• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure evolution in the weld metal region of a Ni-based Inconel 718 superalloy produced by tungsten inert gas welding

    2015-10-31 10:57:35YeXinHuaXuemingWuYixiongandLouSongnian
    China Welding 2015年3期

    Ye Xin,Hua Xueming,Wu Yixiong and Lou Songnian

    葉 欣,華學(xué)明,吳毅雄,樓松年*

    Microstructure evolution in the weld metal region of a Ni-based Inconel 718 superalloy produced by tungsten inert gas welding

    Ye Xin,Hua Xueming,Wu Yixiong and Lou Songnian

    葉 欣,華學(xué)明,吳毅雄,樓松年*

    The microstructure evolution of the weld metal(WM)region in a Ni-based 718 superalloy is discussed.The superalloy sheets were welded using the tungsten inert gas process at different heat inputs.The precipitates and dendrites in the WM of each joint were analyzed by optical microscopy,scanning electron microscopy,and energy dispersive spectroscopy(EDS).Statistics on the dendrite arm spacing and precipitates were obtained from the metallographs.Using the alloy composition determined by EDS and the phase diagram obtained using ThermoCalc,the equilibrium distribution coefficient of Nb,the temperature range of solid/liquid coexistence,and the distribution and morphology of Laves phase in different subregion of the WM were analyzed.There is lamellar segregation,regional segregation,and microsegregation in the WM.As the heat input increases,the arm spacing and the microsegregation increase.At a fixed heat input,the microsegregation rate is smallest in the crater,but with the macrosegregation seriously.

    Inconel 718,weld metal,heat input,arm space,segregation

    0 Introduction

    Inconel 718 superalloy is a nickel-rich with superior mechanical properties and structural stability at elevated temperatures resulting from the precipitation of the intermetallic γ″phase(Ni3Nb).Li et al.[1]proposed a method of anode selective electrolysis for phase extracting and isolation of δ-Ni3Nb,γ′,and γ″phases in Inconel 718 alloy.Chang[2]found that the amount of the γ″phase in Inconel 718 could be increased by a hot isostatic pressure treatment,which also increased the tensile strength and elongation.However,the Nb component also makes the alloy prone to severe segregation during solidification. Radhakrishna and Rao[3]found that the detrimental Laves phase formed in the interdendritic regions of welded Inconel 718 metals as a result of microsegregation of the alloying elements during weld solidification.The morphology and composition of the Laves phase in the weld metals(WMs)depended strongly on the weld cooling rate;fast weld-cooling rates inhibited microsegregation.Odabasi et al[4]performed scanning electron microscope(SEM)and energy dispersive spectrdmeter(EDS)analyses and revealed that the Laves phases enrich in Nb,Mo,Si,and Ti,whereas the dendrite core regions were enriched in Ni,F(xiàn)e and Cr.

    The cooling rate is an important parameter determining the microstructure evolution of the WM.Antonsson and Fredriksson[5]studied the solidification process over a wide range of cooling rates using a mirror furnace,differential thermal analysis(DTA),and levitation casting methods.They observed that the latent heat decreases,and the effective partition coefficient increases,with increasing cooling rate.Many methods for controlling the cooling rate of the WM have been investigated.Sivaprasad and Raman[6]reported that continuous-current tungsten inert gas(TIG)weldments exhibited lumpy textures and large amount of the Laves phase with a greater degree of interconnectivity.Moreover,the magnetic arc oscillated TIG welds had a smaller amount of refined Laves phase with less interconnectivity.Manikandan et al.[7]controlled the detrimental Laves formation in the WM duringTIG welding using a compound current pulsing technique along with helium shielding gas.The same group[8]determined that the greatest instantaneous cooling rates were achieved with compound current pulse mode welding,and it was further enhanced by the use of helium shielding gas.These studies demonstrated that Laves phase reduction is technically feasible.Liu et al.[9]found that the microstructure predominantly consisted of γ columnar dendrites growing directionally in the deposition direction,besides the primary dendrite arm space which changes during laser solid forming process.

    Thermodynamic analyses of WM microstructure evolution have also been conducted.Wang et al.[10]reported that heavy segregation of Nb in the liquid causes the precipitation of the δ and Laves phases directly from the liquid.The same group[11]reported that,during the solidification of Inconel 718,solute redistribution between the liquid and solid causes the Nb content in the liquid to increase dramatically.They[12]also reported that,at cooling rates less than 3 K/min,severe segregation of Nb occurs,and this prompts the Laves phase to form directly from the liquid.

    In this paper,microstructure evolution in the WM was studied.Inconel 718 sheet joints were created using TIG welding with different heat inputs.The resulting microstructure was observed and a computer simulation was performed in order to determine the mechanisms underlying the solidification segregation and Laves precipitation processes.

    1 Experimental

    Experiments were carried out using 2.8 mm thick homogenized Inconel 718 sheets.The homogenized sheets were fabricated by vacuum smelting,casting,and heattreating of the as-cast sheets at 1 090℃ for 1 h.The main alloying elements in Inconel 718 as shown in Table 1.

    Table 1 Inconel 718 superalloy element content(wt.%)

    Three levels of heat input,2.4,3.6,and 4.8 kJ/ cm,were employed during the positive-polarity DC TIG welding,and an argon shield(99.99%)and copper welding linning were employed.The top surface and a cross section of the welding seam,as well as a cross section of the crater,were used to take metallographic specimens.The metallographic etch was(1 g CuCl2+20 mL HCl+20 mL CH3CH2OH).

    The microstructure of the WM was observed using an Axio Imager A1m metalloscope and JSM7600F field-emission scanning electron microscope(FESEM).The alloying elements in the precipitates were analyzed by energy dispersive spectroscopy(EDS).The precipitates were categorized according to their morphology and chemical composition.

    A statistical analysis of the metallographs was performed using ImageJ image analysis software to determine the arm spacing,degree of macro-and microsegregation,distribution and morphology of Laves phase in different subregions of WM,such as the subregion adjacent to the fusion line,the WM center,and the crater center at the end of welding.To investigate possible mechanisms,a computer simulation was performed that revealed the equilibrium distribution coefficient of Nb during solidification,the theoretical solidus and liquidus temperatures of the interdendritic Laves and intradendritic austenite phases,and the solid/liquid coexistence temperature range in each subregion of the WM.

    2 Results and discussion

    2.1Lamellar and regional segregation of WM

    A representative metallograph of the top surface of the WM is shown in Fig.1.In the subregion of the WM adjacent to fusion line,the Laves phase content at location A -1 is less than that at location A-2.In the center of the WM,the content of the Laves phase at location B-1 is less than that at location B-2.The top surface of the WM has a lamellar structure.That regions of alternating en-riched and depleted Laves phase.The microstructure of the WM indicates lamellar segregation along the welding direction.

    Fig.1 Lamellar segregation of the top surface of the WM(BM:base metal,v:welding direction)

    During solidification of the WM,the higher melting point phases with lower Nb content solidify first before forming lamella with less Laves phase.The liquid metal located at the solid/liquid interface is Nb-enriched and solidifies next,and the new lamella precipitates more Laves phase.The latent heat of crystallization is released constantly and increases the temperature of the solid/liquid interface.With the accumulation of latent heat,the crystal growth velocity becomes slower,which is beneficial for Nb diffusion and leads to newer lamella of WM precipitates and less Laves phase.Briefly,lamellar segregation in the WM is the result of the enrichment and diffusion of Nb and the accumulation of latent heat of crystallization.

    The dendrites in the subregion of the WM adjacent to the fusion line solidify first,and grow toward the center. The Nb concentration of the metal liquid located at the center of the WM continues to rise,and ultimately generates regional segregation after the weld pool solidifies completely.

    2.2Microstructure of WM

    The dendrites in the WM are shown in Fig.2a.The Nb-rich Laves phase precipitates from the interdendritic region of austenite and forms a network structure.Higher magnification images of the Laves phase are in Fig.2b;it frequently precipitates at the γ+Laves eutectic in the WM.

    Fig.2 SEM images of WM

    There is competition between dendrites growing in opposite directions of the temperature gradient from the fusion line to the WM center.Fig.3a shows the dendrites in the subregion of WM adjacent to the fusion line.Their crystallographic orientation is selected preferentially,and the vimineous branches of the primary dendrite are distinct.Conversely,as shown in Fig.3b,the dendrites in the center of the WM do not possess obvious texture.

    The direction of dendrites grow clearly from the bottom to the top surface of the WM.That is also the opposite direction of the temperature gradient at the end of welding.As shown in Fig.4a,solidification contraction cracks are present in the interdendritic region between the primary or secondary dendrites.Fig.4b shows the surface morphology of the crack,and the EDS analysis indicates the Nb-enriched and low melting-point eutectic phase in the interdendritic region.The complex compound phase ofLaves structures,oxide,and carbide remained in the crater center rather than diffusing to the top surface of the WM during the rapid solidification;this results in an improvement in the solidification-cracking sensitivity.

    Fig.3 Microstructure of the WM cross section

    The partially melted grains located in the fusion line area solidify at the beginning of weld pool solidification,when the cooling rate is low and the temperature gradient of the solid/liquid interface is large.The dendrites that crystallize in the opposite direction of the temperature gradient grow faster than those in other directions.This preferred-orientation growth mechanism leads to the directionality of the dendrites in the subregion of the WM adjacent to the fusion line.The temperature gradient at the solid/ liquid interface decreases and the constitutional supercooling and the cooling rate increase,which causes the secondary and tertiary dendrite growth associated with lower dendrite directionality,along with molten pool solidification.

    Fig.4 The microstructure of the crater

    2.3Heat input effect on arm space

    The arm space of each subregion of the WM for welds with heat inputs of 2.4,3.6 and 4.8 kJ/cm were calculated from the average of measurements made in six 358.89 μm×268.89 μm regions in the metallographs.

    These data are shown in Fig.5.Under welding conditions with the same heat input,the arm spacing in the subregion of the WM adjacent to the fusion line is wider than that in the any other subregion.The arm spacing is smaller at the WM center,and is at a minimum in the subregion of the crater center.In addition,the arm spacing in each subregion of the WM increases as the heat input increases.

    Temperature,cooling rate,and constitutional supercooling are important factors determining the crystalline morphology during molten pool solidification.Therefore,grain growth initiates at the fusion line and proceeds to-ward the weld centerline.Simultaneously,the temperature gradient decreases.Nb segregation and enrichment develop at the crystallization front,initiate the constitutional supercooling,and increase the crystallization rate.Later,the primary,secondary,and tertiary dendrites connect and form a network structure.Manikandan et al[8].developed correlations for dendrite arm spacing and weld cooling rates from their experimental results and found that

    where λ(in μm)is the dendrite arm spacing in transverse direction to the welding direction and ε(in K/ s)is the cooling rate.For lower heat input during welding,the cooling rate is higher,dendrite growth is enhanced,and arm spacing decreases.

    Fig.5 Arm spacing in each WM subregion at different heat input

    Because of constitutional supercooling and the negative temperature gradient at the solid liquid interface,the undercooling of the liquid metal increases as the distance to the interface increases.In the rapid-cooling process,the crystal interface becomes unstable and develops a cellular structure,and this cellular crystal side instability causes lateral branching.Finally,the dendrites grow into grains at the end of solidification.

    2.4Microsegregation of the WM

    Microsegregation occurs over distances comparable to the size of the dendrite arm spacing because the first solid formed has a lower concentration than the final equilibrium concentration.This results in partitioning of the excess solute into the liquid,so that solid formed later has a higher concentration.The segregation rate η is

    where CLavesis the average Nb content of the interdendritic Laves phase and CCoreis the average Nb content of the intradendritic γ phase.The Nb content of the Laves and γ phases were analyzed by EDS,and the η values of the different subregions of the WM are presented in Fig.6.

    Fig.6 Microsegregation rate of the WM for each subregion under different heat input conditions

    The segregation rate increase as the heat input increase,and the rate in the subregion of the WM adjacent to the fusion line is higher than that at the WM center. The microsegregation of crater center is the minimum on account of the rapid cooling rate.

    The solubility of Nb in the solid is lower than that in the liquid,resulting the accumulation of excess solute in the liquid.The liquidus is negative and the coefficient of Nb distribution k<1[13-14].The composition difference at the solid/liquid interface results in higher nonuniformity in chemical composition,dendritic microsegregation,and the Nb concentration in the interdendritic region than that in the intradendritic region.

    Under equilibrium conditions,the coefficient of the solute distribution is equal to the equilibrium distribution coefficient k0which is the ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium,or

    where CSand CLare solid and liquid phase concentration at equilibrium,respectively.These coefficients are a measure of the difference in solubility between the two phases. As determined by Chen et al.[15],the deviation of k from k0increases as the superheating ΔT increases,i.e.,

    The superheating temperature is the difference between the instantaneous temperature T and the eutectic temperature Te.

    k0is significant for the non-equilibrium solidification analysis,as shown in the formula 3.The relationship between the temperature and k0value for Nb between the liquid and austenite phases was calculated by Thermo-Calc and is shown in Fig.7.k0decreases as the temperature increases,and this suggests the solubility of Nb in the liquid is higher than that in the solid at elevated temperatures. And the dendritic segregation rate is higher.However,at lower temperatures,the solubility difference between solid and liquid for Nb decreases,and the dendritic segregation rate is smaller.

    When the heat input fixed,higher solidification temperatures and lower supercooling inhibits dendrites growth and enhances the microsegregation rate in the subregion of the WM adjacent to the fusion line.The dendritic interval spacing of the network structure is also wider,which is good for liquid complementarity.The dendrites grew faster and the microsegregation rate decreased in the subregion of the crater center.The liquid phase vanishes rapidly,and the dendritic austenite connects quickly.The liquid phase has less mobility in narrower dendritic interstices in the network structure.If the mutual complementation of the liquid phase is not fast enough,the solidification crack sensitivity increases.

    Fig.7 Equilibrium distribution coefficient k0of Nb between the liquid and austenite

    When the heat input increases,both the welding peak temperature and the high temperature residence time also increase.The k0increases as well,then the solidification crack sensitivity increases.

    2.5Distribution of the Laves phase

    Fig.8 gives the content and distribution of the Laves phase in each subregion of the WM for the three heat input treatments.The data in Fig.8 are the average values determined from six 358.89 μm×268.89 μm regions in the metallograph.

    As Fig.8a shows,lamellar segregation led to differences in the total area percent of the Laves phase,even in the same subregion of the WM.The difference in Laves phase content in the subregion adjacent to the fusion line is larger than the difference in the central subregion.However,the amount of Laves phase in the subregion of the WM adjacent to the fusion line is lower than that in the central subregion;this indicates the regional segregation of phases in the WM.As the heat input increases,the amount of Laves phase decreases as shown in Fig.8a,and the average interdendritic Laves phase area at the center increases,as shown in Fig.8b;this is an indication thatmacrosegregation decreased and microsegregation increases.

    Fig.8 The content and distribution of the Laves phase in each subregion of the WM

    As shown in Fig.9,the Ni-Nb equilibrium binary phase diagram computed by Thermo-Calc,the Nb concentration is lower in alloys that solidify at higher temperature,resulting in excess Nb in the liquid at the solid/liquid interface,and the Nb accumulates in the interdendritic region.

    When the average concentration of Nb is 5.0-5.5 wt.%,the Nb concentration of liquid metal in the molten pool should increase,leading to a decrease in the solidification temperature of the austenite.The γ+Laves eutectic precipitates at the smallest temperatures of the liquid metal in the phase diagram as the Nb concentration rises up to about 28-42 wt.%.In the end,the Nb content of the intradendritic austenite is lower than the alloy average concentration and the interdendritic Laves content is much higher.Therefore,that the content of the Laves phase and the temperature range of solid/liquid coexistence increases as the microsegregation increases.

    Fig.9 Ni-Nb equilibrium binary phase diagram for the Inconel-718 superalloy

    Based on the previous analysis,the solid/liquid coexistence temperature is in the range below the liquidus of austenite and above the solidus of the Laves phase.The average Nb content of the intradendritic austenite and interdendritic Laves was determined from five SEM assays of each subregion of the WM of every joint made under different heat input conditions.Then,the theoretical value of the solid/liquid coexistence temperature range of each subregion was calculated based on Ni-Nb equilibrium binary phase diagram.The results are shown in Fig.10.

    When the heat input is fixed,the solid-liquid coexistence temperature range of crater center was the lowest,and the subregion of the WM adjacent to the fusion line was the highest.This suggests that the solidification time in the crater center was shorter than that in the WM center,and the solidification time in the subregion of the WM adjacent to the fusion line was longer than that in the any other subregion.That is the reason that the microsegrega-tion of the subregion of the WM adjacent to the fusion line was more serious,and the Laves phase,transformation from interdendritic liquid film,is more continuous here than that in other subregions.As the heat input increased,the solid/liquid coexistence temperature range of each subregion of the WM increased.The crystallization speed became slower in the meantime,and the diffusion of Nb at the solid/liquid interface was more complete.Therefore,the Laves phase content decreased,as shown in Fig.8a.

    Fig.10 Temperature range of solid/liquid coexistence of the WM in each subregion under different heat input conditions

    3 Conclusions

    (1)Lamellar segregation,regional segregation,and microsegregation were present in the TIG-joined WM of an Inconel-718 superalloy.

    (2)The directionality of the dendrites in the subregion of the WM adjacent to the fusion line is more obvious than at the WM center,but the Laves phase content is less.

    (3)When the heat input is fixed,the dendrites arm spacing of the subregion of the WM adjacent to the fusion line was wider than at the WM center,and the dendritic microsegregation is more serious,as well.

    (4)As the heat input increased,the dendrite arm spacing and the dendritic microsegregation of each WM subregion increased.

    (5)In spite of the fact that the lowest microsegregation rate was at the crater center,the regional segregation of the WM caused by rapid solidification led to increases in the Laves phase content,resulting in greater crack sensitivity in the crater.

    [1] Li R B,Yao M,Liu W C,et al.Isolation and determination for δ,γ′and γ″phases in Inconel 718 alloy.Scripta Materialia,2002,46(9):635-638.

    [2] Chang S H.In situ TEM observation of γ′,γ″and δ precipitations on Inconel 718 superalloy through HIP treatment. Journal of Alloys and Compounds,2009,486(1-2):716-721.

    [3] Radhakrishna C H,Rao K P.The formation and control of Laves phase in superalloy 718 welds.Journal of Materials Science,1997,32(8):1977-1984.

    [4] Odabasi A,Unlu N,Goller G,et al.A Study on Laser Beam Welding(LBW)Technique:Effect of Heat Input on the Microstructural Evolution of Superalloy Inconel 718.Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2010,41A(9):2357-2365.

    [5] Antonsson T,F(xiàn)redriksson H.The effect of cooling rate on the solidification of Inconel 718.Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2005,36(1):85-96.

    [6] Sivaprasad K,Raman S G S.Influence of magnetic arc oscillation and current pulsing on fatigue behavior of alloy 718 TIG weldments.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,448(1-2):120-127.

    [7] Manikandan S,Sivakumar D,Kamaraj M,et al.Laves Phase Control in Inconel 718 Weldments.Materials Science Forum. Trans Tech Publication,2012:614-619.

    [8] Manikandan S G K,Sivakumar D,Rao K P,et al.Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone.Journal of Materials Processing Technology,2014,214(2):358-364.

    [9] Liu F,Lin X,Leng H,et al.Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction.Optics and Laser Technology,2013,45:330-335.

    [10] Wang L,Dong J X,Tian Y L,et al.Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718.Journal of University of Science and Technology Beijing,2008,15(5):594-599.

    [11] Wang L,Li C Q,Dong J X,et al.An Investigation of Microsegregation and Liquid Density Redistribution during Solidification of Inconel 718.Chemical Engineering Communications,2009,196(6):754-765.

    [12] Wang L,Yao Y,Dong J,et al.Effect of Cooling Rates on Segregation and Density Variation in the Mushy Zone during Solidification of Superalloy Inconel 718.Chemical Engineering Communications,2010,197(12):1571-1585.

    [13] Cieslak M,Headley T,Knorovsky G,et al.A comparison of the solidification behavior of Incoloy 909 and Inconel 718. Metallurgical Transactions A,1990,21(1):479-488.

    [14] Knorovsky G A,Cieslak M J,Headley T J,et al.Inconel 718:A solidification diagram.Metallurgical Transactions A 1989,20(10):2149-2158.

    [15] Chen C L,Lu F Y.Stochastic Dynamics for Nonequilibrium Solute Distribution at Solid-Liquid Interface.Acta Metallurgica Sinica-English Letters,1997,33(5):455-460.

    *Ye Xin,Hua Xueming,Wu Yixiong and Lou Songnian,Welding Engineering and Technical Institute,Materials Science and Engineering Department,Shanghai Jiao Tong University,Shanghai,200240.Shanghai Key Laboratory of Materials Laser Processing and Modification,Shanghai,200240. Hua xueming,Corresponding author,E-mail:xmhua@sjtu.edu.cn

    国产男人的电影天堂91| 国产一区二区在线观看日韩| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 毛片女人毛片| 成人亚洲精品av一区二区| 精品久久久久久久人妻蜜臀av| 在线天堂最新版资源| 免费观看a级毛片全部| 淫秽高清视频在线观看| 麻豆乱淫一区二区| 亚洲国产日韩欧美精品在线观看| 纵有疾风起免费观看全集完整版 | 亚洲av福利一区| 精品人妻偷拍中文字幕| 内射极品少妇av片p| 真实男女啪啪啪动态图| 国语对白做爰xxxⅹ性视频网站| 床上黄色一级片| 国产精品精品国产色婷婷| 国产人妻一区二区三区在| 最近最新中文字幕大全电影3| 黄色配什么色好看| 97人妻精品一区二区三区麻豆| 精品一区在线观看国产| 国产老妇伦熟女老妇高清| 伊人久久国产一区二区| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 国产精品精品国产色婷婷| 日韩 亚洲 欧美在线| 天堂影院成人在线观看| 国产黄片美女视频| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 免费高清在线观看视频在线观看| 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频 | 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 欧美日韩亚洲高清精品| av福利片在线观看| 国产 亚洲一区二区三区 | 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 午夜视频国产福利| 国产亚洲5aaaaa淫片| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 十八禁国产超污无遮挡网站| 老司机影院毛片| 在线观看一区二区三区| 午夜福利视频精品| 99热这里只有精品一区| 美女脱内裤让男人舔精品视频| 免费av毛片视频| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 看黄色毛片网站| 午夜视频国产福利| 成人毛片60女人毛片免费| 日韩三级伦理在线观看| 久久精品夜色国产| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 国产精品三级大全| 亚洲精品成人av观看孕妇| 建设人人有责人人尽责人人享有的 | www.色视频.com| 欧美xxⅹ黑人| 亚洲国产日韩欧美精品在线观看| 久久99热6这里只有精品| 2021少妇久久久久久久久久久| 国产黄色小视频在线观看| 国产一区亚洲一区在线观看| 亚洲精品aⅴ在线观看| 美女脱内裤让男人舔精品视频| 国产乱人视频| 看非洲黑人一级黄片| 亚洲伊人久久精品综合| 国产真实伦视频高清在线观看| 免费观看a级毛片全部| 亚洲精品,欧美精品| 2022亚洲国产成人精品| 日本与韩国留学比较| 黄片wwwwww| 99久久中文字幕三级久久日本| 亚洲国产欧美人成| 国产综合精华液| 能在线免费看毛片的网站| 三级毛片av免费| 国产一级毛片在线| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人精品一区二区| 日韩中字成人| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 一本一本综合久久| 97超碰精品成人国产| 中文欧美无线码| 日本免费a在线| 欧美极品一区二区三区四区| 肉色欧美久久久久久久蜜桃 | 一级毛片我不卡| 国产成人精品一,二区| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 免费看av在线观看网站| 最近中文字幕2019免费版| 国产欧美另类精品又又久久亚洲欧美| 99热6这里只有精品| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 搡老妇女老女人老熟妇| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 国产精品一二三区在线看| 伦精品一区二区三区| 又大又黄又爽视频免费| 久久久久精品性色| 亚洲在久久综合| 亚洲美女视频黄频| 国产老妇伦熟女老妇高清| 久久久久久久久中文| 亚洲国产精品sss在线观看| 丝袜美腿在线中文| 国产探花在线观看一区二区| 亚洲精品久久久久久婷婷小说| 深爱激情五月婷婷| 国产在线一区二区三区精| 成年女人看的毛片在线观看| 亚洲欧洲日产国产| 啦啦啦中文免费视频观看日本| 狂野欧美激情性xxxx在线观看| 我的女老师完整版在线观看| 亚洲av成人av| 久久久久久九九精品二区国产| 久久久久免费精品人妻一区二区| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 乱人视频在线观看| 国产久久久一区二区三区| 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 欧美区成人在线视频| 国产成人福利小说| 久久精品国产亚洲网站| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 久久精品国产亚洲网站| 99视频精品全部免费 在线| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 午夜福利高清视频| 青青草视频在线视频观看| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 97在线视频观看| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的 | 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| av网站免费在线观看视频 | 夜夜爽夜夜爽视频| 自拍偷自拍亚洲精品老妇| av卡一久久| 亚洲三级黄色毛片| 91av网一区二区| 校园人妻丝袜中文字幕| 国产成人a区在线观看| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| 亚洲三级黄色毛片| 久久久午夜欧美精品| 只有这里有精品99| 三级毛片av免费| av在线播放精品| 毛片女人毛片| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 一边亲一边摸免费视频| 99热6这里只有精品| a级一级毛片免费在线观看| 国产伦一二天堂av在线观看| 亚洲av日韩在线播放| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 久久久久久久久久久丰满| 不卡视频在线观看欧美| 国产毛片a区久久久久| 欧美日韩在线观看h| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 一级av片app| 九草在线视频观看| 男女下面进入的视频免费午夜| 搡老乐熟女国产| 人妻系列 视频| 免费看不卡的av| 国产精品综合久久久久久久免费| 国产av不卡久久| 在线免费十八禁| 欧美成人午夜免费资源| 国产v大片淫在线免费观看| 青春草国产在线视频| 大又大粗又爽又黄少妇毛片口| 国产av码专区亚洲av| 亚洲熟女精品中文字幕| 久久久成人免费电影| 国产精品女同一区二区软件| 国产免费视频播放在线视频 | 亚洲最大成人中文| 国产永久视频网站| 亚洲av男天堂| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 麻豆av噜噜一区二区三区| 精品99又大又爽又粗少妇毛片| 成人一区二区视频在线观看| 在线天堂最新版资源| 亚洲国产欧美在线一区| 婷婷色综合www| 极品少妇高潮喷水抽搐| 久久久久久久久久人人人人人人| 日本wwww免费看| 好男人视频免费观看在线| 欧美3d第一页| 91狼人影院| 在线观看一区二区三区| 日韩成人av中文字幕在线观看| 欧美成人a在线观看| 久久精品久久久久久久性| 久久久久免费精品人妻一区二区| 日韩av不卡免费在线播放| xxx大片免费视频| 人妻系列 视频| 97超碰精品成人国产| 国产一区二区三区综合在线观看 | 热99在线观看视频| 两个人视频免费观看高清| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 色综合亚洲欧美另类图片| 国内精品宾馆在线| 老女人水多毛片| 国产av码专区亚洲av| 色综合站精品国产| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 永久免费av网站大全| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 一个人看视频在线观看www免费| 热99在线观看视频| 国产黄色小视频在线观看| 啦啦啦啦在线视频资源| 亚洲无线观看免费| 日韩欧美 国产精品| 国产综合精华液| 51国产日韩欧美| 亚洲性久久影院| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 久久99热这里只频精品6学生| 午夜福利在线观看吧| 久久99热6这里只有精品| h日本视频在线播放| 亚洲综合色惰| 一级毛片我不卡| 久久久精品免费免费高清| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 晚上一个人看的免费电影| 色综合色国产| 91av网一区二区| 国产精品女同一区二区软件| 成人无遮挡网站| 狠狠精品人妻久久久久久综合| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 欧美性感艳星| 亚洲精品第二区| 99re6热这里在线精品视频| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 免费大片18禁| 三级毛片av免费| 人妻一区二区av| 2022亚洲国产成人精品| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 寂寞人妻少妇视频99o| 欧美日韩视频高清一区二区三区二| 亚洲国产成人一精品久久久| 成年女人看的毛片在线观看| 亚洲av成人av| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| 天堂网av新在线| av在线蜜桃| 成人特级av手机在线观看| 久久久久久久国产电影| 免费av观看视频| 哪个播放器可以免费观看大片| 欧美成人a在线观看| 亚洲图色成人| 全区人妻精品视频| av免费在线看不卡| 国产黄色视频一区二区在线观看| 日韩欧美一区视频在线观看 | 国产成人精品久久久久久| 国产精品三级大全| 超碰97精品在线观看| av天堂中文字幕网| 菩萨蛮人人尽说江南好唐韦庄| 天美传媒精品一区二区| 男女那种视频在线观看| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级 | 国产精品久久久久久精品电影| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 亚洲国产av新网站| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 91精品国产九色| 久久久久久久久久人人人人人人| 国产精品一区二区三区四区久久| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 欧美精品国产亚洲| 午夜精品国产一区二区电影 | 国产精品久久久久久久久免| 亚洲最大成人中文| 成人国产麻豆网| 简卡轻食公司| 伊人久久精品亚洲午夜| 久久精品夜夜夜夜夜久久蜜豆| 亚洲va在线va天堂va国产| 免费av观看视频| 美女主播在线视频| 午夜免费激情av| 国产一区二区三区综合在线观看 | 高清欧美精品videossex| 免费观看精品视频网站| 日日啪夜夜撸| 国产精品熟女久久久久浪| 午夜精品一区二区三区免费看| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 免费看不卡的av| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 欧美人与善性xxx| 爱豆传媒免费全集在线观看| 亚洲精品中文字幕在线视频 | 少妇的逼水好多| 日韩大片免费观看网站| 国产单亲对白刺激| 日本免费在线观看一区| 高清av免费在线| 三级国产精品片| 免费大片黄手机在线观看| 一边亲一边摸免费视频| 直男gayav资源| 亚洲熟女精品中文字幕| 成人av在线播放网站| 黄色一级大片看看| 听说在线观看完整版免费高清| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 大片免费播放器 马上看| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 亚洲一区高清亚洲精品| 国产乱人视频| 国产免费视频播放在线视频 | 亚洲综合色惰| 日韩一区二区三区影片| 国产成人精品久久久久久| 亚洲精品国产成人久久av| 极品教师在线视频| 午夜福利在线观看免费完整高清在| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 日韩精品有码人妻一区| 国产成人aa在线观看| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 国产真实伦视频高清在线观看| 好男人在线观看高清免费视频| 日韩在线高清观看一区二区三区| 日韩伦理黄色片| 三级毛片av免费| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 精品久久久噜噜| 国产成人91sexporn| 久久99热6这里只有精品| 你懂的网址亚洲精品在线观看| 一个人免费在线观看电影| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 国产单亲对白刺激| 日韩精品青青久久久久久| 亚洲av免费高清在线观看| 亚洲最大成人中文| 国产高清国产精品国产三级 | 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 99热这里只有精品一区| 亚州av有码| 日韩一区二区视频免费看| 中国国产av一级| 内射极品少妇av片p| 一个人观看的视频www高清免费观看| 久久久久久久久久人人人人人人| 禁无遮挡网站| 婷婷色麻豆天堂久久| 免费黄色在线免费观看| 免费观看a级毛片全部| 中文字幕免费在线视频6| 免费av毛片视频| 日韩视频在线欧美| 青春草亚洲视频在线观看| 看免费成人av毛片| 精品久久久精品久久久| 日韩人妻高清精品专区| 一级av片app| 久久99热这里只有精品18| 国产日韩欧美在线精品| 亚洲国产av新网站| 日韩电影二区| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 精品人妻熟女av久视频| 婷婷色综合大香蕉| 日本一本二区三区精品| 中国国产av一级| 国产精品.久久久| 99久国产av精品国产电影| 午夜日本视频在线| 免费黄网站久久成人精品| 亚洲自偷自拍三级| 尾随美女入室| 97热精品久久久久久| 边亲边吃奶的免费视频| 嘟嘟电影网在线观看| 亚洲av.av天堂| 天堂av国产一区二区熟女人妻| 校园人妻丝袜中文字幕| av.在线天堂| 秋霞在线观看毛片| 亚洲美女视频黄频| 秋霞伦理黄片| 亚洲aⅴ乱码一区二区在线播放| av.在线天堂| 人妻系列 视频| 国产精品av视频在线免费观看| 中文字幕久久专区| 搡老妇女老女人老熟妇| 免费观看在线日韩| 久久精品久久久久久久性| 亚洲怡红院男人天堂| 欧美潮喷喷水| 欧美zozozo另类| 精品一区二区三区人妻视频| 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看 | 婷婷色综合大香蕉| 午夜精品一区二区三区免费看| 欧美性感艳星| 高清午夜精品一区二区三区| a级毛色黄片| 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| av卡一久久| 22中文网久久字幕| 精品久久久久久成人av| 国产黄a三级三级三级人| 天天一区二区日本电影三级| 男人和女人高潮做爰伦理| 国产午夜精品久久久久久一区二区三区| 极品少妇高潮喷水抽搐| 久久久精品欧美日韩精品| av福利片在线观看| 免费黄色在线免费观看| 久久99热这里只有精品18| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 久久久久久九九精品二区国产| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 黄色配什么色好看| 简卡轻食公司| 亚洲欧洲国产日韩| 少妇的逼水好多| 好男人视频免费观看在线| 男女边摸边吃奶| av线在线观看网站| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 日韩一区二区三区影片| 色吧在线观看| 欧美激情国产日韩精品一区| 一本一本综合久久| 3wmmmm亚洲av在线观看| 成年女人在线观看亚洲视频 | 久久精品国产亚洲av天美| 男女边吃奶边做爰视频| 国产精品一区二区在线观看99 | 三级国产精品欧美在线观看| 晚上一个人看的免费电影| 一级片'在线观看视频| 成人高潮视频无遮挡免费网站| 国产片特级美女逼逼视频| 日韩伦理黄色片| 日韩欧美一区视频在线观看 | 久久久久久九九精品二区国产| 中文字幕免费在线视频6| 亚洲国产欧美人成| 老司机影院毛片| 国产乱来视频区| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 国产精品熟女久久久久浪| 日本午夜av视频| 可以在线观看毛片的网站| 毛片一级片免费看久久久久| 国产黄色免费在线视频| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 身体一侧抽搐| 免费黄网站久久成人精品| 综合色av麻豆| 国产有黄有色有爽视频| 免费看日本二区| 日韩av免费高清视频| 亚洲经典国产精华液单| 日韩一区二区三区影片| 黑人高潮一二区| 黄色配什么色好看| 最近的中文字幕免费完整| 日日撸夜夜添| 久久精品国产亚洲av涩爱| 成人性生交大片免费视频hd| 亚洲国产av新网站| 亚洲无线观看免费| 老司机影院成人| 日韩不卡一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 国产亚洲av嫩草精品影院| 亚洲精品,欧美精品| 精品久久久噜噜| 一个人观看的视频www高清免费观看| 婷婷色麻豆天堂久久| 99热这里只有是精品50| 69av精品久久久久久| freevideosex欧美| 99热这里只有是精品50| 卡戴珊不雅视频在线播放| 蜜臀久久99精品久久宅男| 亚洲在线观看片| 男女视频在线观看网站免费| 国产av在哪里看| 日韩视频在线欧美| 大片免费播放器 马上看| av播播在线观看一区| 成人一区二区视频在线观看| av国产久精品久网站免费入址| 国产精品无大码| 国产伦精品一区二区三区四那| 一区二区三区乱码不卡18| 精品人妻视频免费看| 天堂av国产一区二区熟女人妻| 插阴视频在线观看视频| 精品久久久久久久久亚洲| 免费看不卡的av| 日韩亚洲欧美综合| 日韩制服骚丝袜av| 内射极品少妇av片p| 最近2019中文字幕mv第一页| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 |