• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forest Fire Detection Using Artificial Neural Network Algorithm Implemented in Wireless Sensor Networks

    2015-10-11 03:13:39YongshengLiuYansongYangChangLiuandYuGu
    ZTE Communications 2015年2期

    Yongsheng Liu,Yansong Yang,Chang Liu,and Yu Gu

    (1.Network Technology Research Institute,China United Network Communications Corporation Limited,Beijing 100048,China;2.Department of Computer Science,Hefei University of Technology,Hefei 230009,China)

    Forest Fire Detection Using Artificial Neural Network Algorithm Implemented in Wireless Sensor Networks

    Yongsheng Liu1,Yansong Yang1,Chang Liu1,and Yu Gu2

    (1.Network Technology Research Institute,China United Network Communications Corporation Limited,Beijing 100048,China;2.Department of Computer Science,Hefei University of Technology,Hefei 230009,China)

    A forest fire is a severe threat to forest resources and human life.In this paper,we propose a forest?fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network(WSN).The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost.The accuracy is increased by the novel multi?criteria detection,referred to as an alarm decision depends on multiple attributes of a forest fire.The multi?criteria detection is im?plemented by the artificial neural network algorithm.Meanwhile,we have developed a prototype of the proposed system consisting of the solar batter module,the fire detection module and the user interface module.

    forest fire detection;artificial neural network;wireless sensor network

    1 Introduction

    Wireless sensor networks(WSNs)have been the focus of research over the past few years be?cause of their potential in environmental moni?toring,target tracking,and object detection[1].WSNs have also been studied in the context of detecting forest fires,which threaten forest resources and human life. WSNs are not costly and can detect forest fires in real time,un?like current detection methods based on human observation and unlike spot weather forecasts or even satellite monitoring. WSNs can also provide information about environmental condi?tions within the forest,which is useful for predicting forest fires[2].Moreover,forest fire detection and prediction is asso?ciated with specific location information provided by individu?al sensor nodes.

    Although some practical experiments have been conducted using WSNs to collect sensed data from a forest fire[3]-[5],there are still some challenges to using WSNs for this purpose. A fire detector may sound an alarm based on a simple thresh?old,which gives rise to false alarms even though the sensing unit of the fire detector may be highly sensitive.False alarms occur for two main reasons:

    ·A photoelectric smoke sensing unit is sensitive to white aero?sol particles from a smoldering fire but also to dust[6].

    ·Environmental conditions in the forest often severely disturb the normal behavior of the sensing unit.Sunlight and artifi?cial light are primary sources of interference with the flame?sensing unit.

    Limited power supply to sensor nodes makes it difficult to detect fires over a long period of time.The potential energy sources for sensor nodes can be classified according to whether they store energy within the sensor nodes(e.g.,in a battery),distribute power to the sensor node through a wire,or scavenge available ambient power(e.g,using a solar battery on the sen?sor node).Considering the volume of the sensor node,manner of deployment,and forest conditions,the solar battery is one of the most promising sources of energy for detecting forest fires over a long period of time.However,existing works on solar batteries for sensor nodes,e.g.,[8]-[13],overlook the problem of intermittent sunlight in the forest.

    In this paper,we propose a forest fire detection system that includes an artificial neural network algorithm implemented in a WSN.Overall,the main contributions of this paper are as fol?lows:

    ·The multi?criteria detection depends on multiple attributes of a forest fire and is introduced into WSNs to increase the accuracy of detecting a forest fire.

    ·An artificial neural network algorithm is used to fuse sens?ing data that corresponds to multiple attributes of a forest fire into an alarm decision.

    ·We introduce the principle of the proposed system as wellas a prototype comprising TelosB sensor nodes and a solar battery to power the WSN.

    2 System Description

    For the sake of clarity,we consider a WSN with only one base station and hundreds of sensor nodes.Because a WSN with multiple base stations can be regarded as multiple WSNs(each comprising one base station and corresponding sensor nodes),the proposed system can also be implemented if the WSN has multiple base stations.Therefore,there are n sensor nodes in the WSN,each denotedsj,1≤j≤n.A forest fire f has l attributes,each denoted,1≤i≤l.Attributecan be sensed by the sensing unitui.A uion ansjis denot?ed.The output sensing data ofis denoted.For sim?plicity,we assume thatsjhasltypes of sensing units cover?inglattributes of the forest fire.We use a multilayer back?propagation artificial neural network to fuse sensing data. The total number of layers in the artificial neural network is de?notedm.The input vector of the k th layer,1≤k≤m,is de?noted Ak-1.The output vector of the k th layer is denoted Ak. Therefore,A0and Amrepresent the input and output of the artificial neural network,respectively.The alarm decision is denotedad.

    3 Proposed Forest Fire Detection Method

    In our proposed system,detection is made more accurate by using multiple criteria,which means the ad is based on multi?ple criteria of the forest fire.Multi?criteria detection is imple?mented by the artificial neural network algorithm.Because of the artificial neural network,the proposed system has low over?head and has self?learning capabilities;that is,it trains itself to build up the relations between sensing data and correctad.

    3.1 Multi-Criteria Detection

    In a system that depends on one attribute of a forest fire to raise alarms,there is a high probability of false alarms because of inherent system drawbacks or external disturbances.To overcome such drawbacks and counter external disturbances,the system must take into account the multiple attributes of a forest fire.This is referred to as multi?criteria detection(Defi?nition 1).With multi?criteria detection,multiple attributes of a forest fire are sensed by different types of sensing unit.There?fore,a sensing unit that has been interfered with cannot raise a false alarm.Together,multiple sensing units confirm an alarm. Multi?criteria detection increases the accuracy of detecting a forest fire.

    Definition 1(Multi?criteria detection).Multi?criteria detec?tion is represented as a function with multiple arguments,which refer to the attributes of forest fire f, and onead,given by:

    Therefore,radiation intensity can be the basis for detecting a forest fire given that the typical temperature of a forest fire is 600°C-1000°C[15].The ultraviolet sensing unit and infra?red flame sensing unit work by detecting radiation intensity. Other attributes that can be used to identify a forest fire in?clude combustion products.It is well known that a forest fire gives off bursts of carbon dioxide,carbon monoxide,water va?por,and dust.

    3.2 Artificial Neural Network Algorithm

    We use the multi?layer back?propagation artificial neural network for multi?criteria detection.Although data fusion in WSNs has been covered in much of the literature[16]-[18],the topic has not been considered in the context of forest fires. A multi?layer back?propagation artificial neural network is widely used to emulate the non?linear relationship between its input and output.However,computation in this kind of net?work is not complex because the network is a combination of neurons dealing with simple functions.Moreover,multi?layer back?propagation artificial neural network is capale of self?learning,which means it can train itself to build up relations between the inputs and desired targets.

    3.2.1 Making an Alarm Decision

    Without loss of generality,we assume that the multi?layer back?propagation artificial neural network is implemented on sjwith l types of sensing units that cover l attributes of the forest fire.Sensing dataon sjcorresponds toof the forest fire.

    Specifically,A0is the input to the first layer of the multi?layer artificial neural network.In the first layer,A0is multi?plied by weight matrix W1with dimension s1×land bias vec?torB1,includings1neurons in the first layer.The intermedi?ate computation result of the first layer is denoted N1and is given by:

    Then,N1is sent to transfer function F1,which may be a linear or nonlinear.That is,F(xiàn)1may be a hard?limit function or sigmoid function depending on the specific problem it needs to solve.In general,transfer functions in the multi?layer artificial neural network are easy to compute.Transfer function F1oper?ates on every element of N1.The result of transfer function F1,denoted A1,is the output of the first layer:

    The fusion of sensing data proceeds in the second layer of the multi?layer artificial neural network.The output A1of the first layer becomes the input of the second layer.The calcula?tion process of the second layer is similar to that of the first lay?er except the second layer has its own W2,B2,and F2.In general,the calculation of the i th layer is given by:

    where m is the number of layers in the artificial network.

    For a decision to be made on whether there is a forest fire or not,the output of the m th layer,Am(7),is confined to one el?ement.

    This is done by letting the m th layer contain only one neu?ron.If the alarm decision is confined to a Boolean value,we need to choose the transfer function,the output of which is a Boolean value,for the m th layer,such as the hard limit func?tion.

    An alarm decision is made by inputting the attributes of a forest fire into the multi?layer back?propagation artificial neu?ral network,as shown in Theorem 1.

    Theorem 1.The ad of the multi?criteria detection is comput? ed by the recursive(8)given sensing datacor? responding tolattributes of forest firef.

    3.2.2 Self?Learning Capability

    Given sensing data that corresponds to multiple attributes of a forest fire and given correct alarm decisions,the multi?layer back?propagation artificial neural network trains itself to build relationships between the sensing data and correct alarm deci?sions.However complex the relationship,it is easy for the multi?layer back?propagation artificial neural network to fulfil the task.

    Essentially,self?learning means having the output of the multi?layer back?propagation artificial neural network approxi?mate the target output by adjusting the weight matrixes and bi?ases.This adjustment is made in order to minimize the mean?square error(MSE)between the output and target output.Sup? poseqinputs are denoted,1≤i≤q.Corresponding tothe output is denoted,and the target output is denotedThus,the MSE for the i th iterated adjustment is:

    For clarity,the adjustment of the weight matrixes and biases is expressed by Theorem 2.

    Theorem 2.In the self?learning,the i th iterated adjustment of the weight matrixes and biases is conducted according to(10)and(11),whereαis a constant for the learning rate,and ?(j)is computed by the recursive(12) where

    After self?learning,the multi?layer back?propagation artifi?cial neural network builds up a mathematical relationship be?tween the sensing data and correct alarm decisions.Then,the artificial neural network can make an accurate alarm decision.

    4 Implemented Prototype

    We have developed a prototype of the forest fire detection system using an artificial neural network in a WSN.The sys?tem mainly comprises three parts:the solar battery,fire?detec?tion module,and user interface.

    4.1 Solar Battery

    To consistently power the unattended sensor nodes deployed in a forest where only intermittent sunlight is available,we de?velop a solar battery(Fig.1).The energy from the solar panel is buffered by the super capacitor.When the energy in the sup?per capacitor reaches a threshold,the super capacitor starts to recharge the Li?ion battery.Because of the intermittent sun?light in the forest,the energy produced by the solar panel is not enough to recharge the battery.If not buffered in the super capacitor,this energy is wasted.On the other hand,the charge?discharge cycles of the Li?ion battery are limited.It is better tocharge a Li?ion battery until it is full;otherwise,the life of the battery decreases.On the contrary,the super capacitor has al?most infinite charge?discharge cycles and is ideal for frequent?ly pulsing applications.

    Here we discuss implementation of the solar battery in de?tail.The solar panel of the battery is 110×95 mm and com?prises eight cells connected in parallel and generating 550 mA at 2 V.Theoretically,the maximum energy generated in one hour can sustain a sensor node for 26 days,i.e.,1100 mAh/(0.53 mA×3.3 V×24 h),provided that the sensor nodes work on a 10%duty cycle with an average current of 0.53 mA.Ener?gy from the solar panel is buffered by two 150 F 2.5 V super capacitors wired in parallel.A 3.7 V 700 mAh Li?ion battery is used to continually save energy.The fully charged Li?ion bat?tery can power a sensor node working on a 10%duty cycle for 55 days,i.e., 700 mAh/(0.53 mA×24 h) .We chose MAX1674 and ISL6292 integrated circuits as the DC?DC con?verters,which have a conversion efficiency of around 90%.

    4.2 Fire Detection Module

    The fire detection module is responsible for multi?criteria detection.The module comprises five TelosB sensor nodes,four of which monitor the forest fire.That is,they convert the attri?butes of a forest fire into sensing data.The multi?layer back?propagation artificial neural net?work is implemented on each individual sensor node because the sensor node is endowed with four types of sensing units.However,for the purpose of analysis,raw sensing data besides the fire alarm are transmitted to users.The last sensor node acts as the base station,collecting sensing data and the fire alarm from the other four sensor nodes.For simplicity,four sensor nodes communicate with the base station direct?ly in one?hop communication.Each TelosB sen?sor node has a 16 bit 8 MHz mirocontroller,an RF transceiver compliant with IEEE 802.15.4,and four sensing units.These sensing units sense temperature(-40°C-123.8°C),rela?tive humidity(RH),infrared light(320 nm-1100 nm),and visible light(320 nm-730 nm).Hence,each sensor node can monitor the four attributes of a forest fire.

    The architecture of the artificial neural network is shown in Fig.2.

    The back?propagation artificial neural network in the fire de?tection module is a two?layer network.There are four neurons in the first layer,because of the four sensing units in a TelosB sensor node,and one neuron in the second layer.The transfer function for the first layer is log?sigmoid function(f1 in Fig.2)and is given by:

    The transfer function for the second layer is a linear func?tion(f2 in Fig.2)and is given by:

    4.3 User Interface Module

    The user interface module is responsible for displaying the raw sensing data to the user.First,the sensing data and fire alarm are transmitted from the base station to the user.The da?ta flow is shown in Fig.3.Sensing data from sensor nodes are transmitted to the base station by wireless communication.The base station is a gateway between WSNs and the Internet and forwards the sensing data to a user client.The medium be?tween the base station and user client is the Internet.There?fore,the user may be located far away from the fire?detection system.Socket communication is facilitated by Java.Next,theuser interface module displays the sensing data to the user. The graphical interface draws curves for each typed of sensing data over time.The graphical interface is refershed accourding to the arrival of new sensing data.Therefore,the curves of the graphical interface are synchronous with the sensing units on sensor nodes.Each type of sensing data is displayed by a tab in the graphical interface.

    5 Conclusion

    A forest fire can threaten forest resources and human life. This threat can be mitigated by timely and accurate alarms. WSNs are widely used for environmental monitoring;therefore,we use a WSN for forest fire detection.To increase the accura?cy of the detection system,we propose multi?criteria detection for forest fires.In this paper,multi?criteria detection is imple?mented by the artificial neural network algorithm.To power the sensor nodes in the forest where only intermittent sunlight is available,we develop a solar battery module.We developed a prototype of the proposed system comprising solar batter module,fire detection module,and user interface module.

    [1]I.Akyildiz,W.Su,Y.Sankarasubramaniam,and E.Cayirci,“A survey on sensor networks,”IEEE Communications Magazine,vol.40,no.8,pp.102-114,2002.

    [2]B.Son,Y.Her,and J.Kim,“A design and implementation of forest?fire surveil?lance system based on wireless sensor network for south korea mountains,”Inter?national Journal of Computer Science and Network Security,vol.6,no.9,pp. 124-130,2006.

    [3]D.Doolin and N.Sitar,“Wireless sensors for wildfire monitoring,”in Proceed?ings of SPIE,vol.5765,no.2,2005,pp.477-484.

    [4]C.Hartung,R.Han,C.Seielstad,and S.Holbrook,“Firewxnet:A multitiered portable wireless system for monitoring weather conditions in wildland fire envi?ronments,”in Proceedings of the 4th international conference on Mobile systems,applications and services,Uppsala,Sweden,2006.

    [5]M.Hefeeda and M.Bagheri,“Wireless sensor networks for early detection of for?est fires,”in MASS’07,Pisa,Italy,2007,pp.1-6.

    [6]G.Pfister,“Multisensor/multicriteria fire detection:a new trend rapidly becomes state of the art,”Fire Technology,vol.33,pp.115-139,1997.

    [7]S.Roundy,M.Strasser,and P.Wright,Powering ambient intelligent network,Germany:Springer,2005,pp.271-299.

    [8]M.Minami,T.Morito,and H.Morikawa,“Solar biscuit:A batteryless wireless sensor network system for environmental monitoring applications,”in the 2nd in?ternational Workshop on Networked Sensing Systems,San Diego,USA,2005.

    [9]P.Dutta,J.Hui,and J.Jeong,“Trio:enabling sustainable and scalable outdoor wireless sensor network deployments,”in Information Processing in Sensor Net?works,Nashville,TN,USA,April 19-21,2006,pp.407-415.

    [10]V.Raghunathan,A.Kansal,J.Hsu,J.Friedman,and M.Srivastava,“Design considerations for solar energy harvesting wireless embedded systems,”in In?formation Processing in Sensor Networks,UCLA,Los Angeles,USA,April 25?27,2005.

    [11]X.Jiang,J.Polastre,and D.Culler,“Perpetual environmentally powered sensor networks,”in Information Processing in Sensor Networks,UCLA,Los Angeles,USA,April 25?27,2005.

    [12]P.Corke,P.Valencia,P.Sikka,T.Wark,and L.Overs,“Long?duration solar?powered wireless sensor networks,”in Proceedings of the 4th Workshop on Em?bedded Networked Sensors,Cork,Ireland,June 25-26,2007,pp.33-37.doi:DOI:10.1145/1278972.1278980.

    [13]J.Taneja,J.Jeong,and D.Culler,“Design,modeling,and capacity planning for micro?solar power sensor networks,”in Information Processing in Sensor Net?works,St.Louis,USA,April 22?24,2008,pp.407-418.

    [14]S.S.Gyltner and K.Stetter,“A fire detection system and method for early de?tection of fire,”International Publication Number WO 2009/080581 A1,World Intellectual Property Organization,2009.

    [15]E.Valendik and I.Kosov,“Effect of thermal radiation of forest fire on the envi?ronment,”Contemporary problems of Ecology,vol.1,no.4,pp.399-433,2008. doi:10.1134/S1995425508040012.

    [16]G.Xing,R.Tan,B.Liu,J.Wang,X.Jia,and C.?W.Yi,“Data fusion improves the coverage of wireless sensor networks,”in Proceedings of the 15th annual in?ternational conference on Mobile computing and networking,Beijing,China,2009,pp.157-168.

    [17]L.Freitas,A.Coimbra,V.Sacramento,S.Rosseto,and F.Costa,“Sol:a data fu?sion protocol in wireless sensor networks for controlled environment,”in IEEE INFOCOM Workshops,Rio de Janeiro,Brazil,2009,pp.1-2.doi:10.1109/IN?FCOMW.2009.5072191.

    [18]H.Luo,H.Tao,H.Ma,and S.Das,“Data fusion with desired reliability in wire?less sensor networks,”IEEE Transactions on Parallel and Distributed Systems,vol.22,no.3,pp.501-513,2011.doi:10.1109/TPDS.2010.93.

    Manuscript received:2015?04?22

    Biographiesphies

    Yongsheng Liu(liuys170@chinaunicom.cn)is an engineer at the Network Technolo?gy Research Institute,China Unicom.His research interests include network securi?ty,wireless sensor networks,and IP and bearer technology.He is also a member of China Communications Standards Association(CCSA)and has proposed some drafts related to Multiprotocol Label Switching(MPLS)and Internet service quality.

    Yansong Yang(yangys30@chinaunicom.cn)is head of the IP and Bearer Technolo?gy Division at the Network Technology Research Institute of China Unicom.He has been engaged design and consultation for the IP network for many years.

    Chang Liu(liuc131@chinaunicom.cn)works at the Network Technology Research Institute of China Unicom.His current research interests are network modeling and IP and bearer technology.

    Yu Gu(yugu.bruce@gmail.com)received the BEng and PhD degrees from the Uni?versity of Science and Technology of China in 2004 and 2010.From February 2006 to August 2006,he interned at the Wireless Network Group,Microsoft Research Asia,Beijing.From 2007 to 2008,he was a visiting scholar in the Department of Computer Science,University of Tsukuba,Japan.From 2010 to 2012,he was a JSPS Reseaech Fellow in the National Institute of Informatics,Japan.He is now a professor in the School of Computer and Information,Hefei University of Technolo?gy,China.His research interests include information science,pervasive computing,and wireless networking,especially wireless sensor network.

    成年免费大片在线观看| 午夜福利在线观看吧| 丝袜美腿在线中文| 嫩草影院新地址| 国产精品久久久久久av不卡| 国产黄片视频在线免费观看| 亚洲成a人片在线一区二区| av专区在线播放| 欧美最新免费一区二区三区| 热99在线观看视频| 日韩欧美精品免费久久| 国产在线精品亚洲第一网站| 午夜福利在线观看免费完整高清在 | 国产一区亚洲一区在线观看| 亚洲最大成人手机在线| 亚洲国产精品国产精品| 熟女电影av网| 久久精品国产清高在天天线| 日本一二三区视频观看| 成人综合一区亚洲| 大型黄色视频在线免费观看| 国产亚洲91精品色在线| 国产精品嫩草影院av在线观看| 精品人妻一区二区三区麻豆| 波野结衣二区三区在线| 免费电影在线观看免费观看| 最近手机中文字幕大全| 久久久精品大字幕| 中文字幕av成人在线电影| 又粗又硬又长又爽又黄的视频 | 亚洲精华国产精华液的使用体验 | 国产91av在线免费观看| 国产精品一区二区在线观看99 | 欧美激情久久久久久爽电影| 国产不卡一卡二| 久久久精品欧美日韩精品| 美女内射精品一级片tv| 日韩亚洲欧美综合| 精品一区二区三区视频在线| 最近2019中文字幕mv第一页| 久久久国产成人免费| 日韩一区二区三区影片| 成人亚洲精品av一区二区| 久久久久久久久久久丰满| 精品久久久噜噜| 亚洲国产日韩欧美精品在线观看| 看免费成人av毛片| 亚洲中文字幕日韩| 此物有八面人人有两片| 婷婷六月久久综合丁香| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 菩萨蛮人人尽说江南好唐韦庄 | 好男人在线观看高清免费视频| 国产又黄又爽又无遮挡在线| 熟女电影av网| 国产成人精品婷婷| 国产真实乱freesex| 亚洲三级黄色毛片| 亚洲精品自拍成人| 久久久精品欧美日韩精品| 韩国av在线不卡| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 国产成人a∨麻豆精品| 成熟少妇高潮喷水视频| 人体艺术视频欧美日本| АⅤ资源中文在线天堂| 久久精品久久久久久久性| 国产成人一区二区在线| 日韩欧美精品v在线| 日本免费a在线| 欧美成人免费av一区二区三区| 亚洲在久久综合| 少妇人妻一区二区三区视频| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 伦理电影大哥的女人| 亚洲欧美成人综合另类久久久 | 国产亚洲av片在线观看秒播厂 | 午夜精品一区二区三区免费看| 身体一侧抽搐| 我要看日韩黄色一级片| 成人亚洲精品av一区二区| 一个人看的www免费观看视频| 99久久精品热视频| 老司机影院成人| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 国产精品女同一区二区软件| 九九爱精品视频在线观看| 夫妻性生交免费视频一级片| 少妇的逼好多水| 精品人妻熟女av久视频| 日韩国内少妇激情av| 最新中文字幕久久久久| 99久国产av精品国产电影| 精品久久久噜噜| 国产乱人视频| 18禁在线播放成人免费| 久久精品国产亚洲av天美| 美女脱内裤让男人舔精品视频 | 99久久成人亚洲精品观看| 美女脱内裤让男人舔精品视频 | 亚洲第一电影网av| 久久久久久九九精品二区国产| 国产视频首页在线观看| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看十八女毛片水多多多| 欧美精品国产亚洲| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 国产蜜桃级精品一区二区三区| 国产精华一区二区三区| 日韩成人伦理影院| 久久精品国产清高在天天线| 精品无人区乱码1区二区| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av| 精品欧美国产一区二区三| 中出人妻视频一区二区| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 成人高潮视频无遮挡免费网站| 久久这里只有精品中国| 亚洲四区av| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频 | 激情 狠狠 欧美| 午夜免费激情av| 国产一级毛片在线| 看黄色毛片网站| 全区人妻精品视频| 欧美bdsm另类| 嫩草影院精品99| 国产老妇伦熟女老妇高清| 直男gayav资源| 国产精品99久久久久久久久| 男的添女的下面高潮视频| 91麻豆精品激情在线观看国产| av在线播放精品| 国产亚洲欧美98| 国产伦精品一区二区三区四那| 小说图片视频综合网站| 久久精品久久久久久噜噜老黄 | 久久中文看片网| av在线播放精品| a级毛色黄片| 日韩一区二区视频免费看| 国产一级毛片七仙女欲春2| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 高清毛片免费观看视频网站| 老司机福利观看| 亚洲成av人片在线播放无| 12—13女人毛片做爰片一| 欧美bdsm另类| 国产精品女同一区二区软件| 国产麻豆成人av免费视频| 麻豆成人av视频| 国产成人91sexporn| 日韩亚洲欧美综合| 白带黄色成豆腐渣| or卡值多少钱| 国产亚洲av片在线观看秒播厂 | 麻豆一二三区av精品| 深夜a级毛片| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 日韩欧美 国产精品| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 日本熟妇午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级国产精品欧美在线观看| 丝袜美腿在线中文| 成人综合一区亚洲| 搡女人真爽免费视频火全软件| 在线免费十八禁| 亚洲最大成人中文| 国产精品三级大全| 成年av动漫网址| 人妻夜夜爽99麻豆av| 天美传媒精品一区二区| 精品久久久噜噜| 国产 一区精品| 毛片女人毛片| 婷婷精品国产亚洲av| 床上黄色一级片| 亚洲av电影不卡..在线观看| 国产极品天堂在线| 99久久精品国产国产毛片| 日日摸夜夜添夜夜添av毛片| 精品一区二区免费观看| 最近的中文字幕免费完整| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 日韩一区二区三区影片| 两个人的视频大全免费| 岛国在线免费视频观看| 亚洲精华国产精华液的使用体验 | 看黄色毛片网站| 国产精品久久久久久精品电影| 99热全是精品| 亚洲人成网站在线播放欧美日韩| 久久久久久伊人网av| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 国产成人一区二区在线| 国产一区二区三区av在线 | 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 最近视频中文字幕2019在线8| 青春草国产在线视频 | 欧美bdsm另类| 日日摸夜夜添夜夜爱| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 精品欧美国产一区二区三| 亚洲三级黄色毛片| 久久精品人妻少妇| 舔av片在线| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 热99在线观看视频| 最后的刺客免费高清国语| 真实男女啪啪啪动态图| av在线蜜桃| 亚洲欧洲日产国产| 韩国av在线不卡| 看免费成人av毛片| 国产成人91sexporn| 99riav亚洲国产免费| 成人三级黄色视频| 国产国拍精品亚洲av在线观看| 国产高清有码在线观看视频| 日本黄色片子视频| 久久久久久久久久成人| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 国产成人精品婷婷| 亚洲精品久久国产高清桃花| 丝袜喷水一区| 永久网站在线| 色哟哟·www| 色视频www国产| 国产毛片a区久久久久| 99热网站在线观看| 国产精品一区www在线观看| 看黄色毛片网站| 久久国产乱子免费精品| videossex国产| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| 欧美性猛交╳xxx乱大交人| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 22中文网久久字幕| 亚洲最大成人av| 欧美成人精品欧美一级黄| h日本视频在线播放| 日韩三级伦理在线观看| 亚洲成人久久爱视频| 成人永久免费在线观看视频| 日韩精品有码人妻一区| 毛片女人毛片| 亚洲精华国产精华液的使用体验 | 亚洲欧美日韩高清专用| av在线亚洲专区| 草草在线视频免费看| 男人和女人高潮做爰伦理| 国产成人午夜福利电影在线观看| 欧美bdsm另类| 久久久久网色| 亚洲第一区二区三区不卡| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 美女xxoo啪啪120秒动态图| 啦啦啦观看免费观看视频高清| 久久久成人免费电影| 桃色一区二区三区在线观看| 免费看a级黄色片| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 男女视频在线观看网站免费| 欧美激情久久久久久爽电影| 日日摸夜夜添夜夜爱| 成人永久免费在线观看视频| 91久久精品国产一区二区三区| 中文字幕久久专区| 亚洲av成人av| 国产精品电影一区二区三区| 九色成人免费人妻av| 又黄又爽又刺激的免费视频.| 午夜a级毛片| 成人二区视频| 日韩欧美精品v在线| 久久人人爽人人片av| 我的老师免费观看完整版| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 免费观看人在逋| 久久久久久久久中文| 床上黄色一级片| 亚洲av成人精品一区久久| 亚洲av男天堂| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 亚洲av成人精品一区久久| 久久久久久久久大av| 亚洲av电影不卡..在线观看| 精品国产三级普通话版| 亚洲图色成人| 久久久成人免费电影| 蜜桃久久精品国产亚洲av| 日韩中字成人| 女的被弄到高潮叫床怎么办| av国产免费在线观看| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 欧美xxxx性猛交bbbb| 91久久精品电影网| 欧美xxxx性猛交bbbb| 日本免费一区二区三区高清不卡| 午夜爱爱视频在线播放| 国产高潮美女av| 国产精华一区二区三区| 精品熟女少妇av免费看| 国产片特级美女逼逼视频| 永久网站在线| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 成人av在线播放网站| 国产一级毛片七仙女欲春2| 禁无遮挡网站| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 久久久久网色| 又粗又爽又猛毛片免费看| 能在线免费观看的黄片| av天堂在线播放| 国产色婷婷99| 国产一区亚洲一区在线观看| 99精品在免费线老司机午夜| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 欧美人与善性xxx| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一小说| 国产成人精品久久久久久| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看 | 国产精品麻豆人妻色哟哟久久 | 99热网站在线观看| 成人美女网站在线观看视频| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 亚洲最大成人av| 亚洲无线观看免费| 国产黄色小视频在线观看| 久久久久国产网址| 欧美成人a在线观看| 一级黄色大片毛片| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产| 三级毛片av免费| 日本五十路高清| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 直男gayav资源| 国产精品,欧美在线| 日本一本二区三区精品| 久久久久久国产a免费观看| 亚洲精华国产精华液的使用体验 | 美女脱内裤让男人舔精品视频 | 国产精品1区2区在线观看.| 能在线免费看毛片的网站| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 51国产日韩欧美| 2022亚洲国产成人精品| 精品日产1卡2卡| 婷婷六月久久综合丁香| 欧美一级a爱片免费观看看| 男女边吃奶边做爰视频| 亚洲无线观看免费| 免费搜索国产男女视频| 亚洲第一区二区三区不卡| 在线免费十八禁| 午夜福利在线在线| 午夜精品国产一区二区电影 | 一级av片app| 一区福利在线观看| 久久久久久久亚洲中文字幕| 久久久久久大精品| 久久精品国产亚洲av涩爱 | 三级国产精品欧美在线观看| 久久人人爽人人片av| 成人三级黄色视频| av黄色大香蕉| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 午夜视频国产福利| av在线播放精品| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 成人毛片60女人毛片免费| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 久久久国产成人精品二区| 久久精品国产自在天天线| 级片在线观看| 变态另类丝袜制服| 国产免费男女视频| 一级毛片我不卡| 亚洲一区二区三区色噜噜| 在线免费观看不下载黄p国产| 高清午夜精品一区二区三区 | 12—13女人毛片做爰片一| 欧美日韩一区二区视频在线观看视频在线 | 国产又黄又爽又无遮挡在线| 色综合站精品国产| 九草在线视频观看| 毛片女人毛片| av在线观看视频网站免费| 亚洲欧美精品综合久久99| 99久久精品热视频| av专区在线播放| 在线观看美女被高潮喷水网站| 老熟妇乱子伦视频在线观看| 一本一本综合久久| 久久99蜜桃精品久久| 亚洲美女搞黄在线观看| 哪里可以看免费的av片| 国产免费男女视频| 一本久久中文字幕| 久久久午夜欧美精品| 成人亚洲精品av一区二区| 成人三级黄色视频| 又爽又黄无遮挡网站| 成人三级黄色视频| 最近最新中文字幕大全电影3| 国产成人91sexporn| 国产精品久久电影中文字幕| 色吧在线观看| 人人妻人人看人人澡| 国产高清有码在线观看视频| 国产午夜福利久久久久久| 少妇熟女欧美另类| 99久久精品热视频| 成人午夜精彩视频在线观看| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 美女脱内裤让男人舔精品视频 | 永久网站在线| 国产69精品久久久久777片| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 观看美女的网站| 亚洲成人av在线免费| 国产美女午夜福利| avwww免费| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 国产极品精品免费视频能看的| 日韩一区二区三区影片| 国产精品久久久久久精品电影| 美女被艹到高潮喷水动态| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看| 国产伦精品一区二区三区视频9| 99热精品在线国产| 两个人视频免费观看高清| 天堂中文最新版在线下载 | 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 国产成人精品婷婷| 看免费成人av毛片| 国产老妇伦熟女老妇高清| 深夜a级毛片| 国产高清三级在线| 我要搜黄色片| 成人特级黄色片久久久久久久| 日韩一区二区三区影片| 久久精品国产清高在天天线| 91精品一卡2卡3卡4卡| 欧美成人一区二区免费高清观看| 欧美+亚洲+日韩+国产| 欧美高清性xxxxhd video| 99在线人妻在线中文字幕| 少妇熟女aⅴ在线视频| 在现免费观看毛片| 亚洲成人精品中文字幕电影| 又爽又黄a免费视频| 久久久久久大精品| 日本熟妇午夜| 天天躁日日操中文字幕| 国产高清不卡午夜福利| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 久久午夜亚洲精品久久| av在线蜜桃| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 黄色视频,在线免费观看| 小蜜桃在线观看免费完整版高清| 国产视频首页在线观看| 日韩欧美在线乱码| 日韩成人av中文字幕在线观看| 国产毛片a区久久久久| 国产精品久久视频播放| 精品熟女少妇av免费看| 成人av在线播放网站| 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 哪个播放器可以免费观看大片| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 国产精品麻豆人妻色哟哟久久 | 小蜜桃在线观看免费完整版高清| 国产三级中文精品| 亚洲三级黄色毛片| 国产中年淑女户外野战色| 国产成人午夜福利电影在线观看| 国产白丝娇喘喷水9色精品| 久久国产乱子免费精品| 国产高清有码在线观看视频| 女人被狂操c到高潮| 人体艺术视频欧美日本| 99热网站在线观看| 免费在线观看成人毛片| 国产成人freesex在线| 亚洲美女视频黄频| 国内精品宾馆在线| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 中国国产av一级| 特大巨黑吊av在线直播| 亚洲经典国产精华液单| 国产一区二区亚洲精品在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影| 1024手机看黄色片| 久久精品国产亚洲av涩爱 | 在现免费观看毛片| 亚洲无线观看免费| av免费在线看不卡| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 国产黄a三级三级三级人| 久久精品久久久久久久性| 婷婷精品国产亚洲av| 男女边吃奶边做爰视频| 成人二区视频| 在线观看av片永久免费下载| av在线天堂中文字幕| 十八禁国产超污无遮挡网站| 国产三级在线视频| 日韩高清综合在线| 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 国产精品一区二区三区四区免费观看| 深夜精品福利| 国产精品蜜桃在线观看 | 欧美+亚洲+日韩+国产| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 亚洲精品色激情综合| 久久99热6这里只有精品| 不卡视频在线观看欧美| 哪里可以看免费的av片| 国产精品久久久久久久久免| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 一区福利在线观看| 久久精品国产亚洲网站| 不卡一级毛片|