• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction between circulating cancer cells and platelets: clinical implication

    2015-10-27 02:23:04XiaoLiangLouJianSunShuQiGongXueFengYuRuiGongHuanDeng
    Chinese Journal of Cancer Research 2015年5期

    Xiao-Liang Lou*, Jian Sun*, Shu-Qi Gong*, Xue-Feng Yu, Rui Gong, Huan Deng,2,3

    1Molecular Medicine and Genetics Center,2Department of Pathology, The Fourth Affliated Hospital of Nanchang University, Nanchang 330000,China;3Renmin Institute of Forensic Medicine, Nanchang 330000, China

    *These authors contributed equally to this work.

    Correspondence to: Huan Deng, MD, PhD. Department of Pathology, The Fourth Affliated Hospital of Nanchang University, 133 South Guangchang Road, Nanchang 330003, China. Email: beandeng@hotmail.com.

    Interaction between circulating cancer cells and platelets: clinical implication

    Xiao-Liang Lou1*, Jian Sun1*, Shu-Qi Gong1*, Xue-Feng Yu1, Rui Gong1, Huan Deng1,2,3

    1Molecular Medicine and Genetics Center,2Department of Pathology, The Fourth Affliated Hospital of Nanchang University, Nanchang 330000,China;3Renmin Institute of Forensic Medicine, Nanchang 330000, China

    *These authors contributed equally to this work.

    Correspondence to: Huan Deng, MD, PhD. Department of Pathology, The Fourth Affliated Hospital of Nanchang University, 133 South Guangchang Road, Nanchang 330003, China. Email: beandeng@hotmail.com.

    Metastasis is the main cause of cancer-associated mortality. During this complicated process,some cancer cells, also called circulating tumor cells (CTCs), detach from primary sites, enter bloodstream and extravasate at metastatic site. Thrombocytosis is frequently observed in patients with metastatic cancers suggesting the important role of platelets in metastasis. Therefore this review focuses on how platelets facilitate the generation of CTCs, protect them from various host attacks, such as immune assaults, apoptosis and shear stress, and regulate CTCs intravasation/extravasation. Platelet-derived cytokines and receptors are involved in this cascade. Identifcation the mechanisms underlie platelet-CTCs interactions could lead to the development of new platelet-targeted therapeutic strategy to reduce metastasis.

    Circulating tumor cells (CTCs); platelet; epithelial-mesenchymal transition (EMT); immune surveillance; metastasis

    Introduction

    More than 90% of all cancer-associated deaths are caused by metastasis, a cascade of events beginning with the epithelial-mesenchymal transition (EMT) (1). EMT, as well as its reverse process, mesenchymal-epithelial transition(MET), play pivotal roles in organ development, tissue repair and cancer metastasis by endowing epithelial cells with enhanced migratory capacity, elevated resistance to apoptosis and increased production of ECM components (2). A subpopulation of cancer cells, which undergo an EMT/ MET stage, can detach from the primary site, invade through the surrounding tissue, enter and survive in the circulation, and proliferate in a foreign microenvironment(3,4). These cells are called circulating tumor cells(CTCs) (5). The presence of CTCs in patients with carcinoma is associated with a poor prognosis because CTCs may reach a secondary organ prior to the appearance of clinical symptoms. Therefore, CTCs may represent not only a prognostic marker but also be a promising target for anticancer therapies. To exploit the window of opportunity for clinical intervention, a better understanding of the biological behaviors of CTCs is required.

    Thrombocytosis is frequently observed in patients with metastatic malignant tumors (6,7). The risk of venous thromboembolism (VTE), including deep venous thrombosis (DVT) and pulmonary embolism (PE), is increased up to seven-fold in these patients compared with non-cancer patients (8-10). These clinical data suggest that platelets may contribute to metastasis, in addition to their well-known role in hemostasis and coagulation. Platelets are an anucleate, discoid shaped blood cell, which contain three types of secretory granules, α-granules, dense granules, and lysosomes (11). Alpha granules, which are the most abundant granules in platelets, include large proteins contributing to adhesion and aggregation. Dense granules contain small, nonprotein substances, which upon secretion,recruit subsequent platelets. Lysosomes primarily secrete hydrolases involved in the elimination of platelet aggregates (7).To further demonstrate the contribution of platelets to metastatic processes, several studies using established animal models reported that platelets promote metastasis by protecting tumor cells from host immune surveillance and enhancing CTCs-endotheliocyte adhesion (12-14). Although the underlying molecular mechanisms have not been completely elucidated, advances in our understanding of metastasis have highlighted the importance of direct or indirect interactions between platelets and CTCs.

    Figure 1 The generation and intravasation of CTCs. Platelets are activated by interactions with CTCs. They then secret several cytokines, such as LPA. These cytokines up-regulate molecular signaling pathways that facilitate the detachment of cancer cells from the primary site and extravasation into the bloodstream. Activated platelets also promote tumor angiogenesis via platelet-derived VEGF. CTCs, circulating tumor cells; LPA,lysophosphatidic acid; VEGF, vascular endothelial growth factor.

    Role of platelets in angiogenesis

    Angiogenesis is a rate-limiting process in cancer metastasis. The formation of CTCs is hampered by tight vascular wall barriers (15). However, the neovasculature of primary tumors typically has weak and leaky endothelial cell junctions, which facilitates transendothelial migration(TEM) (16-20). Platelets contain angiogenic and angiostatic factors, and the switch to an angiogenesis phenotype can be triggered by metastasizing tumor cells (21,22). Tumor cells can function indirectly via binding to von Willebrand factor(vWF) to initiate platelet aggregation, resulting in the release of vascular endothelial growth factor (VEGF), one of the most powerful positive regulators of angiogenesis (23). Ligation of the protease-activated receptor-1 (PAR-1) can also promote the release of VEGF-containing α-granules(24,25). By contrast, PAR-4 activation up-regulates the secretion of endostatin, a platelet-derived angiogenesis inhibitor (Figure 1) (25).

    Platelets also affect angiogenesis by seeding microparticles,which express platelet surface antigens, including CD41 and CD42b (26,27). Metastasizing cancer cells can activate platelets at the primary site, increasing the local concentration of platelet microparticles (PMPs). After fusing with target cancer cells, PMPs may deliver pro-angiogenic factors, such as basic fbroblast growth factor (bFGF) and VEGF (28). Additionally, circulating PMPs may up-regulate the level of matrix metalloproteinase 2 (MMP2) in prostate cancer cells and facilitate the intravasation of metastasizing cancer cells (29). The increased invasive potential of tumor cells induced by PMPs further confrms a robust interaction between platelets and CTCs (30).

    Interactions between platelets and primary tumor cells

    Although the mechanisms by which platelets act are poorly understood, there is evidence that primary tumor cells express thrombin to promote metastasis through platelets(Table 1). Thrombin enhances tumor cell-induced platelet aggregation (TCIPA) in vitro by fully activating specific membrane receptors on platelets (83). Treating mice with established melanoma using r-hirudin, a highly specific antagonist of thrombin, blocks coagulation events and inhibits lung metastasis (84).

    Recently, the role of platelets in the progression of malignant tumors has gained attention (85,86). Activated platelets are a primary source of lysophosphatidic acid (LPA),a simple lipid with growth factor-like signaling properties(87,88). Levels of LPA increase in up to 90% of patients with gynecologic cancers (89). LPA is involved in the initiation and progression of several cancers, such as colon,ovarian, prostate, breast, melanoma and thyroid (90,91). The effects of LPA are mediated by at least six different G protein-coupled receptors (LPA1-6) (92). Selective blockage of LPA1and LPA2inhibit cancer cell proliferation andinvasion, which are essential for CTC generation (93-95). LPA up-regulates the activity of MMP2, MMP7 and MMP9 in cancer cells (96-99). MMPs are a family of zinc-dependent endopeptidases that are important mediators of cancer progression. They act via the degradation and remodulation of the ECM (100). The increased expression of MMPs helps tumor cells detach from the primary site and enter into the circulatory system (101). In addition, a tumor bearing mouse model with thrombocytopenia exhibits reduced tumor cell proliferation and increased tumor necrosis (102). Accumulating evidence indicates that the selective inhibition of platelet activity in patients with malignant tumors not only reduces the risk of embolic events but also reduces tumor growth (Figure 1) (103-106).

    Although considerable progress has occurred in elucidating the interactions between platelets and tumor cells, there is no direct evidence that platelets affect tumor cell intravasation directly (12). Further experimentation is required to identify the mechanisms underlying this key step during metastasis.

    Table 1 Agents involved TCIPA

    Platelets and CTC survival

    After leaving the supportive microenvironment, CTCs face many survival challenges in the circulation, including immunological attack, shear forces and apoptosis. Although the majority of CTCs are destroyed, less than 0.1% of CTCs survives and triggers TCIPA by direct contact or through the release of agonistic mediators, such as ADP,thrombin, TXA2 and tumor-associated proteinases (14,107-109). Platelets are activated in TCIPA and attach to the surface of CTCs by a GPIIb-IIIa-fbrinogen bridge and up-regulated P-selectin (Figure 2) (14,110).

    However, the molecular mechanism by which platelets promote the survival of CTCs in the blood stream is not fully understood. Several hypotheses propose that the surface coating of platelets may serve as a shield against immune assault because the effect of anti-tumor attacks mediated by NK cells is primarily based on the direct interaction with CTCs (111,112). There is solid experimental evidence that thrombocytopenia caused by either platelet depletion with anti-platelet sera or by defective platelet production significantly enhances the ability of NK cells to lyse CTCs in vitro and in vivo (113). Furthermore, activated platelets can transfer the major histocompatibility complex (MHC) to CTCs, which in turn mimics host cells and escapes immune surveillance (114). Moreover, platelet-derived TGF-β may reduce the expression of the immunoreceptor NKG2D, thus inhibiting NK cell activity (115). In addition to NK cells,platelet-derived VEGF may inhibit the maturation of dendritic cells, the major antigen-presenting cells in the immune system (116).

    EMT, as well as its reverse process, MET, play pivotal roles in cancer metastasis by endowing tumorous cells with migratory, invasive and anti-apoptosis properties (117). CTCs share many phenotypic and functional traits with cells undergoing EMT (118). Recent studies suggest that CTCs in patients with breast cancer or prostate cancer co-express EMT-related markers, including E-cadherin,cytokeratin (CK), vimentin and N-cadherin (119-121). Inhibition of EMT-related signaling elements, such as Twist, Zeb and Snail, can prevent metastatic relapse (122). However, the underlying molecular mechanisms by which CTCs maintain the EMT state have not been elucidated. In addition to their well-established role in protecting CTCs from immune assaults, platelets may also contribute to the EMT of CTCs (123). TCIPA promotes platelets to release α-granules, which contain TGF-β and plateletderived growth factor (PDGF) at concentrations severalfold higher than most cell types (124). Platelet-derived TGF-β activates the Smad signaling pathway and promotesthe transdifferentiation of CTCs into a mesenchymallike phenotype (123). PDGF is another important EMT driver that contributes to cancer invasion and angiogenesis. Overexpression of PDGF-D promotes the EMT of prostate cancer cells both in vitro and in vivo via the activation of rapamycin downstream targets, S6K and 4E-BP1 (125). The crosstalk between PDGF and EMT-related signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and chemokine (C-X-C motif)receptor 4 (CXCR4), further indicates that PDGF plays an important role in EMT (126,127). Interestingly, in a study of hepatocellular carcinoma (HCC), PDGF was hypothesized to be involved in TGF-β-induced EMT of metastasizing cancer cells (128). Additional studies determined the molecular mechanism underlying this process, by which TGF-β enhances the expression of PDGF and PDGFR via activation of β-catenin and the signal transducer and activator of transcription 3(STAT3) (129,130).

    Figure 2 The survival of CTCs in circulation. The majority of CTCs are killed by NK/T cells. Platelets activated in TCIPA can attach to the surface of CTCs by a GPIIb-IIIa-fbrinogen bridge and up-regulated P-selectin to protect CTCs from immune surveillance and physical stress. TCIPA also help CTCs to undergo EMT, which enhances the ability of CTCs to avoid apoptosis. CTCs, circulating tumor cells;TCIPA, tumor cell-induced platelet aggregation; EMT, epithelial-mesenchymal transition.

    Platelet-mediated tumor extravasation

    After CTCs successfully escape from physical and immune destruction in the circulation, they localize in distant organs. CTCs must anchor to the luminal side of vascular endothelial cells and then break through the subepithelial extracellular matrix (ECM) (16). Although this process is primarily mediated by the interaction between adhesion receptors on CTCs and ECs, platelets may serve as a potent regulator of this process (Figure 3) (14). First,interactions between CTCs and platelets and leukocyte activated vascular ECs induce the expression of C-C chemokine ligand 5 (CCL5), which in turn leads to the increased recruitment of leukocytes to CTCs (131). Indeed, leukocytes are implicated in promoting tumor cell survival and metastasis to the lung (132). Inhibition of CCL5 by a receptor antagonist significantly inhibits this metastatic process (131). Second, by triggering several specific signaling pathways, platelet-derived TGF-β and PDGF induce EMT in CTCs. EMT improves the ability of CTCs to avoid apoptosis and pass through the vessel wall, as described in the previous section. Ablation of platelet-derived TGF-β reduces metastasis, suggesting that they play an important role in this process (123). Third,activated platelets may be involved in the establishment of a prometastatic microenvironment through the recruitment of infammatory cells. Upregulation of CCL2 expression in CTCs in response to the interaction with platelets promotesboth monocyte recruitment and an increase in vascular permeability (133).

    Figure 3 The extravasation of CTCs. At metastatic sites,interactions between CTCs, platelets and leukocytes help CTCs to anchor to the luminal surface of endothelial cells. Platelet-derived TGF-β and PDGF induce EMT in CTCs and endow CTCs with migratory and invasive properties to break through the ECM of blood vessels. CTCs, circulating tumor cells; PDGF, plateletderived growth factor; EMT, epithelial-mesenchymal transition.

    Conclusion and future directions

    In conclusion, it is clear that platelets have many roles in tumor metastasis. Platelet-derived cytokines and receptors are important for protecting CTCs from host immune attack and physical stress. Because platelet-tumor cell interactions induce platelet activation and aggregation, it is reasonable to interfere with this process as a therapeutic intervention. Blockade of GPIIb/IIIa with the monoclonal antibody 10E5 reduces lung metastatic events (134). Hirudin, a specific thrombin inhibitor, inhibits metastasis in experimental models (84). Several studies suggest that heparin, a powerful P-selectin inhibitor, can attenuate tumor metastasis in mice (135). Recently, evidence has shown that the chemotherapeutic effects of aspirin on the metastatic process may depend on the inhibition of platelet function (136). Therefore, platelets are a promising therapeutic target for the attenuation of metastatic events. However, whether patients with cancer will benefit from prophylactic dose of platelet inhibitors has yet to be determined. Although prostacyclin, one of the most potent platelet inhibitors, reduces the metastasis of osteogenic sarcoma, it fails to reduce pulmonary metastasis induced by many types of tumors (137,138). Clinical studies suggest that the daily administration of semuloparin, an ultra-lowmolecular-weight heparin, has no signifcant effect on the mortality of patients with metastatic or locally advanced solid tumors (139,140). These contradictory results suggest that the mechanism underlying platelet-involved metastasis has been only partially elucidated and is likely to be multifactorial, and several issues remain for anti-platelet therapy.

    Unfortunately, although many studies have focused on this field during the last decades, significant challenges remain to be overcome before a platelet-targeted therapeutic strategy can be used in humans. Despite technical advances in the detection of CTCs, our ability to explore platelet-CTCs interactions in vivo is limited because of the shortage of materials. The majority of cancer patients have fewer than ten CTCs per milliliter of blood,and these CTCs are difficult to purify (141). Therefore,in vivo experiments are always performed in established rodent models by injecting human cancer cells into the tail vein. However, it would be ideal to study platelet-CTCs interactions from the initiation of metastasis, rather than after intravascular injection. Moreover, the CTC-associated recruitment of inflammatory cells is not established in these immunocompromised mice (16). The process of TCIPA likely involves several important platelet receptors. Experimental blockage of these receptors results in the inhibition of cancer metastasis (142). However, several studies provided contradictory results, suggesting that the number of metastatic foci increased significantly in vWF-null mice. One hypothesis proposes that the blockade of a given receptor on a platelet may be compensated for by other signaling pathways (142). Physiologically, platelets are best known for maintaining hemostasis. However, several platelet receptors, such as P-selectin, are also expressed on other normal cells. Therefore, the potential side effects of platelet-targeted compounds must be carefully evaluated. Furthermore, a better molecular understanding ofplatelet-CTC interactions is needed to identify individual therapeutic strategies for patients in high-risk situations for cancer metastasis.

    Acknowledgements

    Funding: This study was supported by grants from the National Natural Science Foundation of China (No. 81300347), the Natural Science Foundation of Jiangxi Province, China (No. 20132BAB205037, 20151BAB215008,20151BBG70200), and Foundation of Jiangxi Educational Committee (No. GJJ14192), Foundation of Health and Family Planning Commission of Jiangxi Province (No. 20155592, 20155103).

    Footnote

    Conficts of Interest: The authors have no conficts of interest to declare.

    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

    2. Kalluri R, Weinberg RA. The basics of epithelialmesenchymal transition. J Clin Invest 2009;119:1420-8.

    3. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-91.

    4. Yang J, Weinberg RA. Epithelial-mesenchymal transition:at the crossroads of development and tumor metastasis. Dev Cell 2008;14:818-29.

    5. Kahn HJ, Presta A, Yang LY, et al. Enumeration of circulating tumor cells in the blood of breast cancer patients after fltration enrichment: correlation with disease stage. Breast Cancer Res Treat 2004;86:237-47.

    6. Francis JL, Biggerstaff J, Amirkhosravi A. Hemostasis and malignancy. Semin Thromb Hemost 1998;24:93-109.

    7. Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost 2004;30:95-108.

    8. Noble S, Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Cancer 2010;102:S2-9.

    9. Blom JW, Doggen CJ, Osanto S, et al. Malignancies,prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005;293:715-22.

    10. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med 2000;160:809-15.

    11. Rendu F, Brohard-Bohn B. The platelet release reaction:granules' constituents, secretion and functions. Platelets 2001;12:261-73.

    12. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011;11:123-34.

    13. Li J, King MR. Adhesion receptors as therapeutic targets for circulating tumor cells. Front Oncol 2012;2:79.

    14. Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2014;133:S149-57.

    15. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specifc colonization. Nat Rev Cancer 2009;9:274-84.

    16. Reymond N, d'água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013;13:858-70.

    17. Kim MY, Oskarsson T, Acharyya S, et al. Tumor selfseeding by circulating cancer cells. Cell 2009;139:1315-26.

    18. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69:4-10.

    19. Rafi S, Avecilla ST, Jin DK. Tumor vasculature address book: identifcation of stage-specifc tumor vessel zip codes by phage display. Cancer Cell 2003;4:331-3.

    20. Goubran HA, Stakiw J, Radosevic M, et al. Platelets effects on tumor growth. Semin Oncol 2014;41:359-69.

    21. Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004;63:226-35.

    22. Verheul HM, Jorna AS, Hoekman K, et al. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000;96:4216-21.

    23. Brock TA, Dvorak HF, Senger DR. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol 1991;138:213-21.

    24. Ma L, Perini R, McKnight W, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A 2005;102:216-20.

    25. Italiano JE Jr, Richardson JL, Patel-Hett S, et al. Angiogenesis is regulated by a novel mechanism: proand antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008;111:1227-33.

    26. Horstman LL, Ahn YS. Platelet microparticles: a wideangle perspective. Crit Rev Oncol Hematol 1999;30:111-42.

    27. George JN, Pickett EB, Heinz R. Platelet membrane microparticles in blood bank fresh frozen plasma and cryoprecipitate. Blood 1986;68:307-9.

    28. Brill A, Dashevsky O, Rivo J, et al. Platelet-derived microparticles induce angiogenesis and stimulate postischemic revascularization. Cardiovasc Res 2005;67:30-8.

    29. Kim HK, Song KS, Park YS, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003;39:184-91.

    30. Varon D, Hayon Y, Dashevsky O, et al. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res 2012;130:S98-9.

    31. Alonso-Escolano D, Strongin AY, Chung AW, et al. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 2004;141:241-52.

    32. Grignani G, Pacchiarini L, Almasio P, et al. Characterization of the platelet-aggregating activity of cancer cells with different metastatic potential. Int J Cancer 1986;38:237-44.

    33. Grignani G, Pacchiarini L, Ricetti MM, et al. Mechanisms of platelet activation by cultured human cancer cells and cells freshly isolated from tumor tissues. Invasion Metastasis 1989;9:298-309.

    34. Pacchiarini L, Zucchella M, Milanesi G, et al. Thromboxane production by platelets during tumor cell-induced platelet activation. Invasion Metastasis 1991;11:102-9.

    35. Tzanakakis GN, Krambovitis E, Tsatsakis AM, et al. The preventive effect of ketoconazole on experimental metastasis from a human pancreatic carcinoma may be related to its effect on prostaglandin synthesis. Int J Gastrointest Cancer 2002;32:23-30.

    36. de Leval X, Benoit V, Delarge J, et al. Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcomacell-induced platelet aggregation. Prostaglandins Leukot Essent Fatty Acids 2003;68:55-9.

    37. Steinert BW, Tang DG, Grossi IM, et al. Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. Int J Cancer 1993;54:92-101.

    38. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, et al. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999;103:879-87.

    39. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000;407:258-64.

    40. Chung AW, Jurasz P, Hollenberg MD, et al. Mechanisms of action of proteinase-activated receptor agonists on human platelets. Br J Pharmacol 2002;135:1123-32.

    41. Bastida E, Escolar G, Ordinas A, et al. Morphometric evaluation of thrombogenesis by microvesicles from human tumor cell lines with thrombin-dependent (U87MG) and adenosine diphosphate-dependent (SKNMC) plateletactivating mechanisms. J Lab Clin Med 1986;108:622-7.

    42. Esumi N, Todo S, Imashuku S. Platelet aggregating activity mediated by thrombin generation in the NCG human neuroblastoma cell line. Cancer Res 1987;47:2129-35.

    43. Heinm?ller E, Schropp T, Kisker O, et al. Tumor cellinduced platelet aggregation in vitro by human pancreatic cancer cell lines. Scand J Gastroenterol 1995;30:1008-16.

    44. Heinm?ller E, Weinel RJ, Heidtmann HH, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol 1996;122:735-44.

    45. Honn KV, Cavanaugh P, Evens C, et al. Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science 1982;217:540-2.

    46. Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry 1985;24:5558-67.

    47. Donati MB, Gambacorti-Passerini C, Casali B, et al. Cancer procoagulant in human tumor cells: evidence from melanoma patients. Cancer Res 1986;46:6471-4.

    48. Olas B, Wachowicz B, Mielicki WP, et al. Free radicals are involved in cancer procoagulant-induced platelet activation. Thromb Res 2000;97:169-75.

    49. Jurasz P, Sawicki G, Duszyk M, et al. Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Res 2001;61:376-82.

    50. Jurasz P, Stewart MW, Radomski A, et al. Role of von Willebrand factor in tumour cell-induced platelet aggregation: differential regulation by NO and prostacyclin. Br J Pharmacol 2001;134:1104-12.

    51. Jurasz P, Chung AW, Radomski A, et al. Nonremodeling properties of matrix metalloproteinases: the platelet connection. Circ Res 2002;90:1041-3.

    52. Oleksowicz L, Mrowiec Z, Schwartz E, et al. Characterization of tumor-induced platelet aggregation:the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thromb Res 1995;79:261-74.

    53. Chopra H, Hatfeld JS, Chang YS, et al. Role of tumor cytoskeleton and membrane glycoprotein IRGpIIb/ IIIa in platelet adhesion to tumor cell membrane and tumor cell-induced platelet aggregation. Cancer Res 1988;48:3787-800.

    54. Grossi IM, Hatfeld JS, Fitzgerald LA, et al. Role of tumor cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumor cell-platelet and tumor cell-matrix interactions. FASEB J 1988;2:2385-95.

    55. Karpatkin S, Pearlstein E, Ambrogio C, et al. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988;81:1012-9. 56. Boukerche H, Berthier-Vergnes O, Bailly M, et al. A monoclonal antibody (LYP18) directed against the blood platelet glycoprotein IIb/IIIa complex inhibits human melanoma growth in vivo. Blood 1989;74:909-12.

    57. Honn KV, Chen YQ, Timar J, et al. Alpha IIb beta 3 integrin expression and function in subpopulations of murine tumors. Exp Cell Res 1992;201:23-32.

    58. Clezardin P, Drouin J, Morel-Kopp MC, et al. Role of platelet membrane glycoproteins Ib/IX and IIb/IIIa, and of platelet alpha-granule proteins in platelet aggregation induced by human osteosarcoma cells. Cancer Res 1993;53:4695-700.

    59. Cohen SA, Trikha M, Mascelli MA. Potential future clinical applications for the GPIIb/IIIa antagonist,abciximab in thrombosis, vascular and oncological indications. Pathol Oncol Res 2000;6:163-74.

    60. Trikha M, Zhou Z, Timar J, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 2002;62:2824-33.

    61. Amirkhosravi A, Mousa SA, Amaya M, et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 2003;90:549-54.

    62. Felding-Habermann B, O'Toole TE, Smith JW, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 2001;98:1853-8.

    63. Stone JP, Wagner DD. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 1993;92:804-13.

    64. Pottratz ST, Hall TD, Scribner WM, et al. P-selectinmediated attachment of small cell lung carcinoma to endothelial cells. Am J Physiol 1996;271:L918-23.

    65. Iwamura T, Caffrey TC, Kitamura N, et al. P-selectin expression in a metastatic pancreatic tumor cell line(SUIT-2). Cancer Res 1997;57:1206-12.

    66. Kim YJ, Borsig L, Varki NM, et al. P-selectin defciency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 1998;95:9325-30.

    67. Kim YJ, Borsig L, Han HL, et al. Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol 1999;155:461-72.

    68. Varki A, Varki NM. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Braz J Med Biol Res 2001;34:711-7.

    69. Wahrenbrock M, Borsig L, Le D, et al. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest 2003;112:853-62.

    70. Fujita N, Takagi S. The impact of Aggrus/podoplanin on platelet aggregation and tumour metastasis. J Biochem 2012;152:407-13.

    71. Kato Y, Kaneko M, Sata M, et al. Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregationinducing factor in lung squamous cell carcinoma. Tumour Biol 2005;26:195-200.

    72. Nakazawa Y, Takagi S, Sato S, et al. Prevention of hematogenous metastasis by neutralizing mice and its chimeric anti-Aggrus/podoplanin antibodies. Cancer Sci 2011;102:2051-7.

    73. Honn KV, Bockman RS, Marnett LJ. Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins 1981;21:833-64.

    74. Honn KV, Cicone B, Skoff A. Prostacyclin: a potent antimetastatic agent. Science 1981;212:1270-2.

    75. Lerner WA, Pearlstein E, Ambrogio C, et al. A new mechanism for tumor induced platelet aggregation. Comparison with mechanisms shared by other tumor with possible pharmacologic strategy toward prevention of metastases. Int J Cancer 1983;31:463-9.

    76. Menter DG, Onoda JM, Taylor JD, et al. Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Res 1984;44:450-6.

    77. Menter DG, Onoda JM, Moilanen D, et al. Inhibition by prostacyclin of the tumor cell-induced platelet release reaction and platelet aggregation. J Natl Cancer Inst 1987;78:961-9.

    78. Longenecker GL, Beyers BJ, Bowen RJ, et al. Human rhabdosarcoma cell-induced aggregation of blood platelets. Cancer Res 1989;49:16-9.

    79. Schneider MR, Schillinger E, Schirner M, et al. Effects of prostacyclin analogues in in vivo tumor models. Adv Prostaglandin Thromboxane Leukot Res 1991;21B:901-8.

    80. Schirner M, Schneider MR. The prostacyclin analogue cicaprost inhibits metastasis of tumours of R 3327 MAT Lu prostate carcinoma and SMT 2A mammary carcinoma. J Cancer Res Clin Oncol 1992;118:497-501.

    81. Radomski MW, Jenkins DC, Holmes L, et al. Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res 1991;51:6073-8.

    82. Jenkins DC, Charles IG, Baylis SA, et al. Human colon cancer cell lines show a diverse pattern of nitric oxide synthase gene expression and nitric oxide generation. Br J Cancer 1994;70:847-9.

    83. Nierodzik ML, Plotkin A, Kajumo F, et al. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Invest 1991;87:229-36.

    84. Esumi N, Fan D, Fidler IJ. Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin,a highly specifc thrombin inhibitor. Cancer Res 1991;51:4549-56.

    85. Boucharaba A, Serre CM, Grès S, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004;114:1714-25.

    86. Belloc C, Lu H, Soria C, et al. The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int J Cancer 1995;60:413-7.

    87. Gerrard JM, Robinson P. Identifcation of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta 1989;1001:282-5.

    88. Eichholtz T, Jalink K, Fahrenfort I, et al. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 1993;291:677-80.

    89. Sutphen R, Xu Y, Wilbanks GD, et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2004;13:1185-91.

    90. Merchant TE, Kasimos JN, de Graaf PW, et al. Phospholipid profles of human colon cancer using 31P magnetic resonance spectroscopy. Int J Colorectal Dis 1991;6:121-6.

    91. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003;3:582-91.

    92. Leblanc R, Peyruchaud O. New insights into the autotaxin/LPA axis in cancer development and metastasis. Exp Cell Res 2015;333:183-9.

    93. Boucharaba A, Serre CM, Guglielmi J, et al. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci U S A 2006;103:9643-8.

    94. David M, Ribeiro J, Descotes F, et al. Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis. Int J Oncol 2012;40:1133-41.

    95. Yu S, Murph MM, Lu Y, et al. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst 2008;100:1630-42. 96. Fishman DA, Liu Y, Ellerbroek SM, et al. Lysophosphatidic acid promotes matrix metalloproteinase(MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res 2001;61:3194-9.

    97. Jeong KJ, Park SY, Cho KH, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene 2012;31:4279-89.

    98. Park SY, Jeong KJ, Panupinthu N, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene 2011;30:1351-9.

    99. Hope JM, Wang FQ, Whyte JS, et al. LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol 2009;112:215-23.

    100. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.

    101. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006;25:9-34.

    102. Ho-Tin-Noé B, Goerge T, Cifuni SM, et al. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008;68:6851-8.

    103. Hettiarachchi RJ, Smorenburg SM, Ginsberg J, et al. Do heparins do more than just treat thrombosis? The infuence of heparins on cancer spread. Thromb Haemost 1999;82:947-52.

    104. Borly L, Wille-J?rgensen P, Rasmussen MS. Systematic review of thromboprophylaxis in colorectal surgery -- an update. Colorectal Dis 2005;7:122-7.

    105. Smorenburg SM, Hettiarachchi RJ, Vink R, et al. The effects of unfractionated heparin on survival in patients with malignancy--a systematic review. Thromb Haemost 1999;82:1600-4.

    106. Akl EA, van Doormaal FF, Barba M, et al. Parenteral anticoagulation may prolong the survival of patients with limited small cell lung cancer: a Cochrane systematic review. J Exp Clin Cancer Res 2008;27:4.

    107. Bastida E, Ordinas A, Giardina SL, et al. Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res 1982;42:4348-52.

    108. Pinto S, Gori L, Gallo O, et al. Increased thromboxane A2 production at primary tumor site in metastasizing squamous cell carcinoma of the larynx. Prostaglandins Leukot Essent Fatty Acids 1993;49:527-30.

    109. Zucchella M, Dezza L, Pacchiarini L, et al. Human tumor cells cultured "in vitro" activate platelet function by producing ADP or thrombin. Haematologica 1989;74:541-5.

    110. Gong L, Cai Y, Zhou X, et al. Activated platelets interact with lung cancer cells through P-selectin glycoprotein ligand-1. Pathol Oncol Res 2012;18:989-96.

    111. Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2012;12:239-52.

    112. Storkus WJ, Dawson JR. Target structures involved in natural killing (NK): characteristics, distribution, and candidate molecules. Crit Rev Immunol 1991;10:393-416.

    113. Nieswandt B, Hafner M, Echtenacher B, et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999;59:1295-300.

    114. Placke T, ?rgel M, Schaller M, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2012;72:440-8.

    115. Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009;69:7775-83.

    116. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012;12:265-77.

    117. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9:239-52.

    118. Armstrong AJ, Marengo MS, Oltean S, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011;9:997-1007.

    119. Bednarz N, Eltze E, Semjonow A, et al. BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 2010;16:3340-8.

    120. Joosse SA, Hannemann J, Sp?tter J, et al. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res 2012;18:993-1003.

    121. Aktas B, Tewes M, Fehm T, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 2009;11:R46.

    122. De Craene B, Berx G. Regulatory networks defning EMT during cancer initiation and progression. Nat Rev Cancer 2013;13:97-110.

    123. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelialmesenchymal-like transition and promotes metastasis. Cancer Cell 2011;20:576-90.

    124. Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-beta in human platelets. Identifcation of a major storage site, purifcation, and characterization. J Biol Chem 1983;258:7155-60.

    125. Kong D, Wang Z, Sarkar SH, et al. Platelet-derived growth factor-D overexpression contributes to epithelialmesenchymal transition of PC3 prostate cancer cells. Stem Cells 2008;26:1425-35.

    126. Liu J, Liao S, Huang Y, et al. PDGF-D improves drug delivery and effcacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 2011;17:3638-48.

    127. Ahmad A, Wang Z, Kong D, et al. Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF-κB signaling pathways. Breast Cancer Res Treat 2011;126:15-25.

    128. Gotzmann J, Fischer AN, Zojer M, et al. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 2006;25:3170-85.

    129. Lahsnig C, Mikula M, Petz M, et al. ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression. Oncogene 2009;28:638-50.

    130. Fischer AN, Fuchs E, Mikula M, et al. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene 2007;26:3395-405.

    131. L?ubli H, Spanaus KS, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 2009;114:4583-91.

    132. Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012;2:1091-9.

    133. Wolf MJ, Hoos A, Bauer J, et al. Endothelial CCR2signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 2012;22:91-105.

    134. Nierodzik ML, Klepfsh A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fbronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thromb Haemost 1995;74:282-90.

    135. Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets,P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A 2001;98:3352-7.

    136. Rothwell PM, Price JF, Fowkes FG, et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefts in 51 randomised controlled trials. Lancet 2012;379:1602-12.

    137. Mehta P, Lawson D, Ward MB, et al. Effects of thromboxane A2 inhibition on osteogenic sarcoma cellinduced platelet aggregation. Cancer Res 1986;46:5061-3. 138. Karpatkin S, Ambrogio C, Pearlstein E. Lack of effect of in vivo prostacyclin on the development of pulmonary metastases in mice following intravenous injection of CT26 colon carcinoma, Lewis lung carcinoma, or B16 amelanotic melanoma cells. Cancer Res 1984;44:3880-3.

    139. Agnelli G, George DJ, Kakkar AK, et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med 2012;366:601-9.

    140. Akl EA, Schünemann HJ. Routine heparin for patients with cancer? One answer, more questions. N Engl J Med 2012;366:661-2.

    141. Balic M, Lin H, Williams A, et al. Progress in circulating tumor cell capture and analysis: implications for cancer management. Expert Rev Mol Diagn 2012;12:303-12.

    142. Erpenbeck L, Sch?n MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010;115:3427-36.

    Cite this article as: Lou XL, Sun J, Gong SQ, Yu XF,Gong R, Deng H. Interaction between circulating cancer cells and platelets: clinical implication. Chin J Cancer Res 2015;27(5):450-460. doi: 10.3978/j.issn.1000-9604.2015.04.10

    10.3978/j.issn.1000-9604.2015.04.10

    Submitted Jan 17, 2015. Accepted for publication Apr 16, 2015.

    View this article at: http://dx.doi.org/10.3978/j.issn.1000-9604.2015.04.10

    啪啪无遮挡十八禁网站| 精品国内亚洲2022精品成人 | 老司机影院毛片| 嫁个100分男人电影在线观看| 各种免费的搞黄视频| 精品一区在线观看国产| 九色亚洲精品在线播放| 80岁老熟妇乱子伦牲交| 精品免费久久久久久久清纯 | 80岁老熟妇乱子伦牲交| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 99久久人妻综合| 老熟妇仑乱视频hdxx| 欧美日韩av久久| 在线十欧美十亚洲十日本专区| 91精品伊人久久大香线蕉| 高潮久久久久久久久久久不卡| 老司机福利观看| 各种免费的搞黄视频| 亚洲国产av影院在线观看| 99香蕉大伊视频| 啪啪无遮挡十八禁网站| 中文字幕人妻丝袜制服| 亚洲国产日韩一区二区| 女人久久www免费人成看片| 免费观看av网站的网址| 午夜激情久久久久久久| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 大香蕉久久成人网| 久久青草综合色| 妹子高潮喷水视频| 国产欧美亚洲国产| 成人手机av| 国产人伦9x9x在线观看| 婷婷色av中文字幕| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 狠狠精品人妻久久久久久综合| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 夜夜骑夜夜射夜夜干| av在线app专区| 黑丝袜美女国产一区| 一区二区av电影网| 我要看黄色一级片免费的| 男女午夜视频在线观看| 男女免费视频国产| 国产片内射在线| 亚洲欧美精品综合一区二区三区| 日韩欧美一区二区三区在线观看 | 欧美97在线视频| 亚洲欧美一区二区三区黑人| 男女高潮啪啪啪动态图| 午夜两性在线视频| 国产亚洲欧美在线一区二区| 99热网站在线观看| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 精品久久久久久久毛片微露脸 | 久久久久国产精品人妻一区二区| 欧美性长视频在线观看| 窝窝影院91人妻| 脱女人内裤的视频| 亚洲 欧美一区二区三区| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| 亚洲一区二区三区欧美精品| 国产99久久九九免费精品| 国产高清视频在线播放一区 | 亚洲av成人一区二区三| 一个人免费看片子| 男女边摸边吃奶| 国产人伦9x9x在线观看| 国产成人欧美| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 久久99热这里只频精品6学生| 久久久久久久大尺度免费视频| 亚洲精品粉嫩美女一区| av又黄又爽大尺度在线免费看| 五月天丁香电影| 日韩精品免费视频一区二区三区| 人成视频在线观看免费观看| 亚洲国产中文字幕在线视频| 国产精品一二三区在线看| 99精品欧美一区二区三区四区| 成人黄色视频免费在线看| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸 | 亚洲 国产 在线| 一个人免费在线观看的高清视频 | 亚洲 国产 在线| 黄色视频,在线免费观看| 日韩中文字幕视频在线看片| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频 | avwww免费| 最近最新免费中文字幕在线| 久久99热这里只频精品6学生| 老熟女久久久| 人成视频在线观看免费观看| 亚洲 欧美一区二区三区| 亚洲精品一区蜜桃| 国产黄色免费在线视频| 亚洲色图综合在线观看| 少妇精品久久久久久久| 亚洲人成电影观看| 黑人操中国人逼视频| av在线老鸭窝| 超色免费av| 免费在线观看日本一区| 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩高清在线视频 | 国产一区二区三区在线臀色熟女 | 国产免费视频播放在线视频| 国产又爽黄色视频| 成年人黄色毛片网站| 在线观看免费高清a一片| 十八禁高潮呻吟视频| 男女免费视频国产| 一级毛片女人18水好多| 亚洲精品一区蜜桃| 最新的欧美精品一区二区| 久久久久久久精品精品| 午夜影院在线不卡| 久久香蕉激情| 国产在视频线精品| 国产免费av片在线观看野外av| 久久精品亚洲av国产电影网| 美国免费a级毛片| 精品国产一区二区三区四区第35| 免费观看a级毛片全部| 色播在线永久视频| 啦啦啦免费观看视频1| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 亚洲精品久久久久久婷婷小说| 一级毛片精品| 精品亚洲成国产av| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 美女中出高潮动态图| 久久精品亚洲av国产电影网| av不卡在线播放| 一区二区日韩欧美中文字幕| 99久久国产精品久久久| 日韩一区二区三区影片| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 国产精品影院久久| 久久精品亚洲av国产电影网| 欧美精品啪啪一区二区三区 | 成人三级做爰电影| 久久久久久久大尺度免费视频| 国产亚洲精品久久久久5区| 免费av中文字幕在线| 丝袜在线中文字幕| 男女免费视频国产| 热re99久久国产66热| 欧美在线黄色| 免费在线观看黄色视频的| 国产精品久久久久成人av| 另类亚洲欧美激情| 亚洲免费av在线视频| 欧美精品亚洲一区二区| videosex国产| 黄片播放在线免费| 精品人妻一区二区三区麻豆| 后天国语完整版免费观看| 亚洲精品国产av成人精品| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 精品国产超薄肉色丝袜足j| 精品久久久久久久毛片微露脸 | 亚洲第一av免费看| 精品熟女少妇八av免费久了| 777久久人妻少妇嫩草av网站| 精品人妻熟女毛片av久久网站| 一本—道久久a久久精品蜜桃钙片| 亚洲五月色婷婷综合| 19禁男女啪啪无遮挡网站| 各种免费的搞黄视频| 热re99久久精品国产66热6| 国产精品自产拍在线观看55亚洲 | av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 狠狠狠狠99中文字幕| 9色porny在线观看| 久热这里只有精品99| 中文字幕人妻熟女乱码| 在线十欧美十亚洲十日本专区| 99国产精品免费福利视频| 女人精品久久久久毛片| 亚洲成人免费电影在线观看| 纵有疾风起免费观看全集完整版| 亚洲成人手机| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 黄网站色视频无遮挡免费观看| 丝袜美腿诱惑在线| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美精品综合一区二区三区| 亚洲精品国产av蜜桃| 精品一品国产午夜福利视频| 黄频高清免费视频| 十八禁人妻一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区在线不卡| 成人国语在线视频| 亚洲av片天天在线观看| 天堂俺去俺来也www色官网| 久久精品aⅴ一区二区三区四区| 欧美在线黄色| 亚洲精品粉嫩美女一区| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 国产男女内射视频| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 一本色道久久久久久精品综合| 另类精品久久| 久久免费观看电影| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 成人国语在线视频| 乱人伦中国视频| 国产精品偷伦视频观看了| av不卡在线播放| 亚洲国产日韩一区二区| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| 少妇人妻久久综合中文| 婷婷色av中文字幕| 超色免费av| 亚洲va日本ⅴa欧美va伊人久久 | www.熟女人妻精品国产| 精品亚洲成国产av| 久久这里只有精品19| 国产精品一二三区在线看| 满18在线观看网站| 一本综合久久免费| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 69av精品久久久久久 | 成人国产一区最新在线观看| 如日韩欧美国产精品一区二区三区| 国产老妇伦熟女老妇高清| 午夜福利免费观看在线| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美精品永久| 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 欧美成人午夜精品| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久 | 窝窝影院91人妻| av网站在线播放免费| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 丁香六月欧美| 精品少妇黑人巨大在线播放| 中国国产av一级| 久久狼人影院| 午夜激情久久久久久久| 欧美在线黄色| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 国产不卡av网站在线观看| 成年女人毛片免费观看观看9 | 另类精品久久| 老鸭窝网址在线观看| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 丰满迷人的少妇在线观看| 午夜免费观看性视频| 欧美黄色淫秽网站| 日本五十路高清| 亚洲天堂av无毛| 97精品久久久久久久久久精品| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 亚洲中文av在线| 精品第一国产精品| 亚洲精品一二三| 人妻久久中文字幕网| av天堂在线播放| 久久久国产成人免费| 久热爱精品视频在线9| 性色av乱码一区二区三区2| 美女福利国产在线| 大香蕉久久网| 国精品久久久久久国模美| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 国产又爽黄色视频| 午夜激情久久久久久久| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 国产亚洲av片在线观看秒播厂| 午夜老司机福利片| 91字幕亚洲| 国产一区二区三区av在线| 一二三四在线观看免费中文在| 成在线人永久免费视频| 丁香六月欧美| videosex国产| 精品国产国语对白av| 女性生殖器流出的白浆| 大片免费播放器 马上看| 国产一区二区激情短视频 | 黄频高清免费视频| 老司机亚洲免费影院| 免费观看人在逋| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 9色porny在线观看| 国产欧美日韩精品亚洲av| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 两人在一起打扑克的视频| 国产在线一区二区三区精| 一进一出抽搐动态| 丝瓜视频免费看黄片| 人人妻人人澡人人看| 亚洲专区中文字幕在线| 一进一出抽搐动态| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 精品亚洲成国产av| 国产男人的电影天堂91| 久久狼人影院| 国产高清videossex| 久热这里只有精品99| 夫妻午夜视频| 欧美激情 高清一区二区三区| 成人影院久久| 国产精品二区激情视频| 国产av国产精品国产| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀| 精品国产乱子伦一区二区三区 | 国产精品久久久久成人av| 美女脱内裤让男人舔精品视频| 大片免费播放器 马上看| 亚洲人成77777在线视频| 男男h啪啪无遮挡| 五月开心婷婷网| 一级毛片精品| 精品国产一区二区三区久久久樱花| 国产成人精品久久二区二区免费| 午夜福利在线免费观看网站| 亚洲精品国产av成人精品| 黄频高清免费视频| 水蜜桃什么品种好| a在线观看视频网站| 性色av一级| 国产黄频视频在线观看| 免费在线观看影片大全网站| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 国产xxxxx性猛交| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 精品久久久久久久毛片微露脸 | 50天的宝宝边吃奶边哭怎么回事| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 热re99久久精品国产66热6| 麻豆国产av国片精品| 成人av一区二区三区在线看 | 国产在线观看jvid| svipshipincom国产片| 欧美变态另类bdsm刘玥| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 99久久99久久久精品蜜桃| 大陆偷拍与自拍| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影 | 久久国产亚洲av麻豆专区| 国产精品九九99| 王馨瑶露胸无遮挡在线观看| 精品免费久久久久久久清纯 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人免费无遮挡视频| 91成年电影在线观看| 美国免费a级毛片| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 国产色视频综合| 午夜精品国产一区二区电影| 欧美黄色淫秽网站| 考比视频在线观看| 国产成人av激情在线播放| 国产一区二区三区综合在线观看| 亚洲国产精品一区三区| 精品一区二区三卡| 超色免费av| 久久精品国产综合久久久| 久久av网站| 中国国产av一级| 久热这里只有精品99| 成人三级做爰电影| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 97精品久久久久久久久久精品| 欧美在线一区亚洲| 国产精品久久久久成人av| 精品亚洲成国产av| 最黄视频免费看| 美女视频免费永久观看网站| 午夜福利视频在线观看免费| 黄色片一级片一级黄色片| 97在线人人人人妻| 午夜久久久在线观看| 亚洲第一青青草原| 中文字幕高清在线视频| 满18在线观看网站| 在线观看www视频免费| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲国产一区二区在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 狂野欧美激情性xxxx| 国产精品国产av在线观看| av国产精品久久久久影院| 国产精品av久久久久免费| 手机成人av网站| 欧美精品一区二区免费开放| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| av视频免费观看在线观看| 成人国语在线视频| 国产精品影院久久| 人人妻人人澡人人看| 女人被躁到高潮嗷嗷叫费观| 日本av免费视频播放| 久热爱精品视频在线9| 精品福利永久在线观看| 欧美人与性动交α欧美软件| 精品久久久久久久毛片微露脸 | 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 国产无遮挡羞羞视频在线观看| a在线观看视频网站| 又紧又爽又黄一区二区| 69av精品久久久久久 | 午夜两性在线视频| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影| 天堂中文最新版在线下载| 日韩 亚洲 欧美在线| 美女主播在线视频| 老熟女久久久| 免费不卡黄色视频| 成年av动漫网址| 两性夫妻黄色片| 国产亚洲av高清不卡| 久久人妻熟女aⅴ| 91精品国产国语对白视频| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 欧美在线黄色| 99久久精品国产亚洲精品| 中文字幕制服av| 国产av又大| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 亚洲国产欧美网| 深夜精品福利| 精品少妇久久久久久888优播| 国产一卡二卡三卡精品| 十分钟在线观看高清视频www| 精品亚洲乱码少妇综合久久| 国产精品 欧美亚洲| 国产在线视频一区二区| 超碰成人久久| 中文欧美无线码| 女人高潮潮喷娇喘18禁视频| 亚洲欧洲精品一区二区精品久久久| 女人久久www免费人成看片| 美女国产高潮福利片在线看| 亚洲人成电影免费在线| avwww免费| 国产成人免费无遮挡视频| 欧美精品一区二区大全| 亚洲全国av大片| 一级片'在线观看视频| 久久久水蜜桃国产精品网| 欧美国产精品va在线观看不卡| 国产av又大| 国产日韩欧美在线精品| 久久99热这里只频精品6学生| 久久精品国产亚洲av高清一级| 亚洲精品国产区一区二| 精品欧美一区二区三区在线| 欧美日本中文国产一区发布| 亚洲国产精品成人久久小说| 一进一出抽搐动态| 国产精品久久久人人做人人爽| 色播在线永久视频| 十八禁人妻一区二区| 狠狠精品人妻久久久久久综合| 亚洲免费av在线视频| 男人添女人高潮全过程视频| 大香蕉久久成人网| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 日韩免费高清中文字幕av| av网站免费在线观看视频| 日韩中文字幕欧美一区二区| 别揉我奶头~嗯~啊~动态视频 | 黄片大片在线免费观看| 国产成人欧美| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 久久热在线av| 久久人妻熟女aⅴ| 老司机靠b影院| 熟女少妇亚洲综合色aaa.| 久久久国产精品麻豆| 一级a爱视频在线免费观看| 日本vs欧美在线观看视频| 亚洲男人天堂网一区| 日韩免费高清中文字幕av| 波多野结衣一区麻豆| 国产一区有黄有色的免费视频| av在线播放精品| av网站免费在线观看视频| 99久久人妻综合| 久久人人爽av亚洲精品天堂| 亚洲欧美精品自产自拍| 亚洲专区中文字幕在线| 久久午夜综合久久蜜桃| 亚洲精品中文字幕一二三四区 | h视频一区二区三区| 两个人看的免费小视频| 日本a在线网址| 久久人人97超碰香蕉20202| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品乱久久久久久| 成年人免费黄色播放视频| 久热爱精品视频在线9| 亚洲欧美成人综合另类久久久| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 别揉我奶头~嗯~啊~动态视频 | 精品高清国产在线一区| 一区二区三区精品91| 男人添女人高潮全过程视频| 天堂8中文在线网| 岛国毛片在线播放| 亚洲精华国产精华精| 国产精品久久久久成人av| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 少妇的丰满在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美一级毛片孕妇| av在线app专区| 中文字幕色久视频| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx| 午夜影院在线不卡| 亚洲欧洲精品一区二区精品久久久| 在线精品无人区一区二区三| 男人爽女人下面视频在线观看| 性少妇av在线| 啦啦啦 在线观看视频|