• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of radiosensitivity in primary central nervous system germ cell tumors using dynamic contrast-enhanced magnetic resonance imaging

    2015-10-27 01:25:20ChenluFengPeiyiGaoXiaoguangQiuTianyiQianYanLinJianZhouBinbinSui
    Chinese Journal of Cancer Research 2015年3期

    Chenlu Feng, Peiyi Gao, Xiaoguang Qiu, Tianyi Qian, Yan Lin, Jian Zhou, Binbin Sui

    1Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China;2Beijing Neurosurgical Institute, Beijing 100050, China;3Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China;4MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China

    Correspondence to: Peiyi Gao. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing 100050, China. Email: gaopeiyi_tiantan@163.com.

    Prediction of radiosensitivity in primary central nervous system germ cell tumors using dynamic contrast-enhanced magnetic resonance imaging

    Chenlu Feng1,2, Peiyi Gao1,2, Xiaoguang Qiu3, Tianyi Qian4, Yan Lin1, Jian Zhou1, Binbin Sui1

    1Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China;2Beijing Neurosurgical Institute, Beijing 100050, China;3Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China;4MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China

    Correspondence to: Peiyi Gao. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing 100050, China. Email: gaopeiyi_tiantan@163.com.

    Objective: To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system (CNS) germ cell tumors (GCTs).

    Methods: DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic (ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve.

    Results: A significant elevation in transfer constant (Ktrans) and extravascular extracellular space (Ve)(P=0.000), as well as a significant reduction in rate constant (Kep) (P=0.000) was observed in tumors. Ktrans,relative Ktrans, and relative Kepof the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Vebetween the two groups. Relative Ktransshowed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%,positive predictive value (PPV) of 95.8%, and negative predictive value (NPV) of 100%.

    Conclusions: Relative Ktransappeared promising in predicting tumor response to radiation therapy (RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI); extravascular extracellular space; germ cell tumors (GCTs); radiosensitivity; rate constant; transfer constant

    Introduction

    Primary central nervous system (CNS) germ cell tumors(GCTs) are rare and account for 0.5% of all primary CNS tumors in the West (1), while they are more common in China and other Asian countries and constitute approximately 2.0-7.9% of primary CNS tumors in adults or children (2,3). GCTs encompass a wide pathologic spectrum, and each specific subtype has different treatment options and prognosis. However, there are some overlaps in clinical presentation and tumor markers among GCTs subtypes, and conventional neuroimaging characteristics are of little diagnostic value for differentiating GCT subtypes. Furthermore biopsy is not widely practiced recently,because anatomically GCTs are located deep and adjacentto some important structures and vessels. In addition the sample is often insufficient to confirm the diagnosis (4). Thus, diagnostic radiation serves as an alternative method to determine the histological type of GCTs (5,6). But side effects and late sequelae induced by radiation therapy(RT) have led to questions on the reliability of diagnostic radiation. Hence we tried to find a non-invasive imaging method to replace the diagnostic radiation for predicting tumor response to RT, so that the treatment strategy could be determined or modified according to radiosensitivity of tumors, rather than just based on histological assessment.

    Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) is a non-invasive quantitative technique in assessing microvascular permeability, and in distinguishing benign from malignant tumors of the brain, breast, kidney,and sino-nasal (7-9). Recently several studies demonstrated that DCE-MRI data could monitor the early changes in tumor response to therapy, so that it can be used to evaluate tumor response to various treatments before the tumor size appears to change (10-13). Furthermore kinetic parameters derived from DCE-MRI can reflect tumor microenvironment variables, which play an important role in the assessment of tumor response to RT (14). Certain studies evaluated the predictive role of DCE-MRI in assessing tumor response to radiotherapy carried out for the cervix, colorectal, and brain tumors (15-17). However,to date clinical research regarding GCTs’ response to RT is hardly seen. Therefore, our study aims to investigate the changes in pharmacokinetic DCE-MRI parameters in tumor tissue before RT and evaluate the feasibility of DCEMRI in predicting radiosensitivity of GCTs.

    Materials and methods

    Patients

    The study was approved by the institutional review board of Beijing Tiantan Hospital and informed consent was obtained from all patients. Thirty-five patients clinically diagnosed with primary CNS GCTs from Jun 2013 to Nov 2014 were recruited in this study. Patients were included if they fulfilled the following inclusion criteria: patients with untreated mass in pineal, basal ganglia, and/or suprasellar region, which were suspiciously diagnosed as GCTs by clinical symptoms, tumor markers, and neuroimaging manifestations; normal or slightly elevated levels of β-human chorionic gonadotropin (β-HCG) in serum and cerebrospinal fluid, and normal levels of α-fetoprotein(AFP). Exclusion criteria were elevated levels of β-HCG,i.e., >1,000 mIU/mL, children younger than 5 years,stereotactic radiotherapy, chemoradiotherapy, or any other MR contraindications.

    DCE-MRI was conducted prior to diagnostic radiation. All patients received 10 Gy diagnostic radiation after baseline MRI examination. Two weeks after diagnostic radiation, patients were evaluated on radiosensitivity and divided into two groups: responsive group and nonresponsive group. Criteria for responsive groups were reduction in tumor size ≥50% compared with baseline tumor size in MRI (18), and levels of β-HCG, AFP in serum and cerebrospinal fluid within normal limits.

    MRI protocol

    MRI was performed on a 3.0 T MR system (Trio Tim,Siemens healthcare, Germany) with an eight-channel head coil. The MRI protocol included sagittal T1WI [repetition time (TR)/echo time (TE), 1,200/11 ms; field of view(FOV) 220 mm × 220 mm] and axial T1WI (TR/TE,2,000/9.8 ms; FOV 220 mm × 186 mm), axial T2WI (TR/ TE, 4,500/84 ms; FOV 220 mm × 186 mm), slice thickness/ gap, 5.0/0 mm, matrix 256×256, T1-magnetization prepared rapid gradient echo (T1-MPRAGE) (TR/TE,2,300/3.01 ms; slice thickness/gap, 1.0/0 mm, matrix 256×256, FOV 240 mm × 240 mm).

    DCE-MRI processing

    DCE-MRI was performed using a T1-weighted 3D radial gradient-recalled echo sequence (Volumetric Interpolated Breath-hold Examination, VIBE). The parameters are as follows: TR/TE: 3.86/1.39 ms, flip angle: 12°, slice thickness/gap: 3.0/0 mm, matrix: 256×256, FOV: 220 mm. The acquisition consisted of 50 measurements with a temporal spacing of 4.0 s. Before the dynamic scan, a multiflip-angle approach was performed for T1 mapping. After the fifth phase of dynamic scan, a bolus of gadoliniumdiethylene triamine pentacetate acid (Gd-DTPA) (Bellona,Beijing, China) was injected intravenously at a rate of 4 mL/s,a dose of 0.2 mmol/kg of body weight was administered and followed immediately by a 20 mL continuous saline flush.

    DCE-MRI analysis

    The DCE-MRI data were sent for post-processing to Tissue 4D software (Siemens Medical Systems). Motion correctionand registration were performed before pharmacokinetic evaluation. The artery input function was measured automatically by gadolinium dose in an intermediate mode. The transfer constant (Ktrans), extravascular extracellular space (Ve), and rate constant (Kep) were calculated using the Tofts and Kermode pharmacokinetic model (19). Meanwhile, maps for pharmacokinetic parameters were generated automatically. The region of interest (ROI)was selected by an experienced neuroradiologist inside the tumor as well as in normal brain tissue to obtain the pharmacokinetic DCE-MRI parameters. Normal brain tissue was defined as right or contralateral frontal subcortical white matter which showed no enhancement. During the drawing of ROI, cystic, necrotic, hemorrhagic regions, and normal vessels within the ROIs were avoided. Relative pharmacokinetic DCE-MRI parameters were defined as the ratio of DCE-MRI parameters between tumors and normal brain tissue.

    Table 1 DCE parameters of normal brain tissue and tumor tissue [median (min, max)]

    Statistical analysis

    Statistical analysis was performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Differences in DCE-MRI parameters between groups were compared by Wilcoxon signed-rank test and Mann-Whitney U-test. The correlation between DCE-MRI parameters and changes in tumor volume was analyzed using Spearman’s correlation analysis. Taking radiosensitivity as a gold standard for reference, the cut-off value of DCE-MRI parameters was calculated by receiver operating characteristic (ROC) curve. The area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value(NPV) were used to evaluate diagnostic value of DCE-MRI parameters. P<0.05 was considered statistically significant.

    Results

    Patient characteristics

    Of 35 patients suspected for primary CNS GCTs recruited in our study (mean age, 14.2±5.2 years; age range, 8-28 years),30 were male and 5 were female. Twelve patients were diagnosed as non-responsive or partly responsive to RT and included in the non-responsive group, and 23 were in the responsive group. The two groups were balanced in terms of age, gender, and initial tumor size (P<0.05).

    Comparison of differences in DCE-MRI parameters between tumors and normal brain tissue

    Table 1 shows the mean Ktrans, Kepand Vevalues of normal brain tissue and tumors. Compared with contralateral normal brain tissue, a significant elevation of Ktransand Veas well as a significant reduction in Kepwas observed in tumors(P<0.01).

    Relationship between DCE-MRI parameters and changes in tumor volume

    There was no significant correlation between DCE-MRI parameters and changes in tumor volume. The relative value of DCE-MRI parameters was not correlated with changes in tumor volume (P>0.05).

    Comparison of differences in DCE-MRI parameters between responsive and non-responsive groups

    Table 2 shows the mean values of DCE-MRI parameters of both groups. There was a significant elevation of Ktrans,relative Ktrans, and relative Kepin the responsive group(Figures 1,2), whereas no significant difference was found in Kep, Ve, and relative Vebetween the two groups.

    ROC curve analysis of DCE-MRI parameters for assessment of radiosensitivity in GCTs

    To determine the cut-off value of DCE-MRI parameters for predicting radiosensitivity, we analyzed Ktrans, relative Ktrans, and relative Kep, which showed a significant differencebetween the two groups by ROC curve analysis (Figure 3). ROC curve analysis showed that the cut-off value of Ktrans,relative Ktrans, and relative Kepwas 0.022, 2.066 and 0.188,respectively, and indicated a good level of diagnostic accuracy for the prediction of radiosensitivity. The AUC,sensitivity, specificity, PPV, NPV parameters for predicting radiosensitivity are presented in Table 3. As shown in Table 3,relative Ktransshowed best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, PPV of 95.8%, and NPV of 100%.

    Table 2 DCE parameters of responsive group and non-responsive group [median (min, max)]

    Figure 1 MR images in an 11-year-old female patient with pineal region mass sensitive to RT. The mass shows marked hyperintensities in Ktransmap (A) and Vemap (B); and marked hypointensities in Kepmap (C). Enhanced T1-weighted MRI (D) demonstrates that the mass has obvious homogeneous enhancement. RT, radiation therapy; MRI, magnetic resonance imaging.

    Figure 2 MR images in a 10-year-old male patient with multilocular pineal region mass after ventriculo-peritoneal shunt operation. Marked hypointensities were shown in Ktransmap (A); in Kepmap (B); and in Vemap (C) except for slightly patchy hyperintensities in the wall of cyst. Enhanced T1-weighted MRI (D) appeared as honeycomb-like enhancement in the mass. MRI, magnetic resonance imaging.

    Discussion

    The present study investigates the differences in pharmacokinetic DCE-MRI parameters of normal brain tissue and tumors in patients with CNS GCTs, and demonstrates the efficacy of DCE-MRI in predicting radiosensitivity of CNS GCTs.

    Characterized by angiogenesis, solid tumors often have abnormal blood vessel structure, function, and enhanced microvascular permeability. Currently both animal studies(20,21) and clinical studies (7-9) revealed that DCE-MRI is widely used to assess microvascular permeability, which may further contribute to distinguish benign from various solid malignant tumors. However, very little is currently known concerning tumor vasculature of CNS GCTs. In our study,we found that, similar to most solid tumors, tumor tissue of GCTs has a mildly increased Ktrans. It indicates that theincreased microvascular permeability of GCTs might be due to the disruption of the blood-brain barrier (BBB). This finding is consistent with previous studies, which proposed that BBB is relevant in patients with metastatic GCTs (22). Furthermore, an elevation of Vein GCTs corresponds to a relative increase in extravascular extracellular spaces, which implied that GCTs changed in a tumor microenvironment.

    Radiosensitivity is an important characteristic of CNS GCTs concerning tumor response to RT. Although optimal management for GCTs remains controversial, RT is well known as a critical component in multi-modal treatment of GCTs and provides favorable outcomes and long-term survival (1,23-25). Thus, prediction of tumor response to RT is a prerequisite for optimal selection of the timing and the field of RT. Kinetic data obtained by DCE-MRI regarding the changes in microvascular permeability and microenvironment can enhance understanding of the underlying mechanism of tumor response to RT (15-17). Although our attempt to analyze the relationship between pharmacokinetic DCE-MRI parameters and changes in tumor volume failed to show any significant correlation,the differences in Ktrans, relative Ktrans, and relative Kepbetween the responsive and non-responsive groups were significant, which was consistent with the result of Hans’s study (17). They performed DCE-MRI in 31 patients with rectal cancers before chemoradiotherapy, and demonstrated that responsive tumors had higher values of DCE-MRI parameters than non-responsive tumors. This finding indicated that different response of GCTs was caused by pharmacokinetic parameters concerning tumor microvascular permeability.

    In addition, we used the cut-off value of Ktrans, relative Ktrans,and relative Kepto stratify GCTs for predicting radiosensitivity. Relative Ktransshowed the best diagnostic value in predicting response with a sensitivity of 100% and specificity of 91.7% by ROC curve analysis. Unlike absolute value, relative pharmacokinetic parameters are more objective and accurate, and can overcome the impact of environment and individual differences. Our study showed that relative Ktransmay be more applicable than absolute value with high sensitivity and specificity. Given methodologic simplicity, noninvasiveness, and wider applicability, we propose that relative Ktransderived from DCE-MRI should replace diagnostic radiation as a useful and requisite step in the diagnostic procedures.

    Our study has some limitations. The response evaluation criteria for diagnostic radiation were inconsistent with the requirement of the Response Evaluation Criteria in Solid Tumors Standard (26). However, previous studies tested the precision and repetition of this diagnostic means using the same criteria (18,23). Moreover, these criteria of diagnostic radiation have been applied in clinical practice for several decades (27). Additionally, owing to low prevalence ofGCTs, the sample size of this study is relatively small and the interpretation of the results will be limited.

    Figure 3 ROC curves of Ktrans, relative Ktrans, and relative Kepfor prediction of radiosensitivity. The cut-off values of Ktrans, relative Ktrans, and relative Kepshowed a good level of diagnostic accuracy for the prediction of radiosensitivity with the AUC of 0.713, 0.933 and 0.812, respectively. ROC, receiver operating characteristic;AUC, area under the curve.

    Table 3 ROC curve analysis of DCE-MRI parameters for assessment of radiosensitivity in GCTs

    Conclusions

    This study demonstrates that relative Ktransderived from DCE-MRI is helpful in predicting radiosensitivity of GCTs. It can be used to guide clinical choice of RT and assist in finding new clinical perspective and insight for clinical diagnosis of GCTs. Our results imply that DCE-MRI may replace diagnostic radiation and serve as a novel and reliable approach to assess radiosensitivity of GCTs before treatment and represent a requisite step in the diagnostic procedures.

    Acknowledgements

    Funding: This study was supported by Beijing Natural Science Foundation (No. 7122029).

    Disclosure: The authors declare no conflict of interest.

    1. Thakkar JP, Chew L, Villano JL. Primary CNS germ cell tumors: current epidemiology and update on treatment. Med Oncol 2013;30:496.

    2. Shibamoto Y. Management of central nervous system germinoma: proposal for a modern strategy. Prog Neurol Surg 2009;23:119-29.

    3. Zhou D, Zhang Y, Liu H, et al. Epidemiology of nervous system tumors in children: a survey of 1,485 cases in Beijing Tiantan Hospital from 2001 to 2005. Pediatr Neurosurg 2008;44:97-103.

    4. Shinoda J, Sakai N, Yano H, et al. Prognostic factors and therapeutic problems of primary intracranial choriocarcinoma/germ-cell tumors with high levels of HCG. J Neurooncol 2004;66:225-40.

    5. Packer RJ, Cohen BH, Cooney K. Intracranial germ cell tumors. Oncologist 2000;5:312-20.

    6. Echevarría ME, Fangusaro J, Goldman S. Pediatric central nervous system germ cell tumors: a review. Oncologist 2008;13:690-9.

    7. Huang W, Li X, Morris EA, et al. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo. Proc Natl Acad Sci U S A 2008;105:17943-8.

    8. Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 2007;63:335-50.

    9. Xian J, Du H, Wang X, et al. Feasibility and value of quantitative dynamic contrast enhancement MR imaging in the evaluation of sinonasal tumors. Chin Med J (Engl)2014;127:2259-64.

    10. Farrar CT, Kamoun WS, Ley CD, et al. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model. PLoS One 2011;6:e17228.

    11. Zahra MA, Hollingsworth KG, Sala E, et al. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 2007;8:63-74.

    12. Semple SI, Harry VN, Parkin DE, et al. A combined pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging predicts response to chemoradiation in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2009;75:611-7.

    13. Liu YH, Ye JM, Xu L, et al. Effectiveness of dynamic contrast-enhanced magnetic resonance imaging in evaluating clinical responses to neoadjuvant chemotherapy in breast cancer. Chin Med J (Engl)2011;124:194-8.

    14. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 2004;14:198-206.

    15. Loncaster JA, Carrington BM, Sykes JR, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2002;54:759-67.

    16. George ML, Dzik-Jurasz AS, Padhani AR, et al. Noninvasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 2001;88:1628-36.

    17. Hawighorst H, Engenhart R, Knopp MV, et al. Intracranial meningeomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 1997;15:423-32.

    18. Nakagawa K, Aoki Y, Akanuma A, et al. Radiation therapy of intracranial germ cell tumors with radiosensitivity assessment. Radiat Med 1992;10:55-61.

    19. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-32.

    20. Reitan NK, Thuen M, Goa PE, et al. Characterization of tumor microvascular structure and permeability:comparison between magnetic resonance imaging and intravital confocal imaging. J Biomed Opt 2010;15:036004.

    21. Ferrier MC, Sarin H, Fung SH, et al. Validation of dynamic contrast-enhanced magnetic resonance imagingderived vascular permeability measurements using quantitative autoradiography in the RG2 rat brain tumor model. Neoplasia 2007;9:546-55.

    22. Azar JM, Schneider BP, Einhorn LH. Is the blood-brain barrier relevant in metastatic germ cell tumor? Int J Radiat Oncol Biol Phys 2007;69:163-6.

    23. Aoyama H. Radiation therapy for intracranial germ cell tumors. Prog Neurol Surg 2009;23:96-105.

    24. Skowrońska-Gardas A. A literature review of the recent radiotherapy clinical trials in pediatric brain tumors. Rev Recent Clin Trials 2009;4:42-55.

    25. Chen YW, Huang PI, Ho DM, et al. Change in treatment strategy for intracranial germinoma: long-term follow-up experience at a single institute. Cancer 2012;118:2752-62.

    26. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-16.

    27. Qu B, Du L, Huang Y, et al. Clinical analysis of intracranial germinoma's craniospinal irradiation using helical tomotherapy. Chin J Cancer Res 2014;26:247-54.

    Cite this article as: Feng C, Gao P, Qiu X, Qian T, Lin Y,Zhou J, Sui B. Prediction of radiosensitivity in primary central nervous system germ cell tumors using dynamic contrastenhanced magnetic resonance imaging. Chin J Cancer Res 2015;27(3):231-238. doi: 10.3978/j.issn.1000-9604.2015.05.06

    10.3978/j.issn.1000-9604.2015.05.06

    Submitted Feb 28, 2015. Accepted for publication May 13, 2015.

    View this article at: http://dx.doi.org/10.3978/j.issn.1000-9604.2015.05.06

    少妇粗大呻吟视频| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频 | 色94色欧美一区二区| 国产真人三级小视频在线观看| 欧美日韩亚洲高清精品| 久久久久国产精品人妻一区二区| 久久青草综合色| 国产麻豆69| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 午夜福利视频精品| 免费av中文字幕在线| 亚洲欧美成人综合另类久久久| 久久精品成人免费网站| 黄色视频不卡| avwww免费| 丝袜喷水一区| 亚洲全国av大片| 亚洲精品在线美女| 久热爱精品视频在线9| 老司机深夜福利视频在线观看 | 婷婷色av中文字幕| 丝袜美足系列| 伊人亚洲综合成人网| 日本精品一区二区三区蜜桃| 啦啦啦免费观看视频1| 精品亚洲乱码少妇综合久久| 亚洲三区欧美一区| 又紧又爽又黄一区二区| 99九九在线精品视频| 久久综合国产亚洲精品| 免费不卡黄色视频| 18禁黄网站禁片午夜丰满| 国产精品av久久久久免费| 女人久久www免费人成看片| 精品乱码久久久久久99久播| 久久久精品免费免费高清| 国产亚洲精品第一综合不卡| 性色av一级| 亚洲专区字幕在线| 国产精品久久久久成人av| 热re99久久国产66热| 制服人妻中文乱码| 成人国语在线视频| 久久这里只有精品19| 精品国产乱码久久久久久小说| 又大又爽又粗| 天堂中文最新版在线下载| 性高湖久久久久久久久免费观看| 亚洲av美国av| 久久中文看片网| 欧美变态另类bdsm刘玥| 国产精品久久久av美女十八| 国产成人欧美| 黑人巨大精品欧美一区二区mp4| 一本久久精品| 9色porny在线观看| 日本av免费视频播放| 啦啦啦 在线观看视频| 久久精品熟女亚洲av麻豆精品| 岛国在线观看网站| 国产av国产精品国产| 精品国产乱码久久久久久小说| 午夜精品久久久久久毛片777| 母亲3免费完整高清在线观看| 性色av乱码一区二区三区2| 丝袜在线中文字幕| 国产成人a∨麻豆精品| 欧美一级毛片孕妇| 日本vs欧美在线观看视频| 欧美精品一区二区免费开放| 亚洲精品日韩在线中文字幕| 国产男女超爽视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 国内视频| 亚洲一码二码三码区别大吗| 美女大奶头黄色视频| 男人添女人高潮全过程视频| 欧美亚洲日本最大视频资源| 久久久久网色| 99国产精品99久久久久| 成人18禁高潮啪啪吃奶动态图| 69精品国产乱码久久久| 欧美激情极品国产一区二区三区| 国产在线观看jvid| 亚洲 国产 在线| 亚洲精品第二区| 午夜91福利影院| 又黄又粗又硬又大视频| av不卡在线播放| 亚洲国产欧美网| 国产高清国产精品国产三级| 女人精品久久久久毛片| 美女主播在线视频| 免费高清在线观看日韩| 国产91精品成人一区二区三区 | 久久 成人 亚洲| 777米奇影视久久| 亚洲美女黄色视频免费看| 久久国产精品男人的天堂亚洲| 亚洲av成人一区二区三| 日韩制服骚丝袜av| 久9热在线精品视频| 国产极品粉嫩免费观看在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲男人天堂网一区| 国产不卡av网站在线观看| 国产野战对白在线观看| 午夜福利乱码中文字幕| 久久久久久久大尺度免费视频| 黑人巨大精品欧美一区二区mp4| 午夜福利影视在线免费观看| 一本大道久久a久久精品| 老司机亚洲免费影院| 日韩免费高清中文字幕av| 老司机深夜福利视频在线观看 | 五月开心婷婷网| 久久精品人人爽人人爽视色| 视频区欧美日本亚洲| 亚洲人成77777在线视频| 美女脱内裤让男人舔精品视频| 亚洲人成77777在线视频| 电影成人av| 视频在线观看一区二区三区| 交换朋友夫妻互换小说| 这个男人来自地球电影免费观看| 久久天躁狠狠躁夜夜2o2o| 十八禁人妻一区二区| 超色免费av| 中亚洲国语对白在线视频| 精品少妇黑人巨大在线播放| 捣出白浆h1v1| 色94色欧美一区二区| 国产成人精品久久二区二区91| 久久久久久久久久久久大奶| 人成视频在线观看免费观看| 这个男人来自地球电影免费观看| 国产av又大| 亚洲美女黄色视频免费看| 中文字幕人妻熟女乱码| 69精品国产乱码久久久| 国产麻豆69| 精品一区二区三区四区五区乱码| 国产亚洲欧美精品永久| av一本久久久久| 亚洲精品久久午夜乱码| 中文字幕最新亚洲高清| 在线观看免费高清a一片| 无限看片的www在线观看| 欧美 亚洲 国产 日韩一| 一本大道久久a久久精品| 秋霞在线观看毛片| 亚洲全国av大片| 新久久久久国产一级毛片| 两个人免费观看高清视频| 成人亚洲精品一区在线观看| 日韩欧美免费精品| 亚洲国产毛片av蜜桃av| av天堂在线播放| 亚洲精品一区蜜桃| 中文字幕制服av| 丁香六月天网| 精品人妻在线不人妻| 啦啦啦 在线观看视频| 在线看a的网站| 欧美成狂野欧美在线观看| 热99re8久久精品国产| 亚洲国产av新网站| 国产亚洲午夜精品一区二区久久| 欧美精品av麻豆av| 50天的宝宝边吃奶边哭怎么回事| av电影中文网址| 人妻人人澡人人爽人人| 蜜桃国产av成人99| 伊人久久大香线蕉亚洲五| 好男人电影高清在线观看| 男人添女人高潮全过程视频| 国产欧美日韩一区二区三 | 新久久久久国产一级毛片| 国产一区有黄有色的免费视频| 1024香蕉在线观看| 国产一区二区三区在线臀色熟女 | 国产亚洲精品第一综合不卡| tube8黄色片| 国产精品二区激情视频| 99精国产麻豆久久婷婷| 中亚洲国语对白在线视频| 国产熟女午夜一区二区三区| 亚洲天堂av无毛| 亚洲熟女精品中文字幕| 性少妇av在线| 久久久精品94久久精品| av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃| 国产在线观看jvid| 欧美黑人欧美精品刺激| 国产精品av久久久久免费| 欧美在线一区亚洲| 国产色视频综合| 99久久国产精品久久久| 正在播放国产对白刺激| 国精品久久久久久国模美| a级毛片黄视频| 另类精品久久| 乱人伦中国视频| 欧美精品高潮呻吟av久久| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| 国产精品 国内视频| 久久久国产成人免费| 一本—道久久a久久精品蜜桃钙片| 久久久久久久精品精品| 女性被躁到高潮视频| 欧美亚洲日本最大视频资源| 精品亚洲成国产av| 亚洲成av片中文字幕在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲精品国产一区二区精华液| 欧美日韩亚洲国产一区二区在线观看 | 日韩视频一区二区在线观看| 日韩视频一区二区在线观看| 精品福利永久在线观看| 一级,二级,三级黄色视频| 中文字幕人妻熟女乱码| 一级片'在线观看视频| 日日爽夜夜爽网站| 久热爱精品视频在线9| av在线app专区| 欧美变态另类bdsm刘玥| 国产精品一区二区在线观看99| 纵有疾风起免费观看全集完整版| 亚洲色图 男人天堂 中文字幕| 亚洲成国产人片在线观看| 亚洲国产精品一区三区| 欧美激情久久久久久爽电影 | 亚洲av日韩精品久久久久久密| 交换朋友夫妻互换小说| 日本撒尿小便嘘嘘汇集6| 男女高潮啪啪啪动态图| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 大陆偷拍与自拍| 久久九九热精品免费| 亚洲精品乱久久久久久| 两个人看的免费小视频| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 国产不卡av网站在线观看| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 精品国产一区二区三区四区第35| 五月开心婷婷网| 欧美成狂野欧美在线观看| avwww免费| 免费女性裸体啪啪无遮挡网站| 69精品国产乱码久久久| 91老司机精品| 一级黄色大片毛片| av天堂在线播放| 久久久久精品人妻al黑| 亚洲一区二区三区欧美精品| 国产男人的电影天堂91| 丰满少妇做爰视频| 伊人久久大香线蕉亚洲五| 日韩,欧美,国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 美国免费a级毛片| 999精品在线视频| 十八禁高潮呻吟视频| 亚洲第一av免费看| 国产精品麻豆人妻色哟哟久久| 岛国在线观看网站| 精品一区二区三卡| 蜜桃在线观看..| 三级毛片av免费| 久久九九热精品免费| 老司机福利观看| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| av在线老鸭窝| av欧美777| 欧美激情极品国产一区二区三区| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁日日躁夜夜躁夜夜| 成人国产一区最新在线观看| 在线天堂中文资源库| 超色免费av| 久久午夜综合久久蜜桃| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 99精品欧美一区二区三区四区| 亚洲人成电影观看| 多毛熟女@视频| 欧美精品啪啪一区二区三区 | 老汉色av国产亚洲站长工具| 大香蕉久久成人网| 久久影院123| 亚洲五月色婷婷综合| 国产欧美日韩一区二区三 | 国产精品免费大片| 国产亚洲精品一区二区www | 亚洲色图 男人天堂 中文字幕| 久久ye,这里只有精品| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 伊人亚洲综合成人网| 大码成人一级视频| 丝袜脚勾引网站| 一区二区日韩欧美中文字幕| 亚洲一码二码三码区别大吗| 亚洲精品国产一区二区精华液| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| 最黄视频免费看| 日日摸夜夜添夜夜添小说| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| www.av在线官网国产| 少妇裸体淫交视频免费看高清 | 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 国产成人免费观看mmmm| 国产av国产精品国产| 999久久久精品免费观看国产| 久久久久精品人妻al黑| 桃红色精品国产亚洲av| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 日韩电影二区| 欧美日韩亚洲综合一区二区三区_| 亚洲伊人久久精品综合| 黑人操中国人逼视频| 飞空精品影院首页| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 美女扒开内裤让男人捅视频| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 精品久久蜜臀av无| 中文字幕精品免费在线观看视频| 天天影视国产精品| 成在线人永久免费视频| 亚洲国产av新网站| 色播在线永久视频| 婷婷色av中文字幕| 黄色视频不卡| 亚洲伊人久久精品综合| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| av有码第一页| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜在线中文字幕| 久久天堂一区二区三区四区| 国产成人影院久久av| 婷婷色av中文字幕| 精品国产一区二区三区四区第35| 欧美xxⅹ黑人| 中文精品一卡2卡3卡4更新| 侵犯人妻中文字幕一二三四区| 国产在线视频一区二区| 国产熟女午夜一区二区三区| 热re99久久国产66热| 国产又爽黄色视频| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 国产亚洲av高清不卡| 久久av网站| 国产区一区二久久| av电影中文网址| 欧美黑人精品巨大| 女警被强在线播放| 亚洲午夜精品一区,二区,三区| 每晚都被弄得嗷嗷叫到高潮| videosex国产| 欧美精品av麻豆av| 18禁观看日本| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 女人被躁到高潮嗷嗷叫费观| 久久人妻福利社区极品人妻图片| 亚洲avbb在线观看| 午夜视频精品福利| 亚洲人成77777在线视频| 欧美大码av| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| av在线app专区| 麻豆av在线久日| 正在播放国产对白刺激| 午夜视频精品福利| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 嫩草影视91久久| 国产精品 国内视频| 色播在线永久视频| 国产不卡av网站在线观看| 精品熟女少妇八av免费久了| 欧美一级毛片孕妇| 国产高清视频在线播放一区 | 人妻久久中文字幕网| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 一级毛片电影观看| 久久久久久人人人人人| 日韩视频一区二区在线观看| 国产男女内射视频| 成人国产一区最新在线观看| 69av精品久久久久久 | 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 五月开心婷婷网| 法律面前人人平等表现在哪些方面 | 日本五十路高清| 久久天躁狠狠躁夜夜2o2o| 亚洲成人手机| 国产xxxxx性猛交| 18禁黄网站禁片午夜丰满| 一本久久精品| 欧美黄色片欧美黄色片| 一进一出抽搐动态| 热re99久久国产66热| 他把我摸到了高潮在线观看 | 色精品久久人妻99蜜桃| 免费在线观看日本一区| bbb黄色大片| 成年女人毛片免费观看观看9 | 在线天堂中文资源库| 各种免费的搞黄视频| 国产视频一区二区在线看| 亚洲精品国产精品久久久不卡| 国产精品 欧美亚洲| 国产高清视频在线播放一区 | 午夜91福利影院| videos熟女内射| 欧美精品一区二区大全| 丝袜美足系列| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 男女免费视频国产| 亚洲色图综合在线观看| 国产在线观看jvid| 免费观看a级毛片全部| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 男人舔女人的私密视频| 母亲3免费完整高清在线观看| av国产精品久久久久影院| 国产真人三级小视频在线观看| 久久久国产成人免费| 国产精品久久久久久精品电影小说| 日韩熟女老妇一区二区性免费视频| 中文精品一卡2卡3卡4更新| 免费在线观看影片大全网站| 久久久久久久久久久久大奶| 亚洲国产欧美网| 18禁国产床啪视频网站| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 久久精品成人免费网站| 真人做人爱边吃奶动态| 精品视频人人做人人爽| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| 一区二区av电影网| 秋霞在线观看毛片| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 亚洲视频免费观看视频| 在线av久久热| 成人av一区二区三区在线看 | 亚洲一区中文字幕在线| 欧美日本中文国产一区发布| 一级毛片电影观看| 午夜影院在线不卡| 免费不卡黄色视频| 啦啦啦啦在线视频资源| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 9热在线视频观看99| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| av视频免费观看在线观看| 日韩制服骚丝袜av| 12—13女人毛片做爰片一| 视频在线观看一区二区三区| 精品国内亚洲2022精品成人 | 国产精品 国内视频| 我要看黄色一级片免费的| 一二三四社区在线视频社区8| 美女扒开内裤让男人捅视频| 精品人妻1区二区| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 免费看十八禁软件| a级毛片黄视频| 91av网站免费观看| 窝窝影院91人妻| 91精品三级在线观看| 久久午夜综合久久蜜桃| avwww免费| av又黄又爽大尺度在线免费看| 自线自在国产av| 男人操女人黄网站| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 下体分泌物呈黄色| 国产福利在线免费观看视频| 亚洲欧美清纯卡通| 中文字幕另类日韩欧美亚洲嫩草| 国产免费一区二区三区四区乱码| 精品人妻熟女毛片av久久网站| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产 | 久久影院123| 免费在线观看完整版高清| 亚洲精品乱久久久久久| 波多野结衣av一区二区av| 色婷婷av一区二区三区视频| 999久久久精品免费观看国产| 黄片大片在线免费观看| 亚洲五月色婷婷综合| 日韩大码丰满熟妇| 99热全是精品| 啪啪无遮挡十八禁网站| 国产成+人综合+亚洲专区| 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 国产精品自产拍在线观看55亚洲 | 俄罗斯特黄特色一大片| av国产精品久久久久影院| 精品少妇黑人巨大在线播放| 91老司机精品| 亚洲精品美女久久久久99蜜臀| 9色porny在线观看| 国产一卡二卡三卡精品| 精品第一国产精品| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久| 亚洲第一青青草原| av天堂久久9| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 亚洲国产精品999| 国精品久久久久久国模美| 19禁男女啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 男人添女人高潮全过程视频| 亚洲综合色网址| 国产精品久久久人人做人人爽| 午夜激情久久久久久久| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 一区福利在线观看| 国产高清videossex| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 宅男免费午夜| 中国国产av一级| 91精品三级在线观看| 国产av国产精品国产| 久热这里只有精品99| 男女国产视频网站| 久久亚洲精品不卡| 制服人妻中文乱码| 久久天堂一区二区三区四区| 9色porny在线观看| 亚洲精品美女久久av网站| 人人澡人人妻人| 捣出白浆h1v1| 精品少妇内射三级| 少妇裸体淫交视频免费看高清 | 国产有黄有色有爽视频| 我要看黄色一级片免费的| 久久99一区二区三区| 一二三四在线观看免费中文在| 国产精品久久久久久人妻精品电影 | 成人国产av品久久久| 在线观看舔阴道视频| 大陆偷拍与自拍| 9191精品国产免费久久| 国产伦人伦偷精品视频| 曰老女人黄片| 久久久久国内视频| 超碰97精品在线观看| 欧美日韩福利视频一区二区| 乱人伦中国视频| 99久久精品国产亚洲精品| 精品人妻一区二区三区麻豆| av网站在线播放免费| 国产欧美日韩一区二区三 | 国产精品久久久久久精品古装| 视频在线观看一区二区三区| 国产一级毛片在线| 日本vs欧美在线观看视频| 男人添女人高潮全过程视频| 国产片内射在线|