nanoparticle catalysed coupling of phenol derivatives with 4-aminoantipyrine in aqueous medium,Transit.Met.Chem.33(2008)899-905.

    [24]C.Z.Katsaounos,E.K.Paleologos,D.L.Giokas,et al.,The 4-aminoantipyrine method revisited:determination of trace phenols by micellar assisted preconcentration,Int.J.Environ.Anal.Chem.83(2003)507-514.

    [25]A.M.Vinagre,E.F.Collares,Effect of 4-aminoantipyrine on gastric compliance and liquid emptying in rats,Braz.J.Med.Biol.Res.40(2007)903-909.

    [26]S.G.Sunderji,A.El Badry,E.R.Poore,et al.,The effect of myometrial contractures on uterine blood flow in the pregnant sheep at 114 to 140 days' gestation measured by the 4-aminoantipyrine equilibrium diffusion technique,Am.J.Obstet.Gynecol.149(1984)408-412.

    [27]A.El Badry,J.P.Figueroa,E.R.Poore,et al.,Effect of fetal intravascular 4-aminoantipyrine infusions on myometrial activity(contractures)at 125 to 143 days'gestation in the pregnant sheep,Am.J.Obstet.Gynecol.150(1984)474-479.

    [28]S.C.Pierre,R.Schmidt,C.Brenneis,et al.,Inhibition of cyclooxygenases by dipyrone,Br.J.Pharmacol.151(2007)494-503.

    [29]E.Emerson,Standard Methods for the Examination of Water and Waste Wáter,17th ed.,American Public Health Association,New York,1989,pp.5-51.

    [30]P.Majlat,Gas chromatography determination of atropine,theophylline,phenobarbital and aminophenazone in tablets,Pharmazie 39(1984)325-326.

    [31]L.Penney,C.Bergeron,B.Coates,et al.,Simultaneous determination of residues of dipyrone and its major metabolites in milk,bovine muscle,and porcine muscle by liquid chromatography/mass spectrometry,J.AOAC Int.88(2005)496-504.

    [32]D.Puig,I.silgoner,M.Grasserbauer,et al.,Part-per-trillion level determination of priority methyl-,nitro-,and chlorophenols in river water samples by automated on-line liquid/solid extraction followed by liquid chromatography/ mass spectrometry using atmospheric pressure chemical ionization and ion spray interfaces,Anal.Chem.69(1997)2756-2761.

    [33]E.Dabek-Zlotorzynska,Capillary electrophoresis in the determination of pollutants,Electrophoresis 18(1997)2453-2464.

    [34]N.Isoshi,N.Sachico,W.Kaori,et al.,Determination of phenol in tap water and river water samples by solid phase spectroscopy,Anal.Sci.16(2000)269-274.[35]G.Blo,F(xiàn).Dondi,A.Betti,et al.,Determination of phenols in water samples as 4-aminoantipyrine derivatives by high-performance liquid chromatography,J. Chromatogr.A 257(1983)69-79.

    [36]D.Damm,Simultaneous determination of the main metabolites of dipyrone by high-pressure liquid chromatography,Arzneimittelforschung 39(1989)1415-1417.

    [37]I.Carretero,J.M.Vadillo,J.J.Laserna,Determination of antipyrine metabolites in human plasma by solid-phase extraction and micellar liquid chromatography,Analyst 120(1995)1729-1732.

    [38]J.I.Gowda,S.T.Nandibewoor,Electrochemical behavior of 4-aminophenazone drug at graphite pencil electrode and its application in real samples,Ind.Eng. Chem.Res.51(2012)15936-15941.

    [39]H.Zhou,T.Wang,Y.Y.Duan,A simple method for amino-functionalization ofcarbon nanotubes and electrodeposition to modify neural microelectrodes,J. Electroanal.Chem.688(2013)69-75.

    [40]F.Fathirad,D.Afzali,A.Mostafavi,et al.,F(xiàn)abrication of anew carbon paste electrode modified with multi-walled carbon nanotube forstripping voltammetric determination of bismuth(III),Electrochim.Acta 103(2013)206-210.

    [41]B.Dogan-Topal,B.Bozal-Palab?y?k,B.Uslu,et al.,Multi-walled carbonnanotube modified glassy carbon electrode as a voltammetric nanosensor forthe sensitive determination of anti-viral drug valganciclovir in pharmaceuticals,Sens.Actuators B 177(2013)841-847.

    [42]S.Shahrokhian,M.Ghalkhani,M.Adeli,et al.,Multi-walled carbon nano-tubes with immobilised cobalt nanoparticle for modification of glassy carbonelectrode:application to sensitive voltammetric determination of thioridazine,Biosens.Bioelectron.24(2009)3235-3241.

    [43]E.Baldrich,R.Gómez,G.Gabriel,et al.,Magnetic entrapment for fast,simple and reversible electrode modification with carbon nanotubes:applicationto dopamine detection,Biosens.Bioelectron.26(2011)1876-1882.

    [44]R.N.Goyal,V.K.Gupta,S.Chatterjee,Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode,Talanta 76(2008)662-668.

    [45]L.Vaisman,H.D.Wagner,G.Marom,The role of surfactants in dispersion ofcarbon nanotubes,Adv.Colloid Interface Sci.37(2006)128-130.

    [46]S.Swarup,C.K.Schoff,A survey of surfactants in coatings technology,Prog. Org.Coat.23(1993)1-22.

    [47]M.Y.Pletnev,Chemistry of surfactants,in:V.B.Fainerman,D.M?bius,R.Miller(Eds.),Studies in Interface Science,vol.13,Elsevier,Amsterdam,2001,p.1.

    [48]E.Pajootan,M.Arami,Structural and electrochemical characterization of carbon electrodemodified by multi-walled carbon nanotubes and surfactant,Electrochim.Acta 112(2013)505-514.

    [49]D.I.Anguiano,M.G.Garcia,C.Ruíz,et al.,Electrochemical detection of iron in a lixiviant solution of polluted soil using a modified glassy carbon electrode,Int. J.Electrochem.2012(2011)1155-1160.

    [50]J.C.Abbar,S.T.Nandibewoor,Development of electrochemical method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids,Ind.Eng.Chem.Res.51(2012)111-118.

    [51]R.N.Hegde,R.R.Hosamani,S.T.Nandibewoor,Electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing agent,Anal.Lett.42(2009)2665-2682.

    [52]E.Laviron,General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,J.Electroanal.Chem.101(1979)19-28.

    [53]Y.Wu,X.Ji,S.Hu,Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin,Bioelectrochemistry 64(2004)91-97.

    [54]R.L.C.Thiago Paixao,R.C.Matos,M.Bertotti,Diffusion layer titration of dipyrone in pharmaceuticals at a dual-band electrochemical cell,Talanta 61(2003)725-732.

    [55]G.Gopalakrishnan,P.Manisankar,B.Muralidharan,et al.,Stripping voltammetric determination of analgesics in their pharmaceuticals using nano-riboflavin-modified glassy carbon electrode,Int.J.Electrochem.2011(2011)1-11.

    [56]L.R.Cumba,U.O.Bicalho,D.R.Silvestrini,et al.,Preparation and voltammetric study of a composite titanium phosphate/nickel hexacyanoferrate and its application in dipyrone determination,Int.J.Chem.4(2012)66-78.

    11 September 2014

    in revised form

    ☆Peer review under responsibility of Xi'an Jiaotong University.

    .Tel.:+91 836 2770524;fax:+91 836 2747884.

    E-mail address:stnandibewoor@yahoo.com(S.T.Nandibewoor).

    http://dx.doi.org/10.1016/j.jpha.2015.01.001

    2095-1779/?2015 Xi'an Jiaotong University.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    李成人才隊(duì)伍淺談
    懷念李成章教授
    淺談Schwarz引理及其推廣和應(yīng)用
    淺談ICP-MS的使用與保養(yǎng)
    關(guān)于培養(yǎng)新時(shí)期青年人才隊(duì)伍的思考
    活力(2021年6期)2021-08-05 07:23:58
    為詩淺談
    中華詩詞(2020年11期)2020-07-22 06:31:22
    激發(fā)人才隊(duì)伍活力 更好助力追趕超越
    淺談圓錐曲線中的創(chuàng)新題
    莊玉庭先負(fù)李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    人才隊(duì)伍:發(fā)展機(jī)制待完善
    浙江人大(2014年6期)2014-03-20 16:20:37
    最近最新免费中文字幕在线| 久久久国产一区二区| xxxhd国产人妻xxx| 亚洲中文字幕日韩| 少妇被粗大的猛进出69影院| 在线看a的网站| 在线观看免费午夜福利视频| 亚洲avbb在线观看| 免费观看精品视频网站| 国产日韩一区二区三区精品不卡| 免费久久久久久久精品成人欧美视频| 久久精品国产99精品国产亚洲性色 | 亚洲少妇的诱惑av| 久久狼人影院| 亚洲片人在线观看| a级片在线免费高清观看视频| 亚洲精品美女久久久久99蜜臀| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲综合一区二区三区_| 午夜亚洲福利在线播放| 国产精品偷伦视频观看了| 99精品久久久久人妻精品| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 国产高清视频在线播放一区| 少妇被粗大的猛进出69影院| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 熟女少妇亚洲综合色aaa.| 热re99久久国产66热| 亚洲av五月六月丁香网| 最好的美女福利视频网| 成年人免费黄色播放视频| 亚洲精华国产精华精| aaaaa片日本免费| 久久青草综合色| 热99国产精品久久久久久7| 身体一侧抽搐| 悠悠久久av| 久久久久国产精品人妻aⅴ院| 久久久久久久久中文| 国产精品久久久久成人av| 国产精品98久久久久久宅男小说| 亚洲色图av天堂| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 日本撒尿小便嘘嘘汇集6| 色播在线永久视频| 99re在线观看精品视频| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 亚洲专区字幕在线| 亚洲片人在线观看| 久久精品成人免费网站| 人妻丰满熟妇av一区二区三区| 热re99久久精品国产66热6| 亚洲第一青青草原| 99精品久久久久人妻精品| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 国产一区二区激情短视频| 精品熟女少妇八av免费久了| 一区二区三区国产精品乱码| 久久久久亚洲av毛片大全| 国产免费现黄频在线看| 国产精品美女特级片免费视频播放器 | 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 国产欧美日韩综合在线一区二区| 美女福利国产在线| 国产真人三级小视频在线观看| 99精品欧美一区二区三区四区| 高清黄色对白视频在线免费看| bbb黄色大片| www.精华液| 国产精品98久久久久久宅男小说| 亚洲激情在线av| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 国产精品乱码一区二三区的特点 | 欧美在线一区亚洲| 国产片内射在线| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 一级作爱视频免费观看| 高清欧美精品videossex| 亚洲第一av免费看| 亚洲人成电影观看| 9191精品国产免费久久| 一区福利在线观看| 99精品久久久久人妻精品| 国产成人精品久久二区二区免费| 精品久久久久久,| 亚洲av熟女| 琪琪午夜伦伦电影理论片6080| 欧美色视频一区免费| 久久 成人 亚洲| av天堂在线播放| 久久精品国产亚洲av高清一级| 亚洲avbb在线观看| 精品国产超薄肉色丝袜足j| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码| 国产精品久久久久成人av| 午夜a级毛片| 视频在线观看一区二区三区| 怎么达到女性高潮| 亚洲成人精品中文字幕电影 | 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 91老司机精品| 亚洲国产毛片av蜜桃av| 成年人黄色毛片网站| 久久 成人 亚洲| 久久人人精品亚洲av| 日日干狠狠操夜夜爽| 亚洲精品国产色婷婷电影| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区精品| 人人澡人人妻人| 国产1区2区3区精品| 一个人免费在线观看的高清视频| 久久久久久大精品| 老鸭窝网址在线观看| 国产麻豆69| 国产精品一区二区在线不卡| 国产亚洲精品一区二区www| 丰满饥渴人妻一区二区三| 国产不卡一卡二| 俄罗斯特黄特色一大片| 欧美精品一区二区免费开放| 夫妻午夜视频| 日韩免费高清中文字幕av| ponron亚洲| 国产一卡二卡三卡精品| 精品国产乱码久久久久久男人| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 一区福利在线观看| 久久这里只有精品19| 国产精品久久久久成人av| 丰满的人妻完整版| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 韩国精品一区二区三区| 99riav亚洲国产免费| 国产99久久九九免费精品| 久久久国产欧美日韩av| 久久九九热精品免费| 一区二区三区国产精品乱码| 日韩 欧美 亚洲 中文字幕| 91国产中文字幕| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 99久久国产精品久久久| 岛国在线观看网站| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 亚洲精品国产一区二区精华液| 亚洲精品在线美女| 日韩av在线大香蕉| 丝袜美足系列| 99热只有精品国产| 欧美一级毛片孕妇| 男人舔女人的私密视频| 高清毛片免费观看视频网站 | 免费高清视频大片| 亚洲avbb在线观看| 日本五十路高清| 在线观看午夜福利视频| 不卡av一区二区三区| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 97人妻天天添夜夜摸| 日韩欧美三级三区| 中文字幕色久视频| 韩国精品一区二区三区| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美激情综合另类| 欧美成人午夜精品| 在线看a的网站| 精品国内亚洲2022精品成人| 国产精品久久久av美女十八| 欧美精品一区二区免费开放| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合一区二区三区| 免费高清在线观看日韩| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 激情在线观看视频在线高清| 国产免费现黄频在线看| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 国产成人精品无人区| 久久青草综合色| 男人舔女人下体高潮全视频| 免费在线观看黄色视频的| 欧美日韩瑟瑟在线播放| 日韩视频一区二区在线观看| 欧美大码av| 久久人人精品亚洲av| 亚洲五月婷婷丁香| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 国产在线观看jvid| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影| 久久人妻熟女aⅴ| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 久久香蕉激情| 日本黄色视频三级网站网址| 久久99一区二区三区| 国产激情欧美一区二区| 国产精品久久久人人做人人爽| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区| 国产精品电影一区二区三区| 他把我摸到了高潮在线观看| 久久精品国产99精品国产亚洲性色 | 国产免费男女视频| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 国产在线观看jvid| 国产亚洲欧美98| 国产成人啪精品午夜网站| 999久久久国产精品视频| 久久久久久久久久久久大奶| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 9色porny在线观看| 国产蜜桃级精品一区二区三区| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 中亚洲国语对白在线视频| 窝窝影院91人妻| 午夜福利一区二区在线看| 性少妇av在线| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| av电影中文网址| 欧美日本中文国产一区发布| 天堂影院成人在线观看| 久久亚洲精品不卡| av网站在线播放免费| 自线自在国产av| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 精品国产乱子伦一区二区三区| 国产真人三级小视频在线观看| 热99re8久久精品国产| 水蜜桃什么品种好| 深夜精品福利| 亚洲avbb在线观看| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 又紧又爽又黄一区二区| 久久亚洲精品不卡| 亚洲七黄色美女视频| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 国产精品国产av在线观看| a在线观看视频网站| 欧美最黄视频在线播放免费 | 国产成人精品在线电影| 欧美日韩一级在线毛片| 国产亚洲精品一区二区www| av在线播放免费不卡| www.www免费av| 看片在线看免费视频| 无遮挡黄片免费观看| a级毛片在线看网站| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 日本a在线网址| 国产高清国产精品国产三级| 男人舔女人的私密视频| 男女之事视频高清在线观看| 午夜久久久在线观看| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 国产精品一区二区免费欧美| 99久久人妻综合| 青草久久国产| 又黄又粗又硬又大视频| 99在线人妻在线中文字幕| 国内久久婷婷六月综合欲色啪| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 亚洲欧美一区二区三区久久| 亚洲熟妇中文字幕五十中出 | 亚洲av美国av| 成人三级做爰电影| 伊人久久大香线蕉亚洲五| 一个人观看的视频www高清免费观看 | 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人| 久久狼人影院| 精品久久久久久电影网| 在线观看www视频免费| 久久中文字幕人妻熟女| 多毛熟女@视频| 12—13女人毛片做爰片一| 久久99一区二区三区| 丝袜美足系列| 一二三四社区在线视频社区8| 亚洲精品国产一区二区精华液| 日本免费一区二区三区高清不卡 | 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 大型av网站在线播放| 精品国产国语对白av| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 91老司机精品| 国产一区在线观看成人免费| 在线观看免费日韩欧美大片| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 国产亚洲欧美精品永久| 国产又爽黄色视频| 高清av免费在线| 国产一区在线观看成人免费| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 三级毛片av免费| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久久亚洲精品蜜臀av| 波多野结衣一区麻豆| 999久久久精品免费观看国产| 91国产中文字幕| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 69精品国产乱码久久久| 91字幕亚洲| 热99re8久久精品国产| www.自偷自拍.com| 国产区一区二久久| 精品一区二区三卡| 中文字幕色久视频| 久久亚洲精品不卡| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 亚洲在线自拍视频| 免费高清视频大片| 色综合婷婷激情| 国产一区二区三区在线臀色熟女 | 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区mp4| 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 亚洲五月色婷婷综合| 麻豆av在线久日| 国产精品亚洲一级av第二区| 如日韩欧美国产精品一区二区三区| 亚洲精品国产区一区二| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 久久久国产成人精品二区 | 亚洲在线自拍视频| 亚洲中文av在线| 色播在线永久视频| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 色精品久久人妻99蜜桃| 国产99白浆流出| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 大码成人一级视频| 在线永久观看黄色视频| 精品一区二区三区av网在线观看| 美女高潮到喷水免费观看| 中文字幕高清在线视频| 日本免费a在线| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 久久九九热精品免费| 亚洲成人久久性| 国产极品粉嫩免费观看在线| 中国美女看黄片| 亚洲中文字幕日韩| 国产精品美女特级片免费视频播放器 | 欧美在线黄色| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 级片在线观看| 亚洲精品美女久久av网站| 丁香六月欧美| 黄色视频,在线免费观看| 欧美性长视频在线观看| 一边摸一边抽搐一进一小说| 悠悠久久av| 极品人妻少妇av视频| 国产成人系列免费观看| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 成人精品一区二区免费| 成在线人永久免费视频| 9热在线视频观看99| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频| 亚洲专区中文字幕在线| 国产黄色免费在线视频| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 久久草成人影院| 黑人巨大精品欧美一区二区蜜桃| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 免费观看人在逋| 9191精品国产免费久久| 国产黄a三级三级三级人| 国产日韩一区二区三区精品不卡| 国产主播在线观看一区二区| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 操出白浆在线播放| 亚洲一区二区三区色噜噜 | 亚洲情色 制服丝袜| 国产主播在线观看一区二区| 亚洲欧美精品综合久久99| 国产男靠女视频免费网站| 操出白浆在线播放| 久久婷婷成人综合色麻豆| 欧美乱妇无乱码| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲激情在线av| 日日爽夜夜爽网站| 男女之事视频高清在线观看| 亚洲熟女毛片儿| 一进一出抽搐动态| 国产又色又爽无遮挡免费看| 50天的宝宝边吃奶边哭怎么回事| 淫秽高清视频在线观看| 9热在线视频观看99| 香蕉国产在线看| 日本五十路高清| 美女扒开内裤让男人捅视频| 天堂动漫精品| 无限看片的www在线观看| 1024视频免费在线观看| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 欧美日韩黄片免| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| 美女福利国产在线| 亚洲精品美女久久久久99蜜臀| 久久久久精品国产欧美久久久| 波多野结衣av一区二区av| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 99久久国产精品久久久| 丁香欧美五月| 狂野欧美激情性xxxx| 久久久国产欧美日韩av| 桃色一区二区三区在线观看| 乱人伦中国视频| 黄色片一级片一级黄色片| 日韩免费av在线播放| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| av福利片在线| 大型黄色视频在线免费观看| 99热国产这里只有精品6| 精品电影一区二区在线| 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 另类亚洲欧美激情| 99久久99久久久精品蜜桃| 亚洲五月天丁香| 亚洲 国产 在线| 亚洲男人的天堂狠狠| 久久精品影院6| 一本大道久久a久久精品| 超色免费av| 最好的美女福利视频网| 最近最新中文字幕大全电影3 | 久久精品91蜜桃| 女人精品久久久久毛片| 黄片小视频在线播放| 欧美乱码精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲伊人色综图| 国产片内射在线| 国产精品日韩av在线免费观看 | 无遮挡黄片免费观看| 久久国产精品人妻蜜桃| 少妇裸体淫交视频免费看高清 | 亚洲九九香蕉| 久久香蕉精品热| 桃色一区二区三区在线观看| 在线免费观看的www视频| 午夜福利影视在线免费观看| 国产色视频综合| 美女大奶头视频| 人人妻人人添人人爽欧美一区卜| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人免费电影在线观看| 亚洲免费av在线视频| 亚洲第一青青草原| 亚洲自偷自拍图片 自拍| 国产色视频综合| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看| а√天堂www在线а√下载| 久久香蕉精品热| bbb黄色大片| av视频免费观看在线观看| 色播在线永久视频| 十八禁人妻一区二区| 色在线成人网| xxxhd国产人妻xxx| 一个人观看的视频www高清免费观看 | 久久香蕉国产精品| 精品高清国产在线一区| 俄罗斯特黄特色一大片| 9热在线视频观看99| 999久久久精品免费观看国产| 成年人黄色毛片网站| 身体一侧抽搐| 免费在线观看亚洲国产| 日韩成人在线观看一区二区三区| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| e午夜精品久久久久久久| 亚洲欧美日韩无卡精品| 老司机午夜福利在线观看视频| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 午夜福利,免费看| 亚洲精品久久午夜乱码| 91成人精品电影| 欧美日本中文国产一区发布| 99精品在免费线老司机午夜| 丝袜美腿诱惑在线| 少妇 在线观看| 人成视频在线观看免费观看| av免费在线观看网站| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 大码成人一级视频| 免费在线观看完整版高清| 午夜91福利影院| 母亲3免费完整高清在线观看| 国产亚洲av高清不卡| 三级毛片av免费| 国产av在哪里看| 亚洲avbb在线观看| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 亚洲精品一卡2卡三卡4卡5卡| 在线观看日韩欧美| 亚洲精品一区av在线观看| 国产亚洲欧美精品永久| 国产精品一区二区三区四区久久 | 亚洲第一青青草原| 国产亚洲精品综合一区在线观看 | 狂野欧美激情性xxxx| 国产av一区二区精品久久| 日日摸夜夜添夜夜添小说| 亚洲欧美一区二区三区黑人| 国产无遮挡羞羞视频在线观看| 国产97色在线日韩免费| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 亚洲国产毛片av蜜桃av| 欧美大码av| 香蕉丝袜av| 亚洲人成网站在线播放欧美日韩| 国产成人一区二区三区免费视频网站| 久久国产精品男人的天堂亚洲| 一级片'在线观看视频| 99国产精品免费福利视频|