• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activity estimation in radioimmunotherapy using magnetic nanoparticles

    2015-10-31 02:49:15SamiraRasanehHosseinRajabiFaribaJohariDaha
    Chinese Journal of Cancer Research 2015年2期

    Samira Rasaneh, Hossein Rajabi, Fariba Johari Daha

    1Department of Radioisotope, Nuclear science and Technology Research Institute, Tehran 14115-331, Iran;2Department of Medical Physics,School of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran

    Correspondence to: Samira Rasaneh. Department of Radioisotope, Nuclear science and Technology Research Institute, Tehran 14115-331, Iran. Email: srasaneh@aeoi.org.ir.

    Activity estimation in radioimmunotherapy using magnetic nanoparticles

    Samira Rasaneh1, Hossein Rajabi2, Fariba Johari Daha1

    1Department of Radioisotope, Nuclear science and Technology Research Institute, Tehran 14115-331, Iran;2Department of Medical Physics,School of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran

    Correspondence to: Samira Rasaneh. Department of Radioisotope, Nuclear science and Technology Research Institute, Tehran 14115-331, Iran. Email: srasaneh@aeoi.org.ir.

    Objective: Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized177Lutetium (177Lu)-trastuzumabiron oxide nanoparticles as a double radiopharmaceutical agent for treatment and better estimation of organ activity in a new way by magnetic resonance imaging (MRI).

    Methods:177Lu-trastuzumab-iron oxide nanoparticles were synthesized and all the quality control tests such as labeling yield, nanoparticle size determination, stability in buffer and blood serum up to 4 d,immunoreactivity and biodistribution in normal mice were determined. In mice bearing breast tumor, liver and tumor activities were calculated with three methods: single photon emission computed tomography(SPECT), MRI and organ extraction, which were compared with each other.

    Results: The good results of quality control tests (labeling yield: 61%±2%, mean nanoparticle hydrodynamic size: 41±15 nm, stability in buffer: 86%±5%, stability in blood serum: 80%±3%,immunoreactivity: 80%±2%) indicated that177Lu-trastuzumab-iron oxide nanoparticles could be used as a double radiopharmaceutical agent in mice bearing tumor. Results showed that177Lu-trastuzumab-iron oxide nanoparticles with MRI had the ability to measure organ activities more accurate than SPECT.

    Conclusions: Co-conjugating radiopharmaceutical to MRI contrast agents such as iron oxide nanoparticles may be a good way for better dosimetry in nuclear medicine treatment.

    Radioimmunotherapy (RIT); activity estimation; lutetium-177; herceptin; magnetic nanoparticles;magnetic resonance imaging (MRI)

    Introduction

    In recent years, targeted radioimmunotherapy (RIT)using monoclonal antibodies directed to cancer cell surface antigens has been clinically validated (1-4). In RIT, antibodies are labeled with radioisotopes and used for localization and therapy of cancer (5). There is now a preponderance of evidence to suggest that RIT will be most successful in the treatment of micrometastatic disease (6).

    Calculation of the energy delivered to critical organs and tumors is essential to predict both organ toxicity and tumor response. The current practice (7) to perform dosimetry is combination planar whole-body imaging to determine absolute activity in the organs and medical internal radiation dose (MIRD) S-factor tables derived from five anthropomorphic phantom models (8).

    A limit of this approach is the inaccuracy of activity measurements obtained from planar imaging (9). Organ dosimetry requires multiple views, the often highly subjective practice of drawing of regions of interest around organs, estimates of organ volume, calculation of fractional energy deposition in organs, difficult to correct background counts, attenuation correction, and scatter correction (9,10).

    Magnetic resonance imaging (MRI) and computed tomography (CT) are high-resolution modalities thatcan be used to provide the anatomical information for dosimetry and treatment planning, however, their image sensitivity is lower than that of single photon emission computed tomography (SPECT) (11-13). An idea to solve the problems is to use a high-resolution modality (e.g.,MRI) for direct imaging of the radiopharmaceutical agents.

    We have already synthesized177Lutetium (177Lu)-trastuzumab as a radiopharmaceutical agent for RIT of breast cancer and performed some preliminary studies(14,15). In the present study, we conjugated177Lutrastuzumab to iron oxide nanoparticles. This type of magnetic nanoparticles is routinely used as a negative contrast agent in MRI and can improve the sensitivity of this modality (16,17). It was investigated whether the activity distribution of177Lu-trastuzumab-iron oxide nanoparticles in organs can be determined more accurately by MRI.

    Materials and methods

    Reagents and chemicals

    Trastuzumab, a humanized IgG1 monoclonal antibody directed against human epidermal growth factor receptor 2 (HER2), was purchased in 150 mg vial from Genentech Inc. (South San Francisco, USA). 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA) was prepared from Macrocyclic Company, and other chemical agents were purchased from Sigma.

    Mice bearing breast tumor

    The tumor was originally established from a spontaneous breast tumor (a murine mammary carcinoma) in an inbred female BALB/c mouse. The breast tumor model was established by subcutaneous implantation of the tumor fragments (about 1 mm3) in the right flank region of normal inbred female BALB/c mice (20-25 g, 8-10 weeks old). The biodistribution and imaging study was performed in the mice bearing breast tumors. The interaction of trastuzumab on tumor cells was assessed by immunohistochemistry (18). Animal experiments were performed in compliance with the regulation of our institution and with generally accepted guidelines governing such work.

    Conjugation of trastuzumab-DOTA to magnetic nanoparticles

    Trastuzumab was conjugated to DOTA according to the Yordanov method (13). Dextran-coated iron oxide nanoparticles were prepared using co-precipitation method that described completely before (16,17).

    Sodium meta-periodate (30 mg) was added to iron oxide nanoparticles (1,400 mg) in citrate buffer (2 mL, 0.02 mol/L)and incubated for 5 h in the dark place. Trastuzumab-DOTA(200 mg) was added to the activated nanoparticle solution and incubated at 4 ℃ for 16 h. The mixture was deoxidized by adding sodium cyanoborohydride at 4 ℃ for 2 h.

    Radiolabeling of DOTA-trastuzumab-nanoparticles with177Lu177LuCl3(5 mCi, with typical specific activity 20 Ci/mg)was added to trastuzumab-DOTA-nanoparticles (150 μg) in ammonium acetate buffer (0.25 mol/L, pH =7.0) and heated for 3 h at 37 ℃. The complex was purified by gel filtration on Sephadex G-25 column. The last Fe (mg)/activity (mCi)ratio was determined (13-17).

    Quality control tests

    The size distribution of the nanoparticles was analyzed using Zeta Sizer 3000HS (Malvern, UK). The core size of nanoparticles was determined by transmission electronic microscopy (TEM) (JEM 2010, JEOL, Japan). Labeling yield of the last complex (177Lu-trastuzumab-nanoparticle)was analyzed by instant thin layer chromatography (ITLC)(14,15). The stability of the complex in phosphate buffer and human blood serum up to 7 d was determined (14). The immunoreactivity of the complex on SKBr3 cells was also checked based on the method described by Lindmo et al. (19). SKBr3 cells are hormone-independent cells originally derived from a breast adenocarcinoma expressing high levels of HER2 (20).

    The biodistribution study was performed in mice bearing breast tumor at 4 and 24 h post injection [300 μCi,100 μg (Fe)/0.1 mL] of177Lu-trastuzumab-nanoparticle and177Lu-trastuzumab to find the difference between their biodistributions.

    Activity determination by MRI

    177Lu-trastuzumab-nanoparticles [300 μCi, 100 μg (Fe)/0.1 mL]were injected intravenously into 20 mice bearing breast tumors and randomly divided into four groups (n=5). At 1,3, 5 and 7 d post injection, the animals were anesthetized(using combination of xylazine hydrochloride and ketamine hydrochloride). Imaging was performed with 1.5 Tesla MRI system (Siemens, Symphony) and a knee coil. All animalswere scanned by a fast gradient echo pulse sequence(TR =3,000, TE =90, flip angle =10°) in 288×384 matrix size. Measurements of signal intensities (liver and tumor)were performed directly on the T2 images using an operator-defined region of interest (ROI) with a constant size of pixels. The relative change in signal intensity before SIbeforeand after administration of the complex with the complex SIafterwas calculated as follows:

    Table 1 The complex (Fe3O4:trastuzumab:177Lu) characteristics

    Figure 1 Nanoparticle size distribution determined by DLS technique with the mean of 41±15 nm. DLS, dynamic light scattering.

    The relation between iron content in organs and enhancement in images was obtained by imaging from a phantom with definite concentration of iron oxide nanoparticles. The mean tumor and liver volumes were determined from MRI images. After calculation of iron content in each organ, the activity was evaluated by the complex Fe (mg)/Lu (mCi) ratio.

    Activity determination by SPECT imaging

    After MRI, each mouse was scanned using a small field-ofview SPECT (E.cam, Siemens Medical Systems) equipped with a low-energy, high-resolution collimator (LEHR). The images were recorded with 550,000 counts and in matrix size of 256×256. The energy windows were set to 113±11 keV and 208±21 keV to limit the main γ-photons of177Lu. After reconstruction, the computer-assisted ROI technique was applied to estimate the counts presenting in livers and tumors as described by van Reenen et al. (21). Considering the sensitivity of SPECT system, the mean liver and tumor activity was calculated for each mouse.

    Activity determination by tissue extraction

    When imaging was completed, the animals were killed by CO2gas and dissected. The livers and tumors were removed, weighed and counted for177Lu using a dualchannel automated gamma counter (ORTEC EG&G).

    Statistical analysis

    SPSS package (version 13.0, SPSS Inc., Chicago, IL, USA)was used for statistical analyses. For all the tests, P<0.05 was considered as statistically significant. Student’s t-test was used to analyze the activity estimation data point by point.

    Results

    Quality control tests

    The complex characteristics are summarized in Table 1. The mean hydrodynamic size of the nanoparticles was 41±15 nm by dynamic light scattering (DLS) technique (the data are shown in Figure 1) and the average core size was 9.0±2.5 nm. The labeling yield and immunoreactivity were 61%±2% and 80%±2% respectively. On average, 86%±5% and 80%±3% of177Lu-trastuzumab were stable in phosphate buffer and in human blood serum up to 7 d, respectively. Nanoparticle-trastuzumab was stable in phosphate buffer up to 8 d. The size increasing was only 4% and no free trastuzumab was measurable in phosphate buffer saline(PBS) at this period.

    The biodistribution study of177Lu-trastuzumab and177Lu-trastuzumab-nanoparticles was performed in mice bearing breast tumor and the comparison results are shown in Figure 2. As can be seen,177Lu-trastuzumab-nanoparticles aggregated in liver more (about 7%) than177Lu-trastuzumab but there was no specific accumulation in other organs(P<0.05).

    Figure 2 The comparison biodistribution of177Lu-trastuzumab(A) and177Lu-trastuzumab-nanoparticles (B) in mice bearing breast tumor.

    Activity determination

    The immunohistochemistry results showed the spontaneous breast tumor that we used in this study expressed medium levels of HER2. The MRI and SPECT images of a representative mouse before and after administration of the complex are presented in Figure 3 and Figure 4 respectively. The MRI image of phantom with definite concentration of iron oxide nanoparticles and its calibration curve are shown in Figure 5. The mean activity in tumor and liver determined by three methods are presented in Table 2. As can be seen, the activity calculation using MRI images was nearer to real amounts than that using SPECT images. The standard deviation amounts in activity estimation by MRI was statistically lower than that by SPECT (P<0.05).

    Figure 3 The MRI images before and 1 d after injection of the complex (100 μg Fe). MRI, magnetic resonance imaging.

    Figure 4 The SPECT images at 1 and 7 d post injection of the complex (300 μCi Lu). The arrows show the tumors. SPECT,single photon emission computed tomography.

    Discussion

    In RIT, accurate estimation of the dose delivered to metastatic tumors and critical organs is essential for treatment planning and predicting RIT response (5,22). Accurate dose estimation requires exact measurements of organ volume and radiopharmaceutical content (8,22).

    Figure 5 The MRI image of phantom with definite concentration of iron oxide nanoparticles and its calibration curve. MRI,magnetic resonance imaging.

    Table 2 The activity (x±s) in tumor and liver determined by three different methods at 1, 3, 5 and 7 d post injection of the complex

    Nuclear medicine systems do not provide the required resolution for dose estimation to metastatic small tumors accurately.

    MRI is an anatomical imaging system with highresolution and low-sensitivity images and the possibility to adjust the contrast to a desirable level (11,12,17). In this regard, MRI can be considered as complementary modality to scintigraphy because SPECT has high-sensitivity lowresolution images (10). Combination of these modalities can solve many problems related to RIT. One option available is making the hybrid systems to acquire co-registered and fused images. It was reported that using co-registration micro-positron emission tomography (microPET) with MRI images could confirm the position of86Y-trastuzumab uptake relative to various organs. Their results demonstrated the usefulness of combined microPET and MRI for the evaluation of novel therapeutics (11). In another study,microPET/CT and microMRI images were applied for in vivo evaluation of64Cu-NO2A-8-Aoc-BBN(7-14)NH2in T-47D tumor-bearing mouse. The pharmacokinetic profile justifies investigation of this bioconjugate as a potentially useful diagnostic/therapeutic agent (23). Researchers applied the volume-rendered image, fused microSPECT/ CT image from111Indium-DOTA(GSG)-G3-C12 for better detecting localization in the tumor and clearance from the renal/urinary pathway (24). In this study, we synthesized a dual radiopharmaceutical agent for therapy of breast cancer that could be followed by both SPECT and MRI systems. For better estimating the organs activity,177Lu-trastuzumab was conjugated to iron oxide nanoparticles in order to be traced by MRI systems. Iron oxide nanoparticles are magnetic nanoparticles that produce a negative signal in their aggregation position. The main objective of this study was to determine the accumulated activity in organs in a new method by177Lu-trastuzumab-iron oxide nanoparticles and MRI. The organ activity was determined with three different methods (MRI, SPECT imaging and tissue extraction) and compared with each other. The results showed very good correlation between the data derived MRI images and tissue extraction. So,177Lu-trastuzumabiron oxide nanoparticles with MRI had the ability to measure organ activity more accurately than with SPECT imaging and thus the dosimetry in this strategy could be performed more accurately than usual methods.

    Conclusions

    177Lu-trastuzumab-iron oxide nanoparticles showed promising properties as a radioimmunoconjugate for better calculation of organs activity using MRI in mice bearing tumor. At this stage, we can conclude that the complex is potentially useful in providing high quality images for patient-specific dosimetry. However, further investigation is required to optimize the protocol of imaging and possibly better contrast agents should be used.

    Acknowledgements

    Disclosure: The authors declare no conflict of interest.

    1. Pe?a Y, Perera A, Batista JF. Immunoscintigraphy andradioimmunotherapy in cuba: experiences with labeled monoclonal antibodies for cancer diagnosis and treatment(1993-2013). MEDICC Rev 2014;16:55-60.

    2. Yong KJ, Milenic DE, Baidoo KE, et al. 212Pbradioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint. Br J Cancer 2013;108:2013-20.

    3. Maguire WF, McDevitt MR, Smith-Jones PM, et al. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for α-particle radioimmunotherapy of cancer. J Nucl Med 2014;55:1492-8.

    4. Kang GW, Kang HJ, Shin DY, et al. Radioimmunotherapy with (131)i-rituximab in a patient with diffuse large B-cell lymphoma relapsed after treatment with (90)y-ibritumomab tiuxetan. Nucl Med Mol Imaging 2013;47:281-4.

    5. Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides. Immunotherapy 2014;6:431-58.

    6. Sendur MA, Aksoy S, Ozdemir NY, et al. The efficacy of adjuvant trastuzumab in HER-2 positive breast cancer with axillary lymph node metastases according to the treatment duration. Curr Med Res Opin 2014;30:2535-42.

    7. Siegel JA, Thomas SR, Stubbs JB, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S-61S.

    8. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023-7.

    9. Dewaraja YK, Schipper MJ, Shen J, et al. Tumor-Absorbed Dose Predicts Progression-Free Survival Following 131I-Tositumomab Radioimmunotherapy. J Nucl Med 2014;55:1047-53.

    10. Giap HB, Macey DJ, Podoloff DA. Development of a SPECT-based three-dimensional treatment planning system for radioimmunotherapy. J Nucl Med 1995;36:1885-94.

    11. Palm S, Enmon RM Jr, Matei C, et al. Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med 2003;44:1148-55.

    12. Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comput Assist Tomogr 1993;17:536-46.

    13. Yordanov AT, Hens M, Pegram C, et al. Antitenascin antibody 81C6 armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands. Nucl Med Biol 2007;34:173-83.

    14. Rasaneh S, Rajabi H, Babaei MH, et al. Radiolabeling of trastuzumab with 177Lu via DOTA, a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl Med Biol 2009;36:363-9.

    15. Rasaneh S, Rajabi H, Hossein Babaei M, et al. Toxicity of trastuzumab labeled 177Lu on MCF7 and SKBr3 cell lines. Appl Radiat Isot 2010;68:1964-6.

    16. Rasaneh S, Rajabi H, Babaei MH, et al. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. J Nanopart Res 2011;13:2285-93.

    17. Funovics MA, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843-50.

    18. Johnstone AP, Thorpe R. eds. Immunochemistry in Practice. Berlin: Wiley, 1996.

    19. Lindmo T, Boven E, Cuttitta F, et al. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 1984;72:77-89.

    20. Koyama Y, Barrett T, Hama Y, et al. In vivo molecular imaging to diagnose and subtype tumors through receptortargeted optically labeled monoclonal antibodies. Neoplasia 2007;9:1021-9.

    21. van Reenen PC, L?tter MG, Heyns AD, et al. Quantification of the distribution of 111In-labelled platelets in organs. Eur J Nucl Med 1982;7:80-4.

    22. Gardin I, Bouchet LG, Assié K, et al. Voxeldoes: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 2003;18:109-15.

    23. Prasanphanich AF, Retzloff L, Lane SR, et al. In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH(2)]: a site-directed radiopharmaceutical for positronemission tomography imaging of T-47D human breast cancer tumors. Nucl Med Biol 2009;36:171-81.

    24. Schettino CJ, Kramer EL, Noz ME, et al. Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AJR Am J Roentgenol 2004;183:519-24.

    Cite this article as: Rasaneh S, Rajabi H, Johari Daha F. Activity estimation in radioimmunotherapy using magnetic nanoparticles. Chin J Cancer Res 2015;27(2):203-208. doi: 10.3978/j.issn.1000-9604.2015.03.06

    10.3978/j.issn.1000-9604.2015.03.06

    Submitted Jul 08, 2014. Accepted for publication Dec 11, 2014.

    View this article at: http://dx.doi.org/10.3978/j.issn.1000-9604.2015.03.06

    中文在线观看免费www的网站| 婷婷亚洲欧美| 99国产极品粉嫩在线观看| 色吧在线观看| 毛片一级片免费看久久久久| 免费看av在线观看网站| 亚洲欧美日韩东京热| 久久99精品国语久久久| 九色成人免费人妻av| 亚洲婷婷狠狠爱综合网| 一卡2卡三卡四卡精品乱码亚洲| 国产伦理片在线播放av一区 | 亚洲经典国产精华液单| 久久精品久久久久久噜噜老黄 | 秋霞在线观看毛片| 国产伦精品一区二区三区四那| 成人特级黄色片久久久久久久| 五月伊人婷婷丁香| 一个人免费在线观看电影| 秋霞在线观看毛片| 亚洲在久久综合| 日产精品乱码卡一卡2卡三| 精品久久久噜噜| 大香蕉久久网| 草草在线视频免费看| 日本爱情动作片www.在线观看| 51国产日韩欧美| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 日韩欧美三级三区| 亚洲va在线va天堂va国产| 久久精品国产亚洲av天美| 免费看光身美女| 久久99蜜桃精品久久| 淫秽高清视频在线观看| a级毛色黄片| 看黄色毛片网站| 国内少妇人妻偷人精品xxx网站| 天堂√8在线中文| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆| 成人特级黄色片久久久久久久| 亚洲综合色惰| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站| 黄色日韩在线| 亚洲av免费在线观看| 性色avwww在线观看| 别揉我奶头 嗯啊视频| 免费无遮挡裸体视频| 精品久久久久久久久亚洲| 综合色丁香网| 免费看av在线观看网站| 内射极品少妇av片p| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 国产精品伦人一区二区| h日本视频在线播放| 精华霜和精华液先用哪个| а√天堂www在线а√下载| 免费看av在线观看网站| 岛国毛片在线播放| av免费在线看不卡| 久99久视频精品免费| 99精品在免费线老司机午夜| 亚洲真实伦在线观看| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 日韩av在线大香蕉| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 99久久中文字幕三级久久日本| 能在线免费看毛片的网站| 天堂影院成人在线观看| 日韩欧美 国产精品| 九色成人免费人妻av| 一进一出抽搐动态| 亚洲人成网站在线观看播放| 少妇人妻一区二区三区视频| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠久久av| 国产精品日韩av在线免费观看| 国产黄色视频一区二区在线观看 | 国产乱人视频| 69人妻影院| 亚洲人成网站在线播| 亚洲经典国产精华液单| АⅤ资源中文在线天堂| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 久久精品国产清高在天天线| 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 欧美潮喷喷水| 精品人妻视频免费看| 超碰av人人做人人爽久久| 国产v大片淫在线免费观看| 亚洲欧美日韩东京热| 精品国产三级普通话版| 老司机影院成人| 国产精品野战在线观看| 婷婷色综合大香蕉| 禁无遮挡网站| 国产成人午夜福利电影在线观看| 少妇丰满av| 久久午夜福利片| 男女那种视频在线观看| 久久99精品国语久久久| 丝袜美腿在线中文| 日韩视频在线欧美| 成人三级黄色视频| 毛片女人毛片| 尾随美女入室| 久久久久久伊人网av| 午夜精品在线福利| 久久久欧美国产精品| 久久国产乱子免费精品| 免费观看的影片在线观看| 中文字幕久久专区| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 日韩视频在线欧美| 免费观看a级毛片全部| 六月丁香七月| 麻豆一二三区av精品| av天堂在线播放| 狠狠狠狠99中文字幕| 日本在线视频免费播放| 男女啪啪激烈高潮av片| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 国产高潮美女av| 偷拍熟女少妇极品色| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 床上黄色一级片| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 长腿黑丝高跟| 如何舔出高潮| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx在线观看| 成人二区视频| 亚洲成人av在线免费| 国产成人精品婷婷| 欧美成人免费av一区二区三区| 国产老妇女一区| 亚洲国产欧洲综合997久久,| 国产v大片淫在线免费观看| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 如何舔出高潮| 男的添女的下面高潮视频| 日本免费a在线| 别揉我奶头 嗯啊视频| 我的老师免费观看完整版| 日韩强制内射视频| 偷拍熟女少妇极品色| 国产精品永久免费网站| 日韩一本色道免费dvd| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 免费看a级黄色片| 免费搜索国产男女视频| 国产成人午夜福利电影在线观看| av免费在线看不卡| 免费看日本二区| 女同久久另类99精品国产91| 99九九线精品视频在线观看视频| 精品人妻一区二区三区麻豆| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 一区福利在线观看| 韩国av在线不卡| 国产精品.久久久| 亚洲熟妇中文字幕五十中出| 免费黄网站久久成人精品| av在线蜜桃| 免费大片18禁| 啦啦啦韩国在线观看视频| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 熟女人妻精品中文字幕| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色日韩在线| 国产视频首页在线观看| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 国产淫片久久久久久久久| 黄色配什么色好看| 中国国产av一级| av黄色大香蕉| 日本色播在线视频| 三级毛片av免费| 三级经典国产精品| 深爱激情五月婷婷| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 精品无人区乱码1区二区| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 丝袜喷水一区| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 日本成人三级电影网站| 亚洲七黄色美女视频| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 国产成人aa在线观看| 看十八女毛片水多多多| 18禁在线播放成人免费| 国产探花在线观看一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 给我免费播放毛片高清在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧洲日产国产| 最近最新中文字幕大全电影3| 亚洲欧美精品专区久久| 一进一出抽搐动态| 三级国产精品欧美在线观看| 在线观看午夜福利视频| 国产精品国产高清国产av| 亚洲国产欧美人成| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 99久国产av精品| 悠悠久久av| 99久久无色码亚洲精品果冻| 不卡视频在线观看欧美| a级毛片a级免费在线| 久久久a久久爽久久v久久| 亚洲成人中文字幕在线播放| 国产日本99.免费观看| 在线天堂最新版资源| 69人妻影院| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 亚洲一区高清亚洲精品| 亚洲精品日韩在线中文字幕 | 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 欧美区成人在线视频| 一夜夜www| 久久这里有精品视频免费| 国产不卡一卡二| 免费在线观看成人毛片| 精品人妻偷拍中文字幕| 久久久国产成人免费| 波野结衣二区三区在线| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 精品午夜福利在线看| 亚洲人成网站在线播| 亚洲精品久久久久久婷婷小说 | 秋霞在线观看毛片| 大型黄色视频在线免费观看| 国产淫片久久久久久久久| 女同久久另类99精品国产91| 亚洲高清免费不卡视频| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 久久这里有精品视频免费| av免费在线看不卡| 精品久久久久久久久久久久久| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 午夜福利在线观看免费完整高清在 | 国产精品久久电影中文字幕| 亚洲精品成人久久久久久| 国产成人aa在线观看| 免费观看在线日韩| 99riav亚洲国产免费| 日本熟妇午夜| 深爱激情五月婷婷| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看吧| 内射极品少妇av片p| 日韩强制内射视频| 免费av观看视频| 少妇的逼好多水| 久久久a久久爽久久v久久| 精品国产三级普通话版| 高清毛片免费看| 中文欧美无线码| 秋霞在线观看毛片| 日本五十路高清| 乱系列少妇在线播放| 久久精品91蜜桃| 亚洲五月天丁香| 亚洲最大成人中文| 亚洲av熟女| 欧美日韩国产亚洲二区| 我要搜黄色片| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 国产伦理片在线播放av一区 | 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看| 久久九九热精品免费| 国产白丝娇喘喷水9色精品| 日日干狠狠操夜夜爽| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 国产午夜精品论理片| 九九热线精品视视频播放| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 亚洲不卡免费看| 97人妻精品一区二区三区麻豆| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 韩国av在线不卡| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 熟女电影av网| 99久久精品国产国产毛片| 九九在线视频观看精品| 免费观看的影片在线观看| 99视频精品全部免费 在线| 国产精品久久视频播放| 插逼视频在线观看| 国模一区二区三区四区视频| 国产老妇女一区| 一区二区三区免费毛片| 美女脱内裤让男人舔精品视频 | 国产成人freesex在线| 国产精品精品国产色婷婷| 看片在线看免费视频| 精品久久久久久久久av| 人人妻人人看人人澡| 国产一区二区亚洲精品在线观看| 国产激情偷乱视频一区二区| 国产视频首页在线观看| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 噜噜噜噜噜久久久久久91| 看片在线看免费视频| 97在线视频观看| 欧美变态另类bdsm刘玥| or卡值多少钱| 亚洲在久久综合| 搡老妇女老女人老熟妇| 岛国毛片在线播放| 中国美女看黄片| 国产精品1区2区在线观看.| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 国产午夜福利久久久久久| 亚洲四区av| 国产午夜福利久久久久久| 亚洲最大成人手机在线| 国产高潮美女av| 久99久视频精品免费| 在线观看av片永久免费下载| 韩国av在线不卡| 亚洲真实伦在线观看| 成年免费大片在线观看| 国产一区二区在线观看日韩| 国产精品永久免费网站| 亚州av有码| 亚洲三级黄色毛片| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| a级毛片a级免费在线| 亚洲欧美成人精品一区二区| 搡老妇女老女人老熟妇| 人人妻人人澡人人爽人人夜夜 | 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| 国产成年人精品一区二区| 国产成人精品一,二区 | 久久久a久久爽久久v久久| 自拍偷自拍亚洲精品老妇| 亚洲精品自拍成人| 色吧在线观看| 国产黄色视频一区二区在线观看 | 99久久成人亚洲精品观看| 亚洲av中文av极速乱| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| av在线老鸭窝| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 一卡2卡三卡四卡精品乱码亚洲| 2022亚洲国产成人精品| 日韩亚洲欧美综合| av福利片在线观看| av在线播放精品| 日韩在线高清观看一区二区三区| 国产国拍精品亚洲av在线观看| 高清在线视频一区二区三区 | 成年女人看的毛片在线观看| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 床上黄色一级片| 国产精华一区二区三区| 日韩av在线大香蕉| 国产综合懂色| 国产一区二区在线观看日韩| 性色avwww在线观看| 国产精品国产高清国产av| 深爱激情五月婷婷| 在线国产一区二区在线| 国产黄a三级三级三级人| 99热这里只有是精品50| 国产私拍福利视频在线观看| 99久久成人亚洲精品观看| 热99在线观看视频| 欧美成人精品欧美一级黄| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 亚洲三级黄色毛片| 久久精品国产亚洲av香蕉五月| 69人妻影院| 99热精品在线国产| 国产精品一及| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 蜜桃亚洲精品一区二区三区| 久久热精品热| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| a级毛片a级免费在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 成人av在线播放网站| 欧美最新免费一区二区三区| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜添av毛片| 国产av不卡久久| 欧美成人精品欧美一级黄| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 久久久久网色| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 联通29元200g的流量卡| 99久久精品热视频| 观看免费一级毛片| 免费av毛片视频| 插逼视频在线观看| 天天躁日日操中文字幕| 亚洲色图av天堂| 成人无遮挡网站| 人体艺术视频欧美日本| 美女内射精品一级片tv| 日韩,欧美,国产一区二区三区 | 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类| 男的添女的下面高潮视频| 久久九九热精品免费| 国产黄片美女视频| 18禁在线播放成人免费| 欧美日韩国产亚洲二区| 免费观看人在逋| 国产免费男女视频| 观看美女的网站| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 一级毛片久久久久久久久女| 国产探花极品一区二区| 久久综合国产亚洲精品| 国产精品野战在线观看| 有码 亚洲区| 国产在线精品亚洲第一网站| 久久婷婷人人爽人人干人人爱| 亚洲图色成人| 久久精品国产亚洲av香蕉五月| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄 | 久久九九热精品免费| 久久久久久久久久久免费av| 国产精品女同一区二区软件| 国产av麻豆久久久久久久| 爱豆传媒免费全集在线观看| 午夜久久久久精精品| 国产精品久久久久久精品电影| av在线老鸭窝| АⅤ资源中文在线天堂| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 免费一级毛片在线播放高清视频| 国产一区二区在线av高清观看| 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 此物有八面人人有两片| 午夜激情欧美在线| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 成熟少妇高潮喷水视频| 久久人人精品亚洲av| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| 亚洲av中文av极速乱| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美在线一区| 国产av一区在线观看免费| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| www日本黄色视频网| 蜜桃亚洲精品一区二区三区| 久久国产乱子免费精品| 成熟少妇高潮喷水视频| 热99在线观看视频| 欧美高清性xxxxhd video| 热99在线观看视频| 九九爱精品视频在线观看| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久 | 欧美丝袜亚洲另类| 久久人人精品亚洲av| 久久精品久久久久久久性| 亚洲精品日韩av片在线观看| 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 人妻久久中文字幕网| 久久亚洲精品不卡| av在线老鸭窝| 国产成人福利小说| 成人午夜精彩视频在线观看| 乱人视频在线观看| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 在线观看午夜福利视频| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| av天堂在线播放| 99热全是精品| 精品久久久久久久久亚洲| 99久久成人亚洲精品观看| 国产一区二区激情短视频| kizo精华| 成人午夜高清在线视频| 精品熟女少妇av免费看| 国产精品一二三区在线看| 日韩中字成人| 午夜久久久久精精品| 在线免费观看的www视频| 十八禁国产超污无遮挡网站| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 免费av毛片视频| 精品国内亚洲2022精品成人| 一边亲一边摸免费视频| 久久久欧美国产精品| а√天堂www在线а√下载| 亚洲中文字幕日韩| 国产真实乱freesex| 国产极品天堂在线| 久久草成人影院| 九九久久精品国产亚洲av麻豆| 久久久久久久亚洲中文字幕| 精品久久国产蜜桃| 欧美+日韩+精品| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 久久午夜亚洲精品久久|