王 靜,劉向陽,李 帥,侯旭陽,王新梅
?
基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案設(shè)計(jì)
王 靜1,劉向陽2,李 帥1,侯旭陽1,王新梅3
(1. 長安大學(xué)信息工程學(xué)院 西安 710064; 2. 西安通信學(xué)院信息服務(wù)系 西安 710106; 3. 西安電子科技大學(xué)綜合業(yè)務(wù)網(wǎng)國家重點(diǎn)實(shí)驗(yàn)室 西安 710071)
為進(jìn)一步提高無線中繼網(wǎng)絡(luò)的信息傳輸速率,提出了一種基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的有效下行傳輸方案。不同于傳統(tǒng)的信息傳輸方案,該方案采用時(shí)間維復(fù)數(shù)域網(wǎng)絡(luò)編碼,中繼節(jié)點(diǎn)對(duì)接收到的多個(gè)時(shí)隙的信源符號(hào)進(jìn)行復(fù)數(shù)域網(wǎng)絡(luò)編碼并將編碼符號(hào)同時(shí)發(fā)送給用戶節(jié)點(diǎn);用戶節(jié)點(diǎn)接收到所有中繼節(jié)點(diǎn)的編碼符號(hào),采用聯(lián)合最大似然多用戶檢測恢復(fù)信源符號(hào)。性能分析和仿真結(jié)果表明,該方案的符號(hào)錯(cuò)誤概率明顯低于傳統(tǒng)中繼傳輸方案,且能獲得更高的信息傳輸速率和網(wǎng)絡(luò)吞吐量。
復(fù)數(shù)域網(wǎng)絡(luò)編碼; 下行傳輸; 網(wǎng)絡(luò)吞吐量; 符號(hào)錯(cuò)誤概率; 無線中繼網(wǎng)絡(luò)
為了滿足無線網(wǎng)絡(luò)在吞吐量、傳輸速率和分集增益等方面的需求,3GPP啟動(dòng)的LTE-Advanced研究項(xiàng)目將協(xié)同多點(diǎn)傳輸(CoMP)和中繼技術(shù)作為其基本支撐技術(shù)[1-2]?;谥欣^技術(shù)的協(xié)作通信通過減少發(fā)射機(jī)和接收機(jī)間的傳輸距離,從而抵抗多徑衰落,獲得更高的數(shù)據(jù)傳輸速率、增加無線信道容量并擴(kuò)展網(wǎng)絡(luò)覆蓋范圍[3],進(jìn)一步改善無線網(wǎng)絡(luò)的通信質(zhì)量。鑒于無線中繼技術(shù)可為移動(dòng)通信網(wǎng)絡(luò)帶來上述諸多好處,目前已經(jīng)成為IMT-Advanced標(biāo)準(zhǔn)的候選技術(shù)[4]。
文獻(xiàn)[5]提出了網(wǎng)絡(luò)編碼理論,允許網(wǎng)絡(luò)中間節(jié)點(diǎn)進(jìn)行編碼操作,充分利用已有網(wǎng)絡(luò)資源進(jìn)行更加有效的數(shù)據(jù)傳輸,進(jìn)一步證明了基于網(wǎng)絡(luò)編碼的多播傳輸速率可以達(dá)到網(wǎng)絡(luò)流量的理論上限值。鑒于無線網(wǎng)絡(luò)具有廣播特性,網(wǎng)絡(luò)節(jié)點(diǎn)發(fā)送的信息可以被其傳輸范圍內(nèi)的所有節(jié)點(diǎn)接收,目前已有很多文獻(xiàn)研究無線網(wǎng)絡(luò)中的網(wǎng)絡(luò)編碼技術(shù)。文獻(xiàn)[6]基于網(wǎng)絡(luò)編碼技術(shù)和物理層廣播特性,將無線網(wǎng)絡(luò)全向傳輸特性和網(wǎng)絡(luò)編碼技術(shù)相結(jié)合,提出一種無線網(wǎng)絡(luò)的分布式傳輸方案,可以提高無線網(wǎng)絡(luò)信息交換的吞吐量。在大規(guī)模網(wǎng)絡(luò)中,傳統(tǒng)中繼方式降低了頻譜的有效性,文獻(xiàn)[7]提出了自適應(yīng)網(wǎng)絡(luò)編碼合作傳輸協(xié)議,將瞬時(shí)網(wǎng)絡(luò)圖映射為信道編碼圖。物理層網(wǎng)絡(luò)編碼是一種新的基于電磁波的網(wǎng)絡(luò)編碼方法,利用同時(shí)到達(dá)電磁波的疊加特性進(jìn)行伽羅華域網(wǎng)絡(luò)編碼[8],不同于數(shù)字比特流上的straightforward網(wǎng)絡(luò)編碼算法,中繼節(jié)點(diǎn)將接收到的已調(diào)電磁波在不解調(diào)的情況下,直接進(jìn)行編碼(加和)操作,提高網(wǎng)絡(luò)吞吐量,減少信息傳輸時(shí)間。文獻(xiàn)[9]已將物理層網(wǎng)絡(luò)編碼應(yīng)用到蜂窩網(wǎng)絡(luò)上下行傳輸?shù)穆?lián)合設(shè)計(jì)中。為進(jìn)一步提高網(wǎng)絡(luò)吞吐量,文獻(xiàn)[10-11]提出了復(fù)數(shù)域網(wǎng)絡(luò)編碼,與伽羅華域網(wǎng)絡(luò)編碼相比,復(fù)數(shù)域網(wǎng)絡(luò)編碼不僅能獲得更好的網(wǎng)絡(luò)吞吐量性能,還可獲得完全分集增益,且不受信噪比以及所采用調(diào)制方式的限制。
考慮移動(dòng)終端處于無線蜂窩小區(qū)的邊界附近,由于無線信道衰落以及基站發(fā)送功率的限制,邊界附近的終端用戶無法可靠地接收基站信息,為此本文考慮在蜂窩小區(qū)內(nèi)設(shè)置中繼站點(diǎn),并給出一種基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案。對(duì)本文方案的符號(hào)錯(cuò)誤概率(symbol error probability,SEP)性能進(jìn)行仿真發(fā)現(xiàn),隨著中繼節(jié)點(diǎn)數(shù)目的增加其SEP相應(yīng)地減少,當(dāng)無線網(wǎng)絡(luò)具有4個(gè)中繼節(jié)點(diǎn)時(shí),該方案可獲得較好的SEP性能。對(duì)本文方案進(jìn)行理論分析表明,比傳統(tǒng)中繼傳輸方案能獲得更高的網(wǎng)絡(luò)吞吐量,消耗更少的傳輸時(shí)隙。
采用復(fù)數(shù)域網(wǎng)絡(luò)編碼的信息傳輸模型[10-11],具有個(gè)用戶節(jié)點(diǎn)和個(gè)中繼節(jié)點(diǎn)的協(xié)作網(wǎng)絡(luò)如圖1所示,在前個(gè)時(shí)隙,個(gè)用戶節(jié)點(diǎn)連續(xù)地向中繼節(jié)點(diǎn)和基站傳輸信息,假定到中繼節(jié)點(diǎn)的信道衰落系數(shù)以及到基站的信道衰落系數(shù)在信息傳輸過程中保持不變,滿足~,~。定義,,前個(gè)時(shí)隙,中繼節(jié)點(diǎn)和基站節(jié)點(diǎn)接收到的符號(hào)為:
(2)
圖1 基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的協(xié)作傳輸模型
(4)
(5)
2.1 (1, 3, 2)無線中繼網(wǎng)絡(luò)
圖2 (1, 3, 2)無線中繼網(wǎng)絡(luò)示意圖
(7)
(8)
圖3 (1, 3, 2)無線中繼網(wǎng)絡(luò)下行信息傳輸?shù)臅r(shí)隙分配圖
時(shí)隙2和時(shí)隙3的信息傳輸過程同時(shí)隙1,經(jīng)過3個(gè)時(shí)隙,中繼節(jié)點(diǎn)共檢測到3個(gè)信源符號(hào),進(jìn)行復(fù)數(shù)域網(wǎng)絡(luò)編碼得到編碼符號(hào)為:
(10)
(12)
對(duì)上述(1, 3, 2)無線中繼網(wǎng)絡(luò)中基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行信息傳輸過程進(jìn)行分析,基站共通過 4個(gè)時(shí)隙向用戶節(jié)點(diǎn)和發(fā)送了3個(gè)符號(hào),符號(hào)速率為符號(hào)/時(shí)隙。
2.2 (1,,)無線中繼網(wǎng)絡(luò)
將基于復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案從(1,3,2)無線中繼網(wǎng)絡(luò)推廣到具有個(gè)中繼節(jié)點(diǎn)和個(gè)用戶節(jié)點(diǎn)的無線中繼網(wǎng)絡(luò),其時(shí)隙分配如圖4所示。前個(gè)時(shí)隙,基站向中繼節(jié)點(diǎn)連續(xù)發(fā)送符號(hào),中繼節(jié)點(diǎn)()對(duì)接收到的符號(hào)進(jìn)行檢測。具體地,在時(shí)隙(),基站向中繼節(jié)點(diǎn)發(fā)送信源符號(hào),此時(shí)中繼節(jié)點(diǎn)收到的符號(hào)為:
(14)
(15)
(17)
(1,,)無線中繼網(wǎng)絡(luò)采用基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案,基站通過個(gè)時(shí)隙向用戶節(jié)點(diǎn)()發(fā)送個(gè)符號(hào),符號(hào)速率為符號(hào)/時(shí)隙。
圖4 (1, m, n)無線中繼網(wǎng)絡(luò)下行信息傳輸?shù)臅r(shí)隙分配圖
3.1 網(wǎng)絡(luò)吞吐量
通過對(duì)上述方案的網(wǎng)絡(luò)吞吐量性能進(jìn)行分析,當(dāng)無線中繼網(wǎng)絡(luò)存在單一中繼節(jié)點(diǎn)時(shí),基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行信息傳輸方案獲得與傳統(tǒng)中繼轉(zhuǎn)發(fā)方案相同的網(wǎng)絡(luò)吞吐量1/2符號(hào)/時(shí)隙;當(dāng)中繼節(jié)點(diǎn)數(shù)時(shí),基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行信息傳輸方案的網(wǎng)絡(luò)吞吐量為符號(hào)/時(shí)隙,大于傳統(tǒng)中繼轉(zhuǎn)發(fā)方案。
3.2 符號(hào)錯(cuò)誤概率
采用C++語言進(jìn)行仿真實(shí)驗(yàn),對(duì)不同SNR下基于復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案的SEP進(jìn)行比較。仿真過程中采用性能最好的BPSK調(diào)制。
圖6 基于復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案的SEP
基于復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案的SEP仿真結(jié)果如圖6所示。從SEP曲線可以看出,無線中繼網(wǎng)絡(luò)具有個(gè)中繼節(jié)點(diǎn)時(shí),隨著SNR增加SEP降低。進(jìn)一步,隨著無線網(wǎng)絡(luò)中繼節(jié)點(diǎn)數(shù)目增加,編碼增益相應(yīng)地增加,但其增加量不斷地減小。從圖7可以看出,具有個(gè)中繼節(jié)點(diǎn)的無線網(wǎng)絡(luò),采用復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案將得到近似相等的SEP,其編碼增益也近似相等。綜合圖6和圖7得到,隨著無線網(wǎng)絡(luò)中繼節(jié)點(diǎn)數(shù)增加,SEP減少;但當(dāng)中繼節(jié)點(diǎn)數(shù)增加到時(shí),SEP不再減少,相應(yīng)的編碼增益不再增加,此時(shí)無線中繼網(wǎng)絡(luò)采用基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案已獲得較好的傳輸性能??梢?,蜂窩小區(qū)中放置中繼節(jié)點(diǎn)幫助基站傳輸信息,并非數(shù)量越多性能越好,設(shè)置較多的中繼節(jié)點(diǎn)將增加傳輸功率消耗以及用戶節(jié)點(diǎn)的數(shù)據(jù)處理復(fù)雜度,且將引入較多的傳輸時(shí)延。
圖7 具有個(gè)中繼節(jié)點(diǎn)的無線網(wǎng)絡(luò)采用復(fù)數(shù)域網(wǎng)絡(luò)編碼下行傳輸方案的SEP
無線中繼網(wǎng)絡(luò)采用傳統(tǒng)中繼傳輸方案的SEP仿真結(jié)果如圖8所示。當(dāng)中繼節(jié)點(diǎn)數(shù)增加時(shí),SEP相應(yīng)地增加,編碼增益減少。從式(18)可以得到,用戶節(jié)點(diǎn)()從條獨(dú)立路徑接收到信源符號(hào)的個(gè)副本無法分開,因此用戶節(jié)點(diǎn)無法檢測到多個(gè)獨(dú)立的信源符號(hào)的副本,無法獲得階分集增益。隨著中繼節(jié)點(diǎn)數(shù)的增加,中繼節(jié)點(diǎn)上參與復(fù)數(shù)域網(wǎng)絡(luò)編碼的信源符號(hào)數(shù)目也隨之增加,同時(shí)增加了中繼節(jié)點(diǎn)上復(fù)數(shù)域網(wǎng)絡(luò)編碼的復(fù)雜度和用戶節(jié)點(diǎn)上的檢測復(fù)雜度。同時(shí),用戶節(jié)點(diǎn)的檢測可靠性降低,SEP相應(yīng)地增加。對(duì)圖6和圖8進(jìn)行對(duì)比分析,無線中繼網(wǎng)絡(luò)采用基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案其SEP較低,編碼增益遠(yuǎn)遠(yuǎn)高于傳統(tǒng)中繼傳輸方案。
圖8 傳統(tǒng)中繼傳輸方案的SEP
由于無線信道衰落以及基站發(fā)送功率的限制,蜂窩小區(qū)邊界處的移動(dòng)終端無法可靠地接收基站信息,考慮在蜂窩小區(qū)內(nèi)設(shè)置中繼站點(diǎn),提出一種基于復(fù)數(shù)域網(wǎng)絡(luò)編碼的下行傳輸方案。該方案的SEP明顯低于傳統(tǒng)中繼轉(zhuǎn)發(fā)方案,且該方案將獲得更高的信息傳輸速率和網(wǎng)絡(luò)吞吐量。需要指出,由于提出的下行傳輸方案里中繼節(jié)點(diǎn)需進(jìn)行復(fù)數(shù)域網(wǎng)絡(luò)編碼,而且用戶節(jié)點(diǎn)需對(duì)復(fù)數(shù)域編碼符號(hào)進(jìn)行最大似然檢測,相對(duì)于傳統(tǒng)中繼轉(zhuǎn)發(fā)方案,中繼節(jié)點(diǎn)和用戶節(jié)點(diǎn)執(zhí)行的復(fù)雜度略高,消耗的時(shí)間也比傳統(tǒng)方案略多。
本文研究得到了西安市科技計(jì)劃項(xiàng)目(CXY1340(4))的支持,在此表示感謝。
[1] SAWAHASHI M, KISHIYAMA Y, MORIMOTO A, et al. Coordinated multipoint transmission/reception techniques for LTE-advanced[J]. IEEE Wireless Communications, 2010, 17(3): 26-34.
[2] TEYEB O, FREDERIKSEN F, PHAN V V, et al. User multiplexing in relay enhanced LTE-advanced networks[C]// 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring). Taipei, China: IEEE Press, 2010: 1-5.
[3] LANEMAN J N, WORNELL G W. Distributed space- time-coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Trans on Information Theory, 2003, 49(10): 2415-2425.
[4] YANG Y, HU H, XU J, et al. Relay technologies for WiMAX and LTE-Advanced mobile systems[J]. IEEE Communications Magazine, 2009, 47(10): 100-105.
[5] AHLSWEDE R, CAI N, LI S Y R, et al. Network information flow[J]. IEEE Trans on Information Theory, 2000, 46(4): 1204-1216.
[6] WU Y, CHOU P A, KUNG S Y. Information exchange in wireless networks with network coding and physical-layer broadcast[C]//Proceedings of the 2005 Conference on Information Sciences and Systems. Baltimore: IEEE Press, 2005.
[7] BAO X, LI J. Adaptive network coded cooperation (ANCC) for wireless relay networks: matching code-on-graph with network-on-graph[J]. IEEE Transactions on Wireless Communications, 2008, 7(2): 574-583.
[8] ZHANG S, LIEW S C, LAM P. On the synchronization of physical-layer network coding[C]//Proceedings of the 2006 IEEE Information Theory Workshop. Chengdu: IEEE Press, 2006: 404-408.
[9] ZHIGUO D,KRIKIDIS I,THOMPSON J, et al. Physical layer network coding and precoding for the two-way relay channel in cellular systems[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 696-712.
[10] WANG T, GIANNAKIS G B. Complex field network coding for multiuser cooperative communications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(3): 561-571.
[11] WANG T, GIANNAKIS G B. High-throughput cooperative communications with complex field network coding[C]// The 41st Annual Conference on Information Sciences and Systems. Baltimore, USA: IEEE Press, 2007: 253-258.
[12] XIN Y,WANG Z,GIANNAKIS G B. Space-time diversity systems based on unitary constellation-rotating precoders [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '01). Salt Lake City, UT: IEEE Press, 2001: 2429-2432.
[13] VISHWANATH R, BHATNAGAR M R. Optimum linear constellation precoding for space time wireless systems[J]. Wireless Personal Communications, 2007, 40(4): 511-521.
[14] BERNARD S. Digital communications: fundamentals and applications[M]. 2nd ed. New Jersey: Prentice Hall PTR, 2001.
編 輯 張 俊
Design of Downlink Transmission Scheme Based on Complex Field Network Coding
WANG Jing1, LIU Xiang-yang2, LI Shuai1, HOU Xu-yang1, and WANG Xin-mei3
(1. School of Information Engineering, Chang’an University Xi’an 710064; 2. Department of Information Service, Xi’an Communication College Xi’an 710106; 3. State Key Laboratory of Integrated Service Networks, Xidian University Xi’an 710071)
To further improve information transmission rate of wireless relay networks, an efficient downlink transmission scheme based on complex field network coding is proposed in this paper. Specifically, different from traditional information transmission scheme, the proposed downlink transmission scheme employs complex field network coding of time dimension, and each relay encodes the source symbols of multiple time slots received by complex field network coding, and transmits the encoded symbols to destinations simultaneously. Based on the data received from multiple relays, joint maximum likelihood multiuser detection is adopted at destinations to achieve the source symbols. Performance analysis and simulation results show that the symbol error probability (SEP) of the downlink transmission scheme is much less than the conventional relay transmission scheme. Moreover, the scheme can obtain higher information transmission rate and network throughput.
complex field network coding; downlink transmission; network throughput; symbol error probability; wireless relay network
TN911.2
A
10.3969/j.issn.1001-0548.2015.01.005
2013-01-09;
2014-11-13
國家自然科學(xué)基金(61040005, 61001126, 61271262);中國博士后科學(xué)基金(20110491638, 2012T50789);陜西省自然科學(xué)基金(2014JQ8300);國家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201310710034)
王靜(1982-),女,博士,副教授,主要從事網(wǎng)絡(luò)編碼理論方面的研究.