• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An AFLP marker linked to the leaf rust resistance gene LrBi16 and test of allelism with Lr14a on chromosome arm 7BL

    2015-11-12 03:44:03PeipeiZhangHuixinZhouCaixiaLanZaifengLiDaqunLiu
    The Crop Journal 2015年2期

    Peipei Zhang,Huixin Zhou,Caixia Lan,Zaifeng Li*,Daqun Liu*

    aDepartment of Plant Pathology,College of Plant Protection,Hebei Agricultural University,Baoding 071001,Hebei,China

    bCollege of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,Hubei,China

    cInternational Maize and Wheat Improvement Center(CIMMYT),Apdo.Postal 6-641,06600 Mexico D.F.,Mexico

    An AFLP marker linked to the leaf rust resistance gene LrBi16 and test of allelism with Lr14a on chromosome arm 7BL

    Peipei Zhanga,1,Huixin Zhoua,1,Caixia Lanb,c,Zaifeng Lia,*,Daqun Liua,*

    aDepartment of Plant Pathology,College of Plant Protection,Hebei Agricultural University,Baoding 071001,Hebei,China

    bCollege of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,Hubei,China

    cInternational Maize and Wheat Improvement Center(CIMMYT),Apdo.Postal 6-641,06600 Mexico D.F.,Mexico

    A R T I C L E I N F O

    Article history:

    6 November 2014

    Accepted 19 November 2014

    Available online 10 January 2015

    Amplified fragment length polymorphism

    Genetic linkage

    Molecular mapping

    Puccinia triticina

    Leaf rust(LR),caused by Puccinia triticina,is one of the most widespread diseases of common wheat(Triticum aestivum L.)worldwide.The LR resistance gene LrBi16 has been mapped on chromosome arm 7BL in Chinese wheat cultivar Bimai 16 and was closely linked to SSR loci Xcfa2257 and Xgwm344 with genetic distances of 2.8 cM and 2.9 cM,respectively.In the present study,a total of 304 AFLP primer pairs were used to screen Bimai 16 and Thatcher and resistant and susceptible DNA bulks.The polymorphic AFLP marker P-ATT/M-CGC173bpwas used to genotype F2and F3populations to identify markers more closely linked to LrBi16.Marker P-ATT/M-CGC173bpwas tightly linked to LrBi16 with a genetic distance of 0.5 cM.As LrBi16 was mapped near the Lr14a locus,809 F2plants from the Bimai 16/RL6013(Lr14a)cross were inoculated with the Pt pathotype FHNQ to test the allelism of Lr14a and LrBi16.All of the F2plants were resistant to FHNQ(IT between;and 2),suggesting that Lr14a and LrBi16 are allelic.

    ?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Leaf rust(LR),caused by Puccinia triticina(Pt),is one of the most important and widespread diseases in wheat(Triticum aestivum L.).It occurs in a wide range of climates wherever wheat is grown and causes yield losses up to 65%under favorable conditions[1].In China LR has historically been important only in the southwest and northeast regions[2],but with increased planting densities and changing management practices it has become increasingly important in most major wheat-producing areas.Destructive epidemics of LR occurred in 1969,1973,1975,and 1979 in China[2],and yield losses occurred in regions of Gansu,Sichuan,Shaanxi,Henan and Anhui provinces in 2012[3].Resistant cultivars are the most efficient,economical,and environmentally safe way to manage LR.

    Resistance to LR can be classified into two types,qualitative resistance conferred by single resistance genes(also termed as major,seedling,or race specific resistance)and quantitative resistance,mediated by multiple genes or quantitative trait loci(QTL)(alsotermed asadult plantresistance,race nonspecific,or slow rusting resistance).To date,more than 100 LR resistance genes have been described in wheat,with 72 formally designated genes[4].Most of these genes are qualitative and interact with the pathogen in a gene-for-gene fashion[5].This type of gene is rapidly overcome by the pathogen.Only Lr9,Lr19,Lr24,and Lr38 are currently effective against the prevalent Chinese Pt pathotypes[6,7].Thus,it is important to identify and use new resistance resources to control the dynamic and rapidly evolving pathogen population[8].

    Molecular markers,including RFLP,RAPD,SSR,AFLP,and EST,have been widely used to map LR resistance genes in different genetic populations.To date,46 LR genes have been mapped on various chromosomes using molecular markers[9].However,most markers are too far from resistance genes for reliable use in breeding programs.It is thus important to identify more closely linked or gene-based molecular markers for marker-assisted selection(MAS).The AFLP technique has been widely used in the construction of high-density genetic maps,enabling several LR genes to be finely mapped in wheat using this type of marker combined with bulked segregant analysis(BSA)[10-15].

    Bimai 16,released in 2004 by the Bijie Agricultural Science Research Institute,Guizhou province,has high levels of resistance to leaf rust,stripe rust(caused by Puccinia striiformis f.sp.tritici)and powdery mildew(caused by Blumeria graminis f.sp.tritici)under field conditions[16,17].A dominant LR resistance gene,LrBi16,on chromosome arm 7BL is flanked by SSR markers Xcfa2257 and Xgwm344 at genetic distances of 2.8 cM and 2.9 cM,respectively[18].LrBi16 is very close to the Lr14 locus,with named resistance alleles Lr14a and Lr14b that were combined in a rare recombination event[19].The objectives of the present study were to identify molecular markers more closely linked to LrBi16 using AFLP markers and to determine the allelic relationship between LrBi16 and Lr14a.

    2.Materials and methods

    2.1.Plant materials and Pt pathotypes

    Atotalof359F2plantsand298F3lineswerederivedfromacross of the resistant parent Bimai 16(pedigree:8513-1624/Ji 1002)withthesusceptibleparentThatcher.TheChinesePtpathotype,F(xiàn)HTT,was used to inoculate the genetic materials.Phenotypic and genotypic data for the F2and F3populations were derived from our previous study[18].A total of 809 F2plants from Bimai 16/RL6013(Lr14a)and the Chinese P.triticina pathotype FHNQ were employed to test the allelism of LrBi16 with Lr14a.The Thatcher near-isogenic line,RL6013 with Lr14a,was kindly provided by the USDA-ARS Cereal Disease Laboratory,University of Minnesota,St.Paul,USA.The two pathotypes were designated based on the coding system of Long and Kolmer[20]with addition of a fourth letter for the reactions of a fourth set of differentials(http://www.ars.usda.gov/SP2UserFiles/ad_hoc/ 36400500Cerealrusts/pt_nomen.pdf).All the wheat germplasm and Pt pathotypes are maintained at the Biological Control Center for Plant Diseases and Plant Pests of Hebei,Hebei Agricultural University,Baoding,China.

    Table 1-AFLP adapters developed in this study.

    2.2.Allelism analysis between LrBi16 and Lr14a

    Pathotype FHNQ(avirulent to both LrBi16 and Lr14a)was used to inoculate the F2population from the Bimai 16/RL6013(Lr14a)cross for the allelism test between Lr14a and LrBi16. The F2plants were grown in a growth chamber.Inoculation was performed when the first leaves were fully expanded,by brushing urediniospores from fully infected susceptible plants of Zhengzhou 5389 onto the F2plants.Inoculated plants were placed in plastic-covered cages,incubated at 15°C and 100% relative humidity(RH)for 24 h in darkness,and then transferred to a growth chamber programmed for 12 h light/12 h darkness at 18 to 22°C and 70%RH.Infection types(ITs)were scored 10 to 14 days after inoculation according to the Stakman scale,modified by Roelfs et al.[21].

    2.3.AFLP analysis

    A total of 304 AFLP primers were used to screen the parents and resistant(Br)and susceptible DNA bulks(Bs).Markers with consistent polymorphism between the parents and the bulks were used to analyze the entire F2and F3populations. AFLP analysis was performed following Zhang et al.[14]. Genomic DNA was digested with Pst I and Mse I(Table 1),ligated with adapters,and then pre-amplified with primers containing one selective nucleotide(Table 2).The samples were diluted 20-fold with ddH2O and stored at 4°C.Selective amplification was achieved by primers with three selective nucleotides(Table 3).Amplification was performed in a T-gradient thermal cycler PCR(Bio-Metra,G?ttingen,Germany). PCR-amplified AFLP products(5 μL)were mixed with 1 μL of loading buffer(98%formamide,10 mmol L-1EDTA,0.25% bromophenol blue,0.25%xylene cyanol,pH 8.0),and loaded on 6%denaturing polyacrylamide gels.The gels were run at 80 W for approximately 3 h and visualized by silver staining[22].

    2.4.Linkage analysis

    Linkage analysis using the combined previous SSR and current AFLP results was performed using the software MapManager QTXb20[23]and recombination values converted to centiMorgans using the Kosambi mapping function[24].

    Table 2-Pre-amplification primers.

    Table 3-Primers used for selective amplification.

    2.5.Cloning of PCR fragments amplified from the AFLP markers

    The isolation of PCR fragments followed Xu et al.[25].Briefly,the PCR products from the AFLP marker were excised from dried gels.Spliced gels containing the amplification products were transferred to a PCR tube and eluted twice with 200 μL of 1×TE buffer(pH 8.0)for 30 min and once with 200 μL of ddH2O for 30 min.The gel was then soaked in 50 μL of ddH2O and kept in a PCR thermocycler at 95°C for 10 min to release the DNA from the gel.After the gel debris was spun down by centrifuging at 3000 r min-1for 10 min,the supernatant was used as template DNA for PCR amplification,using the same AFLP primers and PCR conditions.

    3.Results

    3.1.Seedling allelism test

    Both Bimai 16 and RL6013 were resistant to pathotype FHNQ with IT 2.A total of 809 F2plants derived from Bimai 16/RL6013(Lr14a)were inoculated with pathotype FHNQ.Both parents and all the F2plants were resistant to FHNQ with ITs ranging from fleck(;)to 2,indicating that Lr14a and LrBi16 were allelic or closely linked genes.

    3.2.AFLP marker of LrBi16

    Among 304 AFLP markers,only P-ATT/M-CGC173bpwas polymorphic between the parents as well as Br and Bs.This marker was then used to genotype the entire F2population.Marker P-ATT/M-CGC173bpwas closely linked to LrBi16 at a genetic distance of 0.5 cM(Figs.1,2)and was more closely linked to LrBi16 than was marker Xgwm344 reported in our previous study[18].The marker was also used to genotype the 298 F3lines,and was found to lie 0.7 cM from LrBi16.

    3.3.Cloning and sequencing of the AFLP specific DNA fragment

    The size of the re-amplified band was the same as that of the AFLP-specific DNA fragment after recovery and a specific band of 173 bp was sequenced(Fig.3).Although STS primers were designed,no polymorphism was found between the parents and the bulks(Fig.3).This AFLP could not be converted to an STS/SCAR marker,owing to the small fragment size.

    4.Discussion

    4.1.Comparison between LrBi16 and other wheat leaf rust resistance genes on chromosome arm 7BL

    Fig.1-Electrophoresis of PCR products amplified with AFLP marker P-ATT/M-CGC173bpon a polyacrylamide gel.M:PBR322/ MspI marker;P1:resistant parent Bimai 16;P2:susceptible parent Thatcher;Br:resistant bulk;Bs:susceptible bulk;R:resistant F2plants;and S:susceptible F2plants.

    Fig.2-Deletion bin map of chromosome 7B[30](left)and linkage maps of leaf rust resistance gene region and 8 loci based on 359 F2plants of Bimai 16/Thatcher(right).Locus names and corresponding locations are indicated on the right and map distances in centiMorgans are shown on the left(center panel)and compared with previously[31]published map(right panel).

    Fig.3-Specific band sequence of P-ATT/M-CGC173bp.Primer sequences are shown in shadow part.

    Leaf rust resistance genes located on chromosome arm 7BL includeLrBi16,Lr14a,Lr14b[19],Lr68[26],and LrFun[9].Lr68isan adult plant resistance gene closely linked to SSR marker Xgwm146[26],which is also linked to LrBi16[18],whereas LrBi16confersseedlingresistancewithITsfrom1to2[18].Lr14a,originating in T.turgidum,was mapped on 7BL[27],and like LrBi16,is linked to SSR marker Xgwm344-7B[18].However, RL6013(Thatcher+Lr14a)was susceptible to most pathotypes,including two that are avirulent to LrBi16[18],indicating that LrBi16 is different from Lr14a.A test of allelism involving 809 F2plants revealed no recombinants between Lr14a and LrBi16,indicating that the genes are allelic or tightly linked.In an earlier study Lr14b was very closely linked rather than allelic to Lr14a[19].Another seedling resistance gene,LrFun,was also mapped near LrBi16 on chromosome arm 7BL,but LrBi16 differed from LrFun in reactions to a panel of Pt cultures[9]. However,the relationship between LrBi16 and LrFun awaits confirmation by further allelic studies.Several LR resistance genes have been mapped in this region,suggesting that it is an important region for leaf rust resistance.

    4.2.Development of STS/SCAR markers from the AFLP marker

    Although AFLP technology can detect many genetic loci,it has limitations when applied to MAS,owing to the production of many nonspecific bands and corresponding difficulty in scoring. STS markers developed from AFLP products are more specific and more easily used in MAS.However,not all AFLP can be successfullyconverted toSTS markers,owing to the small size of DNA fragments amplified by AFLP and a lack of polymorphisms in restriction sites between genotypes[28].In addition,different AFLP fragments with the same size may co-migrate on a gel,and a target polymorphic band may contain contaminating fragments from different bands[11,29],again complicating the development of an STS marker from an AFLP product.In the present study,the specific fragment linked to LrBi16 was cloned and sequenced,and primers were designed according to the sequence,but no polymorphism was found between resistant and susceptible bulks.This result was attributed to either the small size of the AFLP fragment or a lack of polymorphism at the restriction site.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China(31361140367 and 31301309)and the Natural Science Foundation of Hebei Province(C2014204113).

    R E F E R E N C E S

    [1]E.E.Saari,J.M.Prescott,World distribution in relation to economic losses,in:A.P.Roelfs,W.R.Bushnell(Eds.),Cereal Rusts,2,Academic Press,Orlando,F(xiàn)L,1985,pp.259-298.

    [2]J.G.Dong,Agricultural Plant Pathology,China Agriculture Press,Beijing,2001.(in Chinese).

    [3]H.X.Zhou,X.C.Xia,Z.H.He,X.Li,C.F.Wang,Z.F.Li,D.Q.Liu,Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang 977671,Theor.Appl.Genet.126(2013)2141-2147.

    [4]R.A.McIntosh,Y.Yamazaki,J.Dubcovsky,W.J.Rogers,C. Morris,R.Appels,X.C.Xia,Catalogueofgenesymbolsforwheat: 2013 supplement,http://www.shigen.nig.ac.jp/wheat/komugi/ genes/macgene/2013/GeneCatalogueIntroduction.pdf 2013.

    [5]H.H.Flor,The complementary genetics systems in flax and flax rust,Adv.Genet.8(1956)29-54.

    [6]J.H.Yuan,T.G.Liu,W.Q.Chen,Postulation of leaf rust resistance genes in 47 new wheat cultivars(lines)at the seedling stage,Sci.Agric.Sin.40(2007)1925-1935.

    [7]Z.F.Li,X.C.Xia,Z.H.He,X.Li,L.J.Zhang,H.Y.Wang,Q.F. Meng,W.X.Yang,G.Q.Li,D.Q.Liu,Seedling and slow rustingresistance to leaf rust in Chinese wheat cultivars,Plant Dis. 94(2010)45-53.

    [8]W.Q.Chen,Q.M.Qin,Y.L.Chen,S.B.Yan,Virulence dynamics of Puccinia recondita f.sp.tritici in China during 1992-1996,Acta Phytopathol.Sin.28(1998)101-106.

    [9]L.F.Xing,C.F.Wang,X.C.Xia,Z.H.He,W.Q.Chen,T.G.Liu,Z.F. Li,D.Q.Liu,Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900,Mol.Breed.33(2014)931-937.

    [10]P.Vos,R.Hogers,M.Bleeker,M.Reijans,T.van de Lee,M. Hornes,A.Friters,J.Pot,J.Paleman,M.Kuiper,M.Zabeau,AFLP:a new technique for DNA fingerprinting,Nucleic Acids Res.23(1995)4407-4414.

    [11]R.J.Prins,J.Z.Groenewald,G.F.Marais,J.W.Snape,R.M.D. Koebner,AFLP and STS tagging of Lr19,a gene conferring resistance to leaf rust in wheat,Theor.Appl.Genet.103(2001)618-624.

    [12]J.M.Lottering,A.M.Botha,R.F.Klopper,AFLP and RAPD markers linked to leaf rust resistance gene Lr41 in wheat,South Afr.J.Plant Soil 19(2002)17-22.

    [13]X.Jia,W.X.Yang,D.Q.Liu,Identification of AFLP markers linked to Lr38 resistance to wheat leaf rust,Acta Phytopathol. Sin.34(2004)380-382.

    [14]N.Zhang,W.X.Yang,D.Q.Liu,Identification and molecular tagging of leaf rust resistance gene(Lr24)in wheat,Sci.Agric. Sin.10(2011)1898-1905.

    [15]R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991)9828-9832.

    [16]Z.F.Li,X.C.Xia,X.C.Zhou,Y.C.Niu,Z.H.He,Y.Zhang,G.Q.Li,A.M.Wan,D.S.Wang,X.M.Chen,Q.L.Lu,R.P.Singh,Seedling and slow rusting resistance to stripe rust in Chinese common wheats,Plant Dis.90(2006)1302-1312.

    [17]Y.J.Tang,B.Zhao,Y.Xia,J.Yu,Breeding of new wheat variety Bimai 16,Seed 23(2004)69-71.

    [18]H.Zhang,X.C.Xia,Z.H.He,X.Li,Z.F.Li,D.Q.Liu,Molecular mapping of leaf rust resistance gene LrBi16 in Chinese wheat cultivar Bimai 16,Mol.Breed.28(2011)527-534.

    [19]P.L.Dyck,D.J.Samborski,The genetics of two alleles for leaf rust resistance at the Lr14 locus in wheat,Can.J.Genet.Cytol. 12(1970)689-694.

    [20]D.L.Long,J.A.Kolmer,A North American system of nomenclature for Puccinia recondita f.sp.tritici,Phytopathology 79(1989)525-529.

    [21]A.P.Roelfs,R.P.Singh,E.E.Saari,Rust Diseases of Wheat: Concepts and Methods of Disease Management,CIMMYT Mexico,D.F.1992.

    [22]B.J.Bassam,G.Caetano-Anolles,P.M.Gresshoff,F(xiàn)ast and sensitive silver staining of DNA in polyacrylamide gels,Anal. Biochem.196(1991)80-83.

    [23]F.F.Manly,R.H.Cudmore Jr.,J.M.Meer,Map manager QTX,cross-platform software for genetic mapping,Mamm. Genome 12(2001)930-932.

    [24]D.D.Kosambi,The estimation of map distances from recombination values,Ann.Eugen.12(1944)172-175.

    [25]M.L.Xu,E.Huaracha,S.S.Korban,Development of sequence-characterized amplified regions(SCARs)from amplified fragment length polymorphism(AFLP)markers tightly linked to the Vf gene in apple,Genome 44(2001)63-70.

    [26]S.A.Herrera-Foessel,R.P.Singh,J.Huerta-Espino,G.M. Rosewarne,S.K.Periyannan,L.Viccars,V.Calvo-Salazar,C.X. Lan,E.S.Lagudah,Lr68:a new gene conferring slow rusting resistance to leaf rust in wheat,Theor.Appl.Genet.124(2012)1475-1486.

    [27]S.A.Herrera-Foessel,R.P.Singh,J.Huerta-Espino,H.M. William,V.Garcia,A.Djurle,J.Yuen,Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat,Plant Dis.92(2008)469-473.

    [28]R.Horn,B.Kusterer,E.Lazarescu,M.Prüfe,W.Friedt,Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F1hybrids in sunflower(Helianthus annuus L.),Theor.Appl.Genet.106(2003)599-606.

    [29]L.X.Wang,L.F.Chang,L.Huang,X.W.Wang,C.P.Zhao,Sequence polymorphism of wheat AFLP fragments and conversion of AFLP marker to SCAR marker,J.Triticeae Crops 27(2007)943-951.

    [30]P.Sourdille,S.Singh,T.Cadalen,G.L.Brown-Guedira,G.Gay,L.Qi,B.S.Gill,P.Dufour,A.Murigneux,M.Bernard,Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat(Triticum aestivum L.),F(xiàn)unct.Integr.Genomics 4(2004)12-25.

    [31]D.J.Somers,P.Isaac,K.Edwards,A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.),Theor.Appl.Genet.109(2004)1105-1114.

    27 June 2014

    in revised form

    s.

    E-mail addresses:lzf7551@aliyun.com(Z.Li),ldq@hebau.edu.cn(D.Liu).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.1These authors contributed equally to this work.

    http://dx.doi.org/10.1016/j.cj.2014.11.004

    2214-5141/?2015 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产综合精华液| 好男人在线观看高清免费视频| 国产极品天堂在线| 久久精品国产亚洲av天美| 一区二区三区四区激情视频| 热99在线观看视频| 久久久久久久大尺度免费视频| 久久久精品欧美日韩精品| 夫妻午夜视频| 五月玫瑰六月丁香| 成人国产麻豆网| 干丝袜人妻中文字幕| 久久久久精品性色| 国产精品嫩草影院av在线观看| 精品久久久久久久末码| 久久6这里有精品| 国产精品熟女久久久久浪| 亚洲精品日本国产第一区| av在线天堂中文字幕| 日本免费a在线| 嫩草影院入口| 99热这里只有是精品在线观看| 午夜久久久久精精品| 亚洲丝袜综合中文字幕| 国产午夜精品论理片| 精品国产露脸久久av麻豆 | 久久久欧美国产精品| 蜜桃亚洲精品一区二区三区| 水蜜桃什么品种好| 欧美极品一区二区三区四区| 免费观看精品视频网站| 日韩在线高清观看一区二区三区| 欧美日本视频| 日韩,欧美,国产一区二区三区| 成人毛片60女人毛片免费| av在线观看视频网站免费| 日韩制服骚丝袜av| 五月伊人婷婷丁香| 国产精品福利在线免费观看| 亚洲av成人精品一区久久| 日本猛色少妇xxxxx猛交久久| 最近最新中文字幕免费大全7| 亚洲成人中文字幕在线播放| 欧美日韩综合久久久久久| 能在线免费观看的黄片| 三级国产精品片| 日日啪夜夜爽| 18+在线观看网站| 亚洲经典国产精华液单| 精品人妻偷拍中文字幕| 精品久久久久久久久亚洲| 日本猛色少妇xxxxx猛交久久| 91精品伊人久久大香线蕉| 日本欧美国产在线视频| 女的被弄到高潮叫床怎么办| 乱码一卡2卡4卡精品| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 日本免费在线观看一区| 国产亚洲5aaaaa淫片| 97超视频在线观看视频| 久久久精品94久久精品| 男女视频在线观看网站免费| 免费在线观看成人毛片| 欧美高清性xxxxhd video| 精品一区二区三卡| 久久久a久久爽久久v久久| 午夜精品一区二区三区免费看| 久热久热在线精品观看| 国产精品久久久久久精品电影| 久久久成人免费电影| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影| 免费大片18禁| 色播亚洲综合网| 免费观看性生交大片5| 一个人免费在线观看电影| 国精品久久久久久国模美| 国产精品一及| 精品99又大又爽又粗少妇毛片| 深爱激情五月婷婷| 一级毛片 在线播放| 精品久久久久久久久av| 丰满少妇做爰视频| 中文字幕免费在线视频6| 精品久久久噜噜| 80岁老熟妇乱子伦牲交| 一级毛片aaaaaa免费看小| 精品久久久噜噜| 国产一区有黄有色的免费视频 | 韩国av在线不卡| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 色5月婷婷丁香| 国产一区二区三区综合在线观看 | 青春草视频在线免费观看| 人人妻人人看人人澡| 天天一区二区日本电影三级| 久久久久久久久久人人人人人人| 天堂中文最新版在线下载 | 少妇熟女aⅴ在线视频| 永久网站在线| 亚洲av日韩在线播放| 国产av在哪里看| 最新中文字幕久久久久| 免费不卡的大黄色大毛片视频在线观看 | 内射极品少妇av片p| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件| 免费观看av网站的网址| 日韩国内少妇激情av| 国产免费福利视频在线观看| av免费在线看不卡| 国产精品综合久久久久久久免费| 人妻夜夜爽99麻豆av| 久久国产乱子免费精品| 在线免费观看的www视频| 高清av免费在线| 日本免费a在线| 国产成人aa在线观看| 18禁动态无遮挡网站| 久久久精品免费免费高清| 可以在线观看毛片的网站| 欧美高清成人免费视频www| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 日韩人妻高清精品专区| 久久精品夜夜夜夜夜久久蜜豆| 一本一本综合久久| 午夜激情久久久久久久| 久久久久久伊人网av| 亚洲自偷自拍三级| 黄色配什么色好看| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品久久久久久一区二区三区| 成人美女网站在线观看视频| 色综合站精品国产| 白带黄色成豆腐渣| 久久精品国产亚洲网站| 中文字幕亚洲精品专区| 高清毛片免费看| av在线天堂中文字幕| 青青草视频在线视频观看| 国产在视频线精品| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99 | 精品久久久久久久久av| 亚洲最大成人av| 69av精品久久久久久| 嫩草影院入口| 美女cb高潮喷水在线观看| 久久久久精品性色| 丝瓜视频免费看黄片| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 国产免费福利视频在线观看| 男女视频在线观看网站免费| 国产精品嫩草影院av在线观看| 免费看av在线观看网站| 精品亚洲乱码少妇综合久久| 小蜜桃在线观看免费完整版高清| 国产精品99久久久久久久久| 精品熟女少妇av免费看| 久久99热这里只有精品18| 成人国产麻豆网| 亚洲精品国产成人久久av| 搡老妇女老女人老熟妇| 久久久精品欧美日韩精品| 免费观看无遮挡的男女| 亚洲国产最新在线播放| 亚洲精品国产av成人精品| 国产麻豆成人av免费视频| 极品教师在线视频| 欧美潮喷喷水| 国产熟女欧美一区二区| 日韩精品有码人妻一区| 亚洲精品国产成人久久av| 久久6这里有精品| 人妻少妇偷人精品九色| 一级爰片在线观看| 人体艺术视频欧美日本| 看非洲黑人一级黄片| 两个人视频免费观看高清| 简卡轻食公司| 中文字幕人妻熟人妻熟丝袜美| 观看免费一级毛片| 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 久久99热这里只有精品18| 久久久精品欧美日韩精品| 亚洲欧美一区二区三区国产| 久久久久久久久久久丰满| 日韩电影二区| 免费看不卡的av| 可以在线观看毛片的网站| 777米奇影视久久| 国产精品国产三级国产av玫瑰| 精品久久久精品久久久| 中文在线观看免费www的网站| 国产免费福利视频在线观看| 一级毛片 在线播放| 在线免费十八禁| 成年女人在线观看亚洲视频 | 伦精品一区二区三区| 91午夜精品亚洲一区二区三区| 精华霜和精华液先用哪个| 精品久久久久久久久av| 亚洲四区av| 国产综合懂色| 亚洲在久久综合| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人一区二区免费高清观看| 又爽又黄无遮挡网站| 伊人久久精品亚洲午夜| 午夜福利在线在线| 日本免费在线观看一区| 亚洲成人一二三区av| 99热这里只有精品一区| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 亚洲精品久久午夜乱码| 国产69精品久久久久777片| 免费少妇av软件| 在线天堂最新版资源| 成人国产麻豆网| 综合色丁香网| 国产中年淑女户外野战色| 久久精品熟女亚洲av麻豆精品 | 婷婷色麻豆天堂久久| 狂野欧美激情性xxxx在线观看| 在线免费十八禁| 亚洲三级黄色毛片| 一级毛片黄色毛片免费观看视频| 免费看a级黄色片| 日韩强制内射视频| 欧美成人一区二区免费高清观看| 久久精品夜色国产| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 国产熟女欧美一区二区| 国产黄a三级三级三级人| 午夜激情欧美在线| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 国模一区二区三区四区视频| 丝瓜视频免费看黄片| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 精品一区在线观看国产| 99热这里只有是精品在线观看| 欧美日本视频| av免费观看日本| 成人无遮挡网站| videos熟女内射| 91久久精品电影网| 亚洲精品成人av观看孕妇| 亚洲人成网站在线播| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 在线 av 中文字幕| 熟妇人妻不卡中文字幕| 精品熟女少妇av免费看| 国产成人免费观看mmmm| 免费大片18禁| 麻豆精品久久久久久蜜桃| 国产精品av视频在线免费观看| 久久久午夜欧美精品| av免费观看日本| 国产黄色小视频在线观看| 人妻系列 视频| 亚洲在线观看片| 色网站视频免费| 日日撸夜夜添| 性插视频无遮挡在线免费观看| 亚洲av成人av| 在线免费十八禁| av在线亚洲专区| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 日韩一区二区三区影片| 狂野欧美激情性xxxx在线观看| 夫妻午夜视频| 精品久久久精品久久久| 精品久久久噜噜| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 51国产日韩欧美| 夜夜爽夜夜爽视频| 大陆偷拍与自拍| 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 免费看美女性在线毛片视频| 成人性生交大片免费视频hd| 777米奇影视久久| 午夜亚洲福利在线播放| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 自拍偷自拍亚洲精品老妇| 青青草视频在线视频观看| 九九爱精品视频在线观看| 国产av码专区亚洲av| 国产精品久久久久久精品电影| 69av精品久久久久久| 亚洲国产欧美人成| 精品久久久久久久末码| 一级av片app| 成年女人看的毛片在线观看| 亚洲av电影在线观看一区二区三区 | 国产精品av视频在线免费观看| 春色校园在线视频观看| 色尼玛亚洲综合影院| 夫妻性生交免费视频一级片| 国产成人91sexporn| 三级毛片av免费| 亚洲精华国产精华液的使用体验| 国产精品福利在线免费观看| 欧美zozozo另类| 午夜福利在线观看吧| 深夜a级毛片| 日韩av免费高清视频| 亚洲av免费高清在线观看| 天堂av国产一区二区熟女人妻| 边亲边吃奶的免费视频| 成人特级av手机在线观看| 亚洲久久久久久中文字幕| 黄色日韩在线| 国产精品一及| 男女国产视频网站| 精品久久久久久久久av| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 国产黄a三级三级三级人| 一级黄片播放器| 国产伦在线观看视频一区| 亚洲欧洲国产日韩| 最近手机中文字幕大全| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 亚洲av成人av| 成年人午夜在线观看视频 | 午夜久久久久精精品| 你懂的网址亚洲精品在线观看| 黑人高潮一二区| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 五月伊人婷婷丁香| 婷婷色综合www| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 日本黄色片子视频| 欧美精品一区二区大全| 两个人视频免费观看高清| 一级爰片在线观看| 国产 一区精品| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 日韩欧美三级三区| 秋霞在线观看毛片| 亚洲成色77777| 亚洲内射少妇av| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 一区二区三区免费毛片| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| 女人被狂操c到高潮| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 丝袜喷水一区| av在线观看视频网站免费| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 国产综合懂色| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 欧美区成人在线视频| 激情五月婷婷亚洲| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| av在线天堂中文字幕| 婷婷色av中文字幕| 大香蕉97超碰在线| 色5月婷婷丁香| 少妇被粗大猛烈的视频| 十八禁网站网址无遮挡 | 国产成人精品福利久久| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 蜜臀久久99精品久久宅男| 欧美成人a在线观看| 黄色欧美视频在线观看| 我的老师免费观看完整版| 校园人妻丝袜中文字幕| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 午夜老司机福利剧场| 高清视频免费观看一区二区 | 色尼玛亚洲综合影院| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频 | 成人av在线播放网站| 99视频精品全部免费 在线| 中国国产av一级| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 国产精品一区www在线观看| 欧美激情国产日韩精品一区| 一级毛片 在线播放| 国产视频内射| 日本黄大片高清| 一边亲一边摸免费视频| 夫妻性生交免费视频一级片| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 五月伊人婷婷丁香| 免费av不卡在线播放| 91精品一卡2卡3卡4卡| 亚洲熟女精品中文字幕| 久久午夜福利片| 亚洲三级黄色毛片| eeuss影院久久| 非洲黑人性xxxx精品又粗又长| 精品国产露脸久久av麻豆 | 日韩av在线大香蕉| 青春草视频在线免费观看| 亚洲三级黄色毛片| 三级经典国产精品| 一级毛片 在线播放| 午夜爱爱视频在线播放| 波野结衣二区三区在线| 亚洲国产欧美人成| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 一本久久精品| 免费少妇av软件| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 成年免费大片在线观看| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 欧美日本视频| 久久精品综合一区二区三区| 99热这里只有是精品50| 亚洲怡红院男人天堂| 91精品国产九色| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 亚洲电影在线观看av| 大片免费播放器 马上看| 天天一区二区日本电影三级| 久久久久久国产a免费观看| 国产免费又黄又爽又色| 亚洲怡红院男人天堂| 成年人午夜在线观看视频 | 日韩国内少妇激情av| 免费无遮挡裸体视频| 99久久九九国产精品国产免费| 高清av免费在线| 亚洲一区高清亚洲精品| 午夜日本视频在线| 精品久久久精品久久久| 欧美不卡视频在线免费观看| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 精品人妻熟女av久视频| 亚洲无线观看免费| 久久久久久国产a免费观看| 黄色欧美视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产久久久一区二区三区| 夜夜看夜夜爽夜夜摸| 蜜臀久久99精品久久宅男| 99久久精品国产国产毛片| 成年版毛片免费区| 久久99热这里只频精品6学生| 赤兔流量卡办理| 精品午夜福利在线看| 十八禁国产超污无遮挡网站| 欧美日韩在线观看h| 韩国av在线不卡| 精品人妻偷拍中文字幕| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 午夜老司机福利剧场| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 三级经典国产精品| 久久韩国三级中文字幕| 少妇熟女aⅴ在线视频| 久久精品久久精品一区二区三区| kizo精华| 嫩草影院精品99| 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 日韩电影二区| 天堂√8在线中文| 亚洲精品影视一区二区三区av| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 性色avwww在线观看| 精品不卡国产一区二区三区| 国产精品嫩草影院av在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久久久久丰满| 亚洲国产欧美人成| 伦理电影大哥的女人| 男人爽女人下面视频在线观看| 日本与韩国留学比较| 亚洲图色成人| 综合色av麻豆| 欧美最新免费一区二区三区| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄| 亚洲在线观看片| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区黑人 | 美女国产视频在线观看| 欧美高清成人免费视频www| 嫩草影院入口| 国产黄色免费在线视频| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 国产精品久久久久久精品电影| 国产又色又爽无遮挡免| av国产久精品久网站免费入址| 亚洲av中文av极速乱| 亚洲国产精品国产精品| 搡老乐熟女国产| 国产老妇女一区| 日韩一区二区三区影片| 国产 亚洲一区二区三区 | 小蜜桃在线观看免费完整版高清| 六月丁香七月| 国产高潮美女av| 成年av动漫网址| 国产国拍精品亚洲av在线观看| 久久久久国产网址| 国产精品一区www在线观看| 又大又黄又爽视频免费| 国产在线男女| 国产精品久久久久久av不卡| 亚洲av国产av综合av卡| videos熟女内射| 深爱激情五月婷婷| 国产有黄有色有爽视频| 又爽又黄无遮挡网站| 中文精品一卡2卡3卡4更新| 久久久久国产网址| 久99久视频精品免费| 日本wwww免费看| 亚洲欧美成人精品一区二区| 春色校园在线视频观看| av免费观看日本| 成年女人在线观看亚洲视频 | 高清在线视频一区二区三区| 成人漫画全彩无遮挡| 久久久久久久久久人人人人人人| 国产精品一二三区在线看| 亚洲av免费在线观看| 日韩,欧美,国产一区二区三区| av女优亚洲男人天堂| 婷婷六月久久综合丁香| 国产精品不卡视频一区二区| 大香蕉97超碰在线| 国产一区二区在线观看日韩| 亚洲丝袜综合中文字幕| 一区二区三区免费毛片| 亚洲自拍偷在线| 青春草视频在线免费观看| 在线观看免费高清a一片| 在线观看av片永久免费下载| 国产乱人偷精品视频| 激情 狠狠 欧美| 天堂中文最新版在线下载 | 精品久久久噜噜| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情五月婷婷啪啪| 国产 一区 欧美 日韩| 久久精品久久精品一区二区三区| 精品人妻偷拍中文字幕| 国产大屁股一区二区在线视频| 日本爱情动作片www.在线观看| 国产爱豆传媒在线观看| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 久久热精品热| 乱码一卡2卡4卡精品| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠久久av| 中文在线观看免费www的网站| 日本爱情动作片www.在线观看| 精品人妻偷拍中文字幕| 国产 一区 欧美 日韩| 国产av国产精品国产| freevideosex欧美| 午夜精品一区二区三区免费看| 性插视频无遮挡在线免费观看| 国产精品福利在线免费观看| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看| 久久国产乱子免费精品| 赤兔流量卡办理| 亚洲最大成人手机在线| 热99在线观看视频| 国产伦一二天堂av在线观看|