• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single Image Super-Resolution Based on the Feature Sign Method

    2015-10-14 12:43:34LIXiaofengZENGLeiXUJinandMAShiqi
    電子科技大學(xué)學(xué)報 2015年1期
    關(guān)鍵詞:特征評價方法

    LI Xiao-feng, ZENG Lei, XU Jin, and MA Shi-qi

    ?

    Single Image Super-Resolution Based on the Feature Sign Method

    LI Xiao-feng, ZENG Lei, XU Jin, and MA Shi-qi

    (School of Communication and Information Engineering, University of Electronic Science and Technology of China Chengdu 611731)

    Recently, the super-resolution methods based on sparse representation has became a research hotpot in signal processing. How to calculate the sparse coefficients fast and accurately is the key of sparse representation algorithm. In this paper, we propose a feature sign method to compute the sparse coefficients in the search step. Inspired by the compressed sensing theory, two dictionaries are jointly learnt to conduct super-resolution in this method. The feature sign algorithm changes the non-convex problem to a convex one by guessing the sign of the sparse coefficient at each iteration. It improves the accuracy of the obtained sparse coefficients and speeds the algorithm. Simulation results show that the proposed scheme outperforms the interpolation methods and classic sparse representation algorithms in both subjective inspects and quantitative evaluations.

    feature sign method; image reconstruction; image resolution; sparse representation

    Image super-resolution (SR) is a technique aiming at the estimation of a high-resolution (HR) image from one or several low-resolution (LR) observation images, which is widely used in remote sensing, biometrics identification, medical imaging, video surveillance, etc. There are three categories of super resolution methods. Interpolation methods are simple but short of high-frequency component, while reconstructed methods degrade rapidly when the desired magnification factor is large.

    Recently, the third category called learning based methods are developed, which become the most active research area. In this method, a HR image can be predicted by learning the co-occurrence relationship between a set of LR example patches and corresponding HR patches. Standard methods are example based method[1], neighbor embedding[2], etc. Motivated by compressive sensing theories[3], Ref.[4] proposed an algorithm which used sparse representation of the input LR image to reconstruct the corresponding HR image with two jointly trained dictionaries. The method used the inherent data message, mapped the data in some dictionaries, and reflected the data information by some sparse coefficients, which turned out to reconstruct the HR image greatly.

    There are many classic sparse representation methods. Greedy methods, like orthogonal matching pursuit (OMP[5]), attack the problem heuristically by fitting the sparse models using greedy stepwise least squares. But they are often computationally slow. The least angel regression (LARS[6]) algorithm adds a new element to the active set of nonzero coefficients by taking a step along a direction having equal angles with the vectors in the active set at each iteration. But when the iteration number is large, the method is not efficient. Preconditioned conjugate gradients (PCG[7]) uses the internal Newton’s method to minimize the logarithmic barrier function and receives good results. But it is time-consuming.

    In this paper, the feature sign method for single image SR via sparse representation is proposed which can overcome above drawbacks. By determining the sign of the sparse coefficients, the non-differentiable problem is changed to an unconstrained quadratic optimization problem (QP) which can be solved easily. It is competent to capture the sparse coefficient of data in an over-completed dictionary efficiently and rapidly. Simulation results demonstrate that it obtains better reconstruction performance qualitatively and quantitatively over other classic SR methods.

    1 Single Image SR Using Sparse Representation

    The super-resolution image reconstruction problem is known to be an ill-posed inverse problem. Various approaches have been proposed to regularize it, while they all share two parts of constraints priors:

    The SR algorithm is a patch-wise based sparse recovery with the joint learning dictionaries. The input LR imageis interpolated to the size of desired HR image at first, and then divided into a set of overlapping patches of size. For each LR image patch, the featureis extracted in the training phase, and sparse representationis computed with respect to low-resolution dictionary.is then used to predict the underlying HR image patch(feature) with respect to high-resolution. The predicted HR patches are tiled together to reconstruct the HR image.

    In this work, the pair of over-complete dictionaryare jointly trained[9]by using the K-SVD[10]method:

    2 Feature Sign Method

    How to solve formula (2) fast and efficiently is the fundamental of sparse representation and quality determination of reconstructed HR image. It is a typical-regularized least squares problem which can be solved by many sparse algorithms.

    To keep it simple, it can be rewritten in a vector form as:

    (5)

    The sign can be settled by 4 steps:

    3) So the optimality conditions for achieving the optimal value ofare translated to

    4) Consider how to select the optimal sub-gradientwhen the optimality conditions are violated. Consider the case whereand. Suppose, which means. In order to decrease,must be decreased. Sinceis now at the null point, the very first decrease tois changing it to a negative number. So set. Similarly, if, then set.

    3 Compute Sparse Coefficients

    The algorithmic procedure of learning coefficients using feature sign is described in the following 5 steps.

    2) Activate: From zero coefficient of, select. Activate(addto the active set) only if it locally improves the objective (6);

    (8)

    Perform a discrete line search on the closed line segment fromto: Check the objective value atand all points where any coefficient changes sign, and update(and the entries in) to the point with the lowest objective value.Remove zero coefficients offrom the active set and update= sign();

    4) Check the optimality conditions: Check the optimality conditions based on formula (6);

    5) Output:The optimal coefficient matrix is.

    4 Experiment Results

    In the following section, simulation results are given to illustrate the performance of our scheme. The simulation and comparison are carried out by Matlab implementations. All experiments are executed on a 2.33 GHz Intel Core 2 Quad CPU Q8200 processor with 2 GB memory in Windows XP OS.

    This paper samples 20 000 HR and LR patch pairs from the training images to learn the over-complete dictionary randomly.is 0.15 and the dictionary size is 1 024 in all experiments, which is proved to the best suitable number to balance between computation complexity and image quality. The input LR images are magnified by a factor of 3. The input patches are 5×5 pixels with an overlap of 3 pixels. For color images, the SR algorithm is only applied on the(intensity) channel, and the Cb and Cr chromatic channels are only interpolated by Bicubic. The three channels are then combined to form our SR images. The results of various methods are evaluated both visually and qualitatively in root-mean-square error (RMSE) and SSIM (structural SIMilarity[11]).

    4.1 Experiment results on image SR

    In this part, some experiments are conducted to compare the proposed method and other sparse representation methods. Contrast algorithms are classic interpolation method bicubic, and sparse representation methods OMP[5], LARS[6], PCG[7].

    Bicubic reconstructed images are quite fuzzy for lacking of high frequencies while OMP, LARS, and PCG images are short of image details. The edge blur and sawtooth effect are much more obvious in bicubic, OMP, LARS, and PCG, while feature sign pictures are more distinct and clearer. Specifically, as Fig.1 shows, the line of the hat in Lena picture is more fluent and distinct than others in the reconstructed picture. And from the white part of the orange magnified in Fig.2, the proposed method has the clearest picture. Comparing the water ripple in yacht picture, bicubic picture is quite fuzzy, LARS, OMP, PCG pictures have blocking artifact, and the feature sign picture is more discerning.

    Fig.2 Reconstructed HR images (scaling factor 3) of Fruit and the magnified core part by different methods.

    a. inputting low image

    b. bicubic c. OMP

    d. PCG e. LARS

    f. feature sign g. original picture

    Fig.3 Reconstructed HR images (scaling factor 3) of Yacht and the magnified water ripple by different methods.

    Table 1 compares the RMSEs of the reconstructed images generated by different methods with different input images. The results show that the proposed algorithm achieves the lowest RMSE against bicubic, LARS, OMP, and PCG. Illustrated by the case of Lena, the RMSE reductions of feature sign over bicubic, LARS, OMP, and PCG are 1.472 1, 0.494 6, 0.480 3, and 0.391 9 respectively.

    The reconstruction time of the algorithms is shown in table 2. It can be concluded that the feature sign method yields the best performance with almost the least time. The time of proposed method is nearly one half of LARS and one percent of PCG.

    Table 2 Time of each method s

    As table 3 presents, the feature sign method can yield the biggest SSIM number, which indicates that the feature sign method can best restore the image. Furthermore, using the feature sign method can improve the efficiency of sparse representation in super resolution.

    Table 3 SSIM of the reconstructed HR images

    4.2 Experiment results on a 100-image SR

    To test the efficiency of the proposed method more comprehensively, 100 SR experiments are performed by using different algorithms. The 100 test images are downloaded from the international open source image library. The average of RMSE and SSIM are computed in Table 4.

    Table 4 General RMSE and time of 100 pictures

    From table 4, the feature sign method yields the lowest RMSE with much less time, also the SSIM value is the biggest, It demonstrates the good quality of the proposed method used in image SR.

    5 Conclusion

    This paper proposes an efficient sparse representation method called feature sign for single image super-resolution. This method guesses the sign of sparse coefficients, then changes the complicated-norm question to a QP question. Simulation results demonstrate the advantage of the proposed scheme over existing schemes. Output images from the bicubic have edge blur, OMP pictures have badly jagged artifacts, those from LARS have some blocky effect, and PCG is time wasting, while feature sign reconstructions are distinct and have better visual performance in details. Reconstructed RMSE and SSIM all illustrate the good quality of the proposed method over other methods.

    [1] FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Learning low-level vision[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Los Alamitos, CA, USA: IEEE Comput Soc. 1999.

    [2] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Comput Soc 2004: 275-282.

    [3] CANDES, EMMANUEL J. Compressive sampling[C]//25th International Congress of Mathematicians, ICM 2006. United States: Asociacion International Congress of Mathematicians, 2006: 1433-1452.

    [4] YANG J, WRIGHT J, HUANG T S, et al. Image super- resolution via sparse representation[J]. IEEE Transactions on Image Processing. 2010, 19(11): 2861-2873.

    [5] DAVIS G, MALLAT S, AVELLANEDA M. Adaptive greedy approximation[J]. Constructive Approximation, 1997,13(1): 57-98.

    [6] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407-499.

    [7] KOH K, KIM S J, BOYD S. An interior-point method for large scale-regularized logistic regression[J]. Journal of Machine learning research, 2007,1(4): 1519-1555.

    [8] DONOHO D L. For most large underdetermined systems of linear equations, the minimal-norm solution is also the sparsest solution[J]. Communication on Pure and Applied Mathematics, 2006: 59(7), 907-934.

    [9] ZENG L, LI X F, XU J. An improved joint dictionary training method for single image super resolution[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32(2): 721-727.

    [10] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation[J]. IEEE Transactions on Image Processing. 2006, 54(11): 4311-4322.

    [11] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600- 612.

    編 輯 張 俊

    基于特征表征的單幅圖像超分辨方法

    李曉峰,曾 蕾,徐 進(jìn),馬世琪

    (電子科技大學(xué)通信與信息工程學(xué)院 成都 611731)

    基于稀疏表示的圖像超分辨是近年信號處理中的研究熱點(diǎn),快速準(zhǔn)確地找到圖像的稀疏表示系數(shù)是該方法的關(guān)鍵。該文提出了一種基于特征表征的算法來求解圖像塊的稀疏表示系數(shù)。受壓縮感知理論啟發(fā),使用聯(lián)合訓(xùn)練的字典來進(jìn)行圖像超分辨。特征表征算法在每一次迭代中,通過確定稀疏系數(shù)的符號,將求解的非凸問題變?yōu)橥箚栴},有效提高所得稀疏系數(shù)的準(zhǔn)確性和超分辨算法速度。仿真結(jié)果顯示,與插值法和經(jīng)典的稀疏表示法比較,特征表征法可以得到更好的主觀視覺評價和客觀量化評價。

    特征表征方法; 圖像重建; 圖像分辨率; 稀疏表示

    TP301.6

    A

    2013-07-10;

    2014-09-05

    國家自然科學(xué)基金(61075013);中國博士后科學(xué)基金(20100471671)

    2013-07-10;Revised data:2014-09-05

    Supported by the National Natural Science Foundation of China (61075013); China Postdoctoral Science Foundation (20100471671).

    10.3969/j.issn.1001-0548.2015.01.003

    Biography:LI Xiao-feng, born in 1963, Ph.D and a professor of UESTC, male. Research interests:image processing and communication systems.

    李曉峰(1963-),男,博士生,教授,主要從事圖像處理和通信系統(tǒng)方面的研究.

    猜你喜歡
    特征評價方法
    SBR改性瀝青的穩(wěn)定性評價
    石油瀝青(2021年4期)2021-10-14 08:50:44
    如何表達(dá)“特征”
    不忠誠的四個特征
    抓住特征巧觀察
    可能是方法不對
    用對方法才能瘦
    Coco薇(2016年2期)2016-03-22 02:42:52
    四大方法 教你不再“坐以待病”!
    Coco薇(2015年1期)2015-08-13 02:47:34
    捕魚
    基于Moodle的學(xué)習(xí)評價
    線性代數(shù)的應(yīng)用特征
    河南科技(2014年23期)2014-02-27 14:19:15
    亚洲精品一区av在线观看| 精品久久久久久久久久免费视频| 高清毛片免费观看视频网站| 久久精品国产清高在天天线| 亚洲国产高清在线一区二区三 | 亚洲欧美日韩高清在线视频| 操出白浆在线播放| 精品国产乱码久久久久久男人| 日本 av在线| 亚洲精品在线美女| 可以在线观看毛片的网站| 在线av久久热| 18美女黄网站色大片免费观看| 亚洲国产欧洲综合997久久, | 色精品久久人妻99蜜桃| 哪里可以看免费的av片| 男人舔女人的私密视频| 女性被躁到高潮视频| 观看免费一级毛片| 18禁黄网站禁片午夜丰满| 性色av乱码一区二区三区2| 香蕉av资源在线| 亚洲全国av大片| 女性被躁到高潮视频| 人人澡人人妻人| 少妇的丰满在线观看| 一区二区三区精品91| 国产精品爽爽va在线观看网站 | 中文字幕另类日韩欧美亚洲嫩草| 少妇被粗大的猛进出69影院| 久久久久久人人人人人| 美国免费a级毛片| 草草在线视频免费看| 一二三四在线观看免费中文在| 亚洲精品av麻豆狂野| 精品欧美一区二区三区在线| 国产精华一区二区三区| 听说在线观看完整版免费高清| 久久亚洲精品不卡| 久久精品人妻少妇| 一级a爱视频在线免费观看| 99国产精品99久久久久| 亚洲国产中文字幕在线视频| 99精品久久久久人妻精品| av视频在线观看入口| 亚洲精品美女久久av网站| 亚洲片人在线观看| 国产精品久久久久久亚洲av鲁大| 精品少妇一区二区三区视频日本电影| 欧美乱码精品一区二区三区| 最近最新中文字幕大全电影3 | 国产亚洲精品一区二区www| 九色国产91popny在线| 十分钟在线观看高清视频www| 一本久久中文字幕| 搡老妇女老女人老熟妇| 久久精品影院6| 欧美黑人精品巨大| 美女大奶头视频| 久久欧美精品欧美久久欧美| 精品国产亚洲在线| 亚洲精品一卡2卡三卡4卡5卡| 女人爽到高潮嗷嗷叫在线视频| 黑人欧美特级aaaaaa片| 欧美成人免费av一区二区三区| 日本一区二区免费在线视频| 亚洲精品久久国产高清桃花| 国产成人精品无人区| 成人亚洲精品一区在线观看| 日韩欧美三级三区| 婷婷六月久久综合丁香| 亚洲国产毛片av蜜桃av| 男人舔女人的私密视频| 不卡一级毛片| 国产精品免费视频内射| 99国产精品一区二区三区| 国内精品久久久久精免费| 国产久久久一区二区三区| 在线看三级毛片| 香蕉国产在线看| 一级片免费观看大全| 叶爱在线成人免费视频播放| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 欧美日韩中文字幕国产精品一区二区三区| av天堂在线播放| 在线观看免费视频日本深夜| 日日爽夜夜爽网站| 国产亚洲欧美精品永久| x7x7x7水蜜桃| 午夜福利视频1000在线观看| 午夜亚洲福利在线播放| 波多野结衣高清作品| 欧美在线黄色| 午夜福利高清视频| 亚洲人成网站在线播放欧美日韩| 亚洲午夜理论影院| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 一本一本综合久久| 男女视频在线观看网站免费 | 琪琪午夜伦伦电影理论片6080| 久久婷婷人人爽人人干人人爱| 波多野结衣高清无吗| 色哟哟哟哟哟哟| av免费在线观看网站| 国产亚洲精品一区二区www| 啦啦啦观看免费观看视频高清| 午夜福利成人在线免费观看| 午夜老司机福利片| tocl精华| 一级片免费观看大全| 国产伦人伦偷精品视频| 午夜福利免费观看在线| 天堂√8在线中文| 午夜福利一区二区在线看| 97人妻精品一区二区三区麻豆 | 免费在线观看完整版高清| 午夜a级毛片| 村上凉子中文字幕在线| 91字幕亚洲| 久久久久久免费高清国产稀缺| 精品久久久久久久久久免费视频| 校园春色视频在线观看| 国内精品久久久久久久电影| 久久午夜亚洲精品久久| 这个男人来自地球电影免费观看| 国产伦人伦偷精品视频| 黄色视频,在线免费观看| 国产一区二区激情短视频| 精品乱码久久久久久99久播| 日韩精品免费视频一区二区三区| 亚洲真实伦在线观看| 午夜视频精品福利| 日韩中文字幕欧美一区二区| 一级黄色大片毛片| 又黄又爽又免费观看的视频| 国产亚洲精品一区二区www| 人人妻人人看人人澡| 窝窝影院91人妻| 亚洲专区字幕在线| 看黄色毛片网站| 黄色毛片三级朝国网站| 啦啦啦观看免费观看视频高清| 国产aⅴ精品一区二区三区波| 十分钟在线观看高清视频www| 三级毛片av免费| 国产国语露脸激情在线看| 国产av又大| 香蕉国产在线看| 制服诱惑二区| 1024手机看黄色片| 一区二区三区精品91| 禁无遮挡网站| 这个男人来自地球电影免费观看| 国产精品 国内视频| 久久久久久久精品吃奶| 免费女性裸体啪啪无遮挡网站| 亚洲人成77777在线视频| 国产一区二区激情短视频| 亚洲精品国产精品久久久不卡| 久久久久久国产a免费观看| 午夜精品在线福利| 俺也久久电影网| 国产亚洲欧美在线一区二区| 男女午夜视频在线观看| 国产高清视频在线播放一区| 少妇粗大呻吟视频| 999精品在线视频| 国产午夜福利久久久久久| 亚洲专区国产一区二区| 欧美精品亚洲一区二区| av免费在线观看网站| 侵犯人妻中文字幕一二三四区| 午夜激情av网站| 国产乱人伦免费视频| 在线观看66精品国产| 不卡av一区二区三区| 老司机深夜福利视频在线观看| 日本熟妇午夜| 精品福利观看| 国产黄片美女视频| 国产精品99久久99久久久不卡| 久热爱精品视频在线9| 又紧又爽又黄一区二区| 中文亚洲av片在线观看爽| 国产亚洲精品久久久久久毛片| 欧美三级亚洲精品| 国产一级毛片七仙女欲春2 | 成人午夜高清在线视频 | 国产亚洲精品av在线| 女人爽到高潮嗷嗷叫在线视频| 中文字幕精品免费在线观看视频| 天天一区二区日本电影三级| 美女国产高潮福利片在线看| 亚洲午夜精品一区,二区,三区| 激情在线观看视频在线高清| 白带黄色成豆腐渣| 黑人巨大精品欧美一区二区mp4| 女同久久另类99精品国产91| 亚洲三区欧美一区| 国产99白浆流出| 一区二区三区高清视频在线| 精品电影一区二区在线| 亚洲真实伦在线观看| 精品久久久久久,| avwww免费| 国产欧美日韩一区二区三| 欧美黄色片欧美黄色片| 十八禁网站免费在线| 午夜福利免费观看在线| 午夜亚洲福利在线播放| 欧美黑人巨大hd| 日韩大码丰满熟妇| 99精品久久久久人妻精品| 日韩一卡2卡3卡4卡2021年| 可以免费在线观看a视频的电影网站| 精品欧美一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 91大片在线观看| 黄色毛片三级朝国网站| 国产成+人综合+亚洲专区| 色av中文字幕| 伦理电影免费视频| 黄色a级毛片大全视频| 精品久久久久久久人妻蜜臀av| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 精品一区二区三区视频在线观看免费| 18禁观看日本| 18禁黄网站禁片免费观看直播| 极品教师在线免费播放| 天天添夜夜摸| 欧美黑人巨大hd| 欧美人与性动交α欧美精品济南到| 热99re8久久精品国产| 少妇的丰满在线观看| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 欧美性长视频在线观看| 在线观看66精品国产| 午夜福利高清视频| 18禁黄网站禁片免费观看直播| 午夜免费观看网址| 成人亚洲精品一区在线观看| 亚洲一码二码三码区别大吗| 欧美成人一区二区免费高清观看 | 欧美乱色亚洲激情| 日韩精品中文字幕看吧| 国产亚洲av高清不卡| 97碰自拍视频| 精品国产一区二区三区四区第35| 香蕉av资源在线| 欧美性猛交黑人性爽| av视频在线观看入口| 制服诱惑二区| www国产在线视频色| 九色国产91popny在线| netflix在线观看网站| 老司机在亚洲福利影院| 午夜视频精品福利| www日本黄色视频网| 亚洲,欧美精品.| 极品教师在线免费播放| 久久久久国内视频| 日韩一卡2卡3卡4卡2021年| 日本在线视频免费播放| 麻豆一二三区av精品| 老司机在亚洲福利影院| 日本免费一区二区三区高清不卡| 国产一区在线观看成人免费| 天堂动漫精品| 亚洲七黄色美女视频| 成人手机av| 国产区一区二久久| 午夜久久久久精精品| 搡老熟女国产l中国老女人| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 草草在线视频免费看| 午夜福利免费观看在线| 中亚洲国语对白在线视频| 非洲黑人性xxxx精品又粗又长| 成人18禁在线播放| 欧美日本视频| 国产亚洲av高清不卡| 久久人人精品亚洲av| 亚洲精品色激情综合| 午夜亚洲福利在线播放| 国产欧美日韩一区二区精品| 老司机午夜福利在线观看视频| 一级毛片女人18水好多| 日韩国内少妇激情av| ponron亚洲| 他把我摸到了高潮在线观看| 精品久久久久久久毛片微露脸| 色精品久久人妻99蜜桃| 两人在一起打扑克的视频| 亚洲天堂国产精品一区在线| 91在线观看av| 欧美亚洲日本最大视频资源| 欧美日本亚洲视频在线播放| 88av欧美| 男女视频在线观看网站免费 | 国产精品美女特级片免费视频播放器 | 一个人观看的视频www高清免费观看 | 给我免费播放毛片高清在线观看| 精品久久蜜臀av无| 国产激情偷乱视频一区二区| 亚洲人成网站在线播放欧美日韩| 丁香欧美五月| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 国产亚洲欧美精品永久| 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 国产av一区二区精品久久| 欧美性猛交╳xxx乱大交人| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 波多野结衣巨乳人妻| 亚洲电影在线观看av| 中文字幕人成人乱码亚洲影| 91成年电影在线观看| 好男人在线观看高清免费视频 | 亚洲国产毛片av蜜桃av| 久久久久久久午夜电影| 给我免费播放毛片高清在线观看| 亚洲国产看品久久| 免费高清在线观看日韩| 久9热在线精品视频| 久久久久免费精品人妻一区二区 | 久久精品国产清高在天天线| 日韩视频一区二区在线观看| 俺也久久电影网| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看日本一区| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| a级毛片a级免费在线| 亚洲一卡2卡3卡4卡5卡精品中文| 日本在线视频免费播放| www日本在线高清视频| 国产精品久久久久久亚洲av鲁大| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 日本在线视频免费播放| 日韩精品中文字幕看吧| 波多野结衣av一区二区av| 国产午夜精品久久久久久| 两性夫妻黄色片| 中文在线观看免费www的网站 | 在线观看舔阴道视频| 12—13女人毛片做爰片一| 欧美黄色片欧美黄色片| 免费看十八禁软件| 日韩欧美在线二视频| 亚洲国产精品合色在线| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| 99热6这里只有精品| 免费一级毛片在线播放高清视频| 免费在线观看影片大全网站| 国产成年人精品一区二区| 高清毛片免费观看视频网站| 亚洲第一电影网av| av免费在线观看网站| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 亚洲avbb在线观看| 白带黄色成豆腐渣| 在线观看一区二区三区| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 性色av乱码一区二区三区2| 国产区一区二久久| 无限看片的www在线观看| 精品人妻1区二区| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 热re99久久国产66热| 亚洲av成人不卡在线观看播放网| 亚洲无线在线观看| 很黄的视频免费| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 亚洲九九香蕉| 免费看日本二区| 成人国产综合亚洲| 久久亚洲精品不卡| 视频在线观看一区二区三区| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 亚洲激情在线av| 成人手机av| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| av有码第一页| 人人妻人人澡人人看| 99国产精品99久久久久| 神马国产精品三级电影在线观看 | 亚洲av日韩精品久久久久久密| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 国产精品久久久av美女十八| 亚洲一码二码三码区别大吗| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品综合一区二区三区| 国产一卡二卡三卡精品| 香蕉国产在线看| 99国产精品99久久久久| 免费看a级黄色片| 久久中文字幕人妻熟女| 老司机福利观看| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| 国产视频内射| 亚洲va日本ⅴa欧美va伊人久久| 久久精品aⅴ一区二区三区四区| 亚洲精品久久国产高清桃花| 高潮久久久久久久久久久不卡| 亚洲全国av大片| 午夜福利免费观看在线| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点| 国产av一区二区精品久久| 久久午夜亚洲精品久久| 色综合婷婷激情| 亚洲国产精品999在线| 99精品久久久久人妻精品| 亚洲av片天天在线观看| 国产精品久久久av美女十八| 国产精品乱码一区二三区的特点| 国产又爽黄色视频| 啦啦啦 在线观看视频| bbb黄色大片| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 亚洲美女黄片视频| 亚洲精华国产精华精| 99精品在免费线老司机午夜| 欧美又色又爽又黄视频| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 午夜福利高清视频| 久久精品国产亚洲av高清一级| 成人18禁高潮啪啪吃奶动态图| 一区二区三区高清视频在线| 免费观看人在逋| 99热这里只有精品一区 | 后天国语完整版免费观看| 亚洲精品色激情综合| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 日韩欧美三级三区| 国产视频内射| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 999久久久精品免费观看国产| 嫩草影院精品99| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 亚洲国产高清在线一区二区三 | 91国产中文字幕| 国产亚洲精品av在线| 久久中文看片网| 国产精品亚洲av一区麻豆| 国产99白浆流出| 亚洲av熟女| 一区二区三区国产精品乱码| 国产精品久久久久久精品电影 | 国产高清视频在线播放一区| av视频在线观看入口| 一级毛片精品| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器 | 欧美又色又爽又黄视频| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 不卡一级毛片| 日韩高清综合在线| 不卡av一区二区三区| av视频在线观看入口| 天天一区二区日本电影三级| 午夜福利免费观看在线| svipshipincom国产片| 精品人妻1区二区| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产成人啪精品午夜网站| 波多野结衣高清无吗| 大香蕉久久成人网| 国产精品国产高清国产av| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 亚洲国产精品999在线| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女| 久久中文字幕一级| 日日夜夜操网爽| 日韩欧美一区视频在线观看| 成年免费大片在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精华国产精华精| 又黄又粗又硬又大视频| 亚洲中文av在线| 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| svipshipincom国产片| 国产精品久久久av美女十八| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 久久精品成人免费网站| 757午夜福利合集在线观看| 国产精品自产拍在线观看55亚洲| 看免费av毛片| 99热只有精品国产| 99热这里只有精品一区 | 俄罗斯特黄特色一大片| 中文字幕av电影在线播放| 在线免费观看的www视频| 日本三级黄在线观看| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 91字幕亚洲| 欧美人与性动交α欧美精品济南到| 国产精品亚洲一级av第二区| 亚洲国产精品成人综合色| 老司机深夜福利视频在线观看| a级毛片a级免费在线| 成人欧美大片| 久久久久久久久久黄片| 欧美中文综合在线视频| 久久久国产欧美日韩av| aaaaa片日本免费| ponron亚洲| 麻豆国产av国片精品| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 国产三级在线视频| 无人区码免费观看不卡| 日韩免费av在线播放| 久9热在线精品视频| 亚洲精品中文字幕在线视频| 黄片大片在线免费观看| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 亚洲国产精品合色在线| 日本a在线网址| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 波多野结衣巨乳人妻| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| www.999成人在线观看| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 日本一本二区三区精品| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 国产私拍福利视频在线观看| 精品久久久久久久久久久久久 | 人成视频在线观看免费观看| 色老头精品视频在线观看| 国产成人精品久久二区二区91| 中文字幕精品免费在线观看视频| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 免费观看人在逋| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 婷婷精品国产亚洲av| 视频在线观看一区二区三区| 在线观看免费视频日本深夜| 高清毛片免费观看视频网站| 亚洲三区欧美一区| 午夜精品在线福利| 一进一出抽搐gif免费好疼| 日本一区二区免费在线视频| 此物有八面人人有两片| 夜夜夜夜夜久久久久| 18禁黄网站禁片免费观看直播|