• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Instance?Learning?Based Intrusion?Detection System for Wireless Sensor Networks

    2015-10-11 03:13:38ShuaiFuXiaoyanWangandJieLi
    ZTE Communications 2015年2期

    Shuai Fu,Xiaoyan Wang,and Jie Li

    (1.Department of Computer Science,University of Tsukuba,Tsukuba,Japan;2.Information Systems Architecture Science Research Division,National Institute of Informatics,Tokyo,Japan)

    An Instance?Learning?Based Intrusion?Detection System for Wireless Sensor Networks

    Shuai Fu1,Xiaoyan Wang2,and Jie Li1

    (1.Department of Computer Science,University of Tsukuba,Tsukuba,Japan;2.Information Systems Architecture Science Research Division,National Institute of Informatics,Tokyo,Japan)

    This paper proposes an instance?learning?based intrusion?detection system(IL?IDS)for wireless sensor networks(WSNs).The goal of the proposed system is to detect routing attacks on a WSN.Taking an existing instance?learning algorithm for wired networks as our basis,we propose IL?IDS for handling routing security problems in a WSN.Attacks on a routing protocol for a WSN include black hole attack and sinkhole attack.The basic idea of our system is to differentiate the changes between secure instances and attack instances.Considering the limited resources of sensor nodes,the existing algorithm cannot be used directly in a WSN.Our system mainly comprises four parts:feature vector selection,threshold selection,instance data processing,and instance determina?tion.We create a feature vector form composed of the attributes that changes obviously when an attack occurs within the network. For the data processing in resource?constrained sensor nodes,we propose a data?reduction scheme based on the clustering algo?rithm.For instance determination,we provide a threshold?selection scheme and describe the concrete?instance?determination mechanism of the system.Finally,we simulate and evaluate the proposed IL?IDS for different types of attacks.

    WSN;security;intrusion?detection system;instance learning;black hole

    1 Introduction

    W ireless sensor networks(WSNs)contain a num?ber of distributed sensors that are constrained in terms of energy,memory,computation,and bandwidth(PCs).The development of WSNs was motivated by military applications,such as battlefield sur?veillance.Now,WSNs are widely used for industrial and civil?ian applications,including industrial process monitoring and control,machine health monitoring,and environment and habi?tat monitoring.

    As WSNs have developed,security problems in WSNs have attracted more and more attention.Currently,most research on these problems is focused on prevention mechanisms,such as secure routing protocols,cryptography,and authentication. Such meechanisms are usually the first line of defense;howev?er,because of the particularities of WSNs,we cannot rely on intrusion?prevention techniques alone.In practical situations,intrusion?detection systems are needed to detect both known security exploits and novel attacks that have not yet been expe?rienced.

    Intrusion?detection is the process of identifying activities that violate the security policy of the system[1].Such tech? niques are traditionally categorized as anomaly detection and misuse detection.Anomaly detection is based on the normal behavior of the subject;any action that significantly deviates from this normal behavior is considered intrusive.Misuse de?tection catches intrusions in terms of the characteristics of known attacks or system vulnerabilities.Any action that con?forms to the pattern of a known attack or vulnerability is con?sidered intrusive[2].

    There are many intrusion?detection algorithms,but few of them are designed for WSNs.We propose an instance learning?based intrusion?detection system(IL?IDS)based on an existing instance?based learning algorithm[3]for a wireless sensor net?works.

    2 Related Works

    Our proposed intrusion?detection system is mainly designed for routing security in a WSN.In this section,we introduce sev?eral kinds of attack against a WSN and summarize related works on intrusion?detection systems for WSNs.

    2.1 Routing Attacks on a Wireless Sensor Network

    Before describing intrusion?detection algorithms,it is neces?sary to introduce several kinds of routing attack on a WSN. Such attacks include bogus routing information,selective?for?warding,sinkhole attack,Sybil attack,worm hole attack,and hello flood attack(Table 1).

    ▼Table 1.Types of routing attack on a WSN

    2.2 Intrusion Detection for a WSN

    The intrusion?detection system designed by C.E.Loo et al. is based on a fixed?width clustering algorithm[4].The audit da?ta is divided into different clusters with fixed widths.The au?thors assume that less than y%of the data consists of abnormal traffic samples and label the cluster normal or anomalous ac?cording to the point number of the cluster.Then,the authors decide whether newly observed data is normal or not by com?puting the distance to the cluster.

    The other work is an intrusion?detection system designed by K.Ioannis et al.[5].The authors use each node in the WSN to monitor whether its neighbors forward messages received from it.Looking at the transmission rate,the authors can determine which nodes are compromised.However,this kind of approach only focuses on selective?forwarding attacks and black hole at?tacks.

    3 System Design

    We propose an IL?IDS based on an existing instance?learn?ing algorithm.Because of resource constraints in terms of ener?gy,memory,computational speed,and bandwidth in a WSN,we modify the algorithm to make it suitable for the WSN.Here,we describe the four aspects of the algorithm:

    ·feature vector selection.This involves constructing feature vectors that show the network state.An obvious change in the feature vector means that an attack is occuring in the network.

    ·threshold selection.This involves determining the threshold r used to label instances as normal or not.

    ·Instance data processing.This involves collecting instance data and reducing instance samples for WSNs.

    ·Intrusion?detection process.This involves using the con? crete processes from data collection to determine whether a newly observed instance is normal or not.

    3.1 Feature Vector Selection

    Constructing the sequence of feature vectors is an important issue.Feature vectors need to be designed so that they change obviously when an attack occurs.The feature vector we select?ed is shown in Table 2.

    The features are classified as traffic?related or non?traffic?re?lated.Traffic?related features describe conditions of the traffic flow through the node,and non?traffic?related features de?scribe the routing conditions of the sensor node.From the defi?nition of similarity,the two adjacent features interact with each other.

    The ten features in Table 1 correspond to the feature vector X=(x0,x1,...,x9).If behavior is abnormal,the attributes of fe?ature vector change obviously.

    In the instance?based learning algorithm,a change in the feature vector means the similarity becomes less than normal. In addition,by computing the similarity between normal data and abnormal data,we can infer whether a new instance repre?sents abnormal behavior.

    3.2 Threshold Selection

    Selecting the threshold r requires a judgment to be made on whether the feature vector is normal or abnormal.Furthermore,determination of r depends on the tolerance of the routing pro?tocol to errors and attacks.From simulation,we obtained many data samples and found that they followed a normal distribu?tion.The threshold can be determined by a confidence level. In simulation,we made r to be 0.05.If the difference between the similarity and maximum similarity is greater than r,the ob?served instance is different from the sample instance.It is nec?essary to verify r through simulation.

    3.3 Instance Data Processing

    First,we count the attributes in Table 1 every fixed interval T and obtain the results as feature vectors.From experiments,we obtain the data sequences D.However,this creates a prob?lem because we cannot store all the audit data in the sensor—its memory is too small.The instances of data processing is on?ly the data reduction;therefore,we use a clustering algorithm to reduce the number of samples and only use several instanc?es to represent all of them.The data reduction can be divided into two parts:adding instances into clusters and updating the centers of clusters.

    ▼Table 2.Make?up of the feature vector

    In Algorithm1,we have an instance collection D{Y1,Y2,...,Yn},where Y is a sample of a feature vector and Yi=<y1,y2,...,yl>.We randomly choose several instances to be the centroids of the clusters in D.These centroids have the smallest mean distance to all the other instances in the cluster and form a centroid collection Cen{C1,C2,...,Cm}.Our aim is to represent all instances by the centroid collection.

    After creating the centroid collection,we add each instance into the clusters by computing the distance to the centroid of the cluster and finding DistanceCen(Yi), where DistanceCen(Yi)=minC∈Cen{Distance(Yi,Ci)}.Each instance should belong to the cluster with the shortest distance between the instance and its centroid.

    Algorithm 1:Instance Collection

    Input:Instances collection D{Y1,Y2,...,Yn},where Yi=<y1,y2,...,yl>

    Randomly choose minstances in D get the collection of centroids Cen{C1,C2,...,Cm};

    Where Cirepresents the centroid of clusteri{Ci};

    The number of instances in clusteri:mi;

    The radius of clusteri:Ri;

    while Di≠Φdo

    Then we update the centroid and radius of the cluster.If there is only one instance in the cluster,the new radius is the distance between the two instances.Otherwise,we compute the distance between every two instances in the cluster and make the instance that is the closest mean distance to all other instances in the cluster the new centroid.We do this until all the instances are added to clusters.

    3.4 Intrusion-Detection Process

    Intrusion detection can be divided into two steps:1)data col?lection and processing and 2)instance determination.Each sensor node can count the values of parameters in the feature vector.For each node in T,we obtain a sample of the feature vector.Over time,each node can collect and process a mass of instance data.This data is processed in three steps:

    1)Data is transmitted to the base station.

    2)The base station clusters the data according to Algorithm 1.

    3)The centroid collection is stored in each sensor node.

    After audit data is processed and stored,we monitor the re?lated data in each T and obtain a new observed feature vector. Then,we compute Sim(X,Dcent)and Dist(X,Dcent).If Dist(X,Dcent)is greater than the radius of the centroid collec?tion,X is abnormal;otherwise,we compare Sim(X,Dcent)with r.If Sim(X,Dcent)>r,then X is normal.The system described above is shown in Fig.1.

    4 Performance Evaluation

    4.1 Parameter Settings

    As shown in Table 3,we set 300 nodes randomly distribut?ed over 500×500 m2.These nodes included one base station and one compromised node.The compromised node generated a black hole and affected the nodes near it.The sensor nodes used the Constant Bit Rate(CBR)transport protocol and theAd hoc On?Demand Distance Vector(AODV)routing protocol. The movement of all nodes except the base station was random?ly generated.

    ▼Table 3.Parameter settings

    4.2 Performance Metrics

    In the simulation,we used three metrics to evaluate system performance and the usability of the algorithm in the WSN:1)similarity of observed instances,2)number of packets received every interval,and 3)rate of intrusion detection.We defined the similarity between two instances.The smaller the similari?ty,the more possible it was that an observed instance was as an attack.The number of packets received is the most impor?tant characteristic in feature vectors for a black hole attack. The more obviously the number of packets received changes,the greater the possibly a black hole attack is occurring in the WSN.Then we reviewed the rate of the intrusion?detection sys?tem during a black hole attack or sinkhole attack.

    4.3 Simulation Results

    We simulated two kinds of attack against a WSN:black hole and sinkhole.

    4.3.1 Black Hole Attack

    In a selective?forwarding attack,malicious nodes may refuse to forward certain messages and simply drop them(black hole),which means that they are not propagated any further.For ex?ample,a malicious node behaves like a black hole and refuses to forward every packet it sees.We instigate a black hole at?tack in a WSN by making the malicious node drop packets. The impact on the sensor network was not obvious;only the number of packets received by the neighbor of the malicious node was reduced(Fig.2).Table 4 shows one node’s feature vectors for secure and attack scenarios.If there is a black hole node near the observed node,the number of data packets re?ceived decreases because the malicious node does not forward any packets and just drops them.

    We observe the change of packets received for secure and at?tack scenarios.When an attack occurs,the number of packets received changes markedly.

    4.3.2 Sinkhole Attack

    The main purpose of a sinkhole attack is to lure all traffic from nodes in a region to a compromised node.This is achieved by forging or altering route packet information to make a compromised node look very attractive to the routing al?gorithm.Neighboring nodes assume that the compromised node is the best path to their destinations.A sinkhole attack can also be a platform for other attacks,e.g.,a selective?for?warding attack[6].Because all the traffic flows through the compromised node,a selective?forwarding attack is more effec?tive and easier to launch.

    We simulated a sinkhole attack in the malicious node,which broadcasted high?quality routing packets in order to at?tract its neighbor.The effect increased when combined with a sink hole based on a black hole.

    Fig.3 shows the result of 75 attacking instances under sink hole attack.Fig.4 shows that similarity for a sink hole is smaller than that for a black hole attack.

    5 Conclusion

    In this paper,we propose an IL?IDS for WSNs.Because of resource constraints on sensor nodes,the existing intrusion?de?tection algorithm cannot be directly used in a WSN.Our pro?posed IL?IDS comprises a feature vector and threshold?selec?tion scheme,a data?reduction method,and a detailed work pro?cess of the system.Through simulation,we show that the per?formance of our intrusion?detection system for black hole at?tacks and sinkhole attacks.

    ▼Table 4.Feature vectors in one node for secure and attack scenarios

    [1]P.Ning and S.Jajodia.Intrusion detection techniques[Online].Available:http:// discovery.csc.ncsu.edu/Courses/csc774?S03/IDTechniques.pdf

    [2]C.Karl of and D.Wagner,“Secure routing in wireless sensor networks:attacks and countermeasures,”in Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications,Anchorage,AK,USA,2003,pp. 113-127.doi:10.1109/SNPA.2003.1203362.

    [3]T.Lane and C.E.Brodley,“Temporal sequence learning and data reduction for anomaly detection,”ACM Transactions on Information and System Security,vol. 2,no.3,pp.295-331.doi:10.1145/322510.322526.

    [4]C.E.Loo,M.Y.Ng,C.Leckie,and M.palaniswami,“Intrusion detection for routing attacks in sensor networks,”International Journal of Distributed Sensor Networks,vol.2,no.4,pp.313-332,2006.

    [5]K.Ioannis,T.Dimitrou,and F.C Freiling,“Towards intrusion detection in wire?less sensor networks,”in 3th European Conference on Wireless Sensor Networks(EWSN’07),Delft,the Netherlands,2007.

    [6]Ian F.Akyildiz,W.Su,Y.Sankarasubramaniam,and E.Cayirci,“Wireless sen? sor networks:A survey,”Computer Networks Elsevier Journal,vol.38,no.4,pp. 393-422,2002.

    Manuscript received:2015?04?10

    Biographiesphies

    Shuai Fu(fs0818@gmail.com)received his MS degree in computer sceince from University of Tsukuba,Japan.He is currently a PhD candidate in the Department of Computer Science,University of Tsukuba.His research interests include security and mobility management in wireless networks.

    Xiaoyan Wang(wxyability@hotmail.com)received his BE degree from Beihang Uni?versity,China,in 2004.He received his ME and PhD degrees from the University of Tsukuba,Japan,in 2010 and 2013.He is currently assistant professor in the Infor?mation Systems Architecture Science Research Division,National Institute of Infor?matics,Japan.His research interests include wireless communications and net?works,with an emphasis on cognitive radio networks,game theory approaches,and cooperative communications.

    Jie Li(lijie@cs.tsukuba.ac.jp)received his BE degree in computer science from Zhejiang University,China.He received his ME degree in electronic engineering and communication systems from China Academy of Posts and Telecommunica?tions,Beijing.He received his Dr.Eng.degree from the University of Electro?Com?munications,Japan.He is currently a profesor in the Department of Engineering,In?formation and Systems,University of Tsukuba,Japan.His research interests include mobile distributed computing and networking,network security,mobile cloud com?puting,OS,modeling and performance evaluation of information systems.He is a se?nior member of IEEE and ACM and a member of Information Processing Society of Japan.He has served as a secretary for Study Group on System Evaluation of IPSJ and has been on several editorial boards of IPSJ journals.He has been on the steer?ing committees of the SIG of System EVAluation(EVA)of IPSJ,SIG of DataBase System(DBS)of IPSJ,and SIG of MoBiLe Computing and Ubiquitous Communica?tions of IPSJ.He has co?chaired several international symposiums and workshops. He has also been in the program committees of several international conferences,in?cluding IEEE INFOCOM,IEEE ICDCS,IEEE ICC,IEEE GLOBECOM,and IEEE MASS.

    Roundup Call for Papers ZTE Communications Special Issue on Smart City: Key Technologies and Practices

    Though the smart city has been one of the hottest fields due to its great potentials to make our world smarter and more efficient with using digital technologies,it is still necessary to clarify what are fundamental infrastructures and platforms as well as successful practices for truly smart cities.Therefore,the ZTE special issue is focused on key technologies and representative practices in building smart cities.We solicit papers in the topics including but not limited to the following:

    ·Survey/Review of Smart City Technologies and Applications

    ·Smart City Infrastructures for Sensing,Networking,IoT,Cloud,etc.

    ·Smart City Platforms for Programming,Big Data Processing,Services,etc.

    ·Smart City Practices,Cases Studies and Applications

    Paper Submissions

    Prepare your paper with using the template and following the guideline below.

    Template:http://cis.k.hosei.ac.jp/~jianhua/zte/template.docx

    Guideline:http://cis.k.hosei.ac.jp/~jianhua/zte/guideline.pdf

    Send your paper via email attachment to the SI’s editors

    Important Dates

    Paper Submission Due:August 15,2015

    Paper Review Notification:September 10,2015

    Semi?Final Manuscript Submission:September 30,2015

    Final Manuscript Editing and Proofreading:November 15,2015

    Paper Publication and Special Issue Printing:December 15,2015

    Guest Editors

    Jianhua Ma,Hosei University,Japan(Email:jianhua@hosei.ac.jp)

    Weifeng Lv,Beihang University,China(Email:lwf@buaa.edu.cn)

    久久久久精品国产欧美久久久| 草草在线视频免费看| 亚洲精品美女久久久久99蜜臀| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 中文字幕久久专区| 精品国产亚洲在线| 国产91精品成人一区二区三区| 久久精品国产亚洲av高清一级| 日本一区二区免费在线视频| 色综合婷婷激情| 一区二区三区高清视频在线| 欧美黑人欧美精品刺激| 午夜免费激情av| 国产久久久一区二区三区| 无限看片的www在线观看| 嫩草影视91久久| 香蕉av资源在线| 两个人视频免费观看高清| aaaaa片日本免费| 九色国产91popny在线| 亚洲国产精品合色在线| 欧美黑人精品巨大| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器 | 婷婷精品国产亚洲av| 韩国精品一区二区三区| 亚洲精品国产精品久久久不卡| 久久九九热精品免费| 久久伊人香网站| 欧美 亚洲 国产 日韩一| 欧美+亚洲+日韩+国产| 一a级毛片在线观看| 99国产综合亚洲精品| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看 | 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 国产av一区在线观看免费| 激情在线观看视频在线高清| 巨乳人妻的诱惑在线观看| 日本免费a在线| 免费在线观看成人毛片| 日日爽夜夜爽网站| 男人舔女人的私密视频| 成人免费观看视频高清| 欧美黄色淫秽网站| 曰老女人黄片| 欧美激情 高清一区二区三区| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 欧美人与性动交α欧美精品济南到| 亚洲成人免费电影在线观看| 变态另类丝袜制服| 久久这里只有精品19| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 亚洲黑人精品在线| 91大片在线观看| 变态另类成人亚洲欧美熟女| 99re在线观看精品视频| 男女做爰动态图高潮gif福利片| 日韩大尺度精品在线看网址| 一二三四在线观看免费中文在| 亚洲国产精品sss在线观看| 免费高清视频大片| 精品久久久久久久毛片微露脸| 最近在线观看免费完整版| 成人18禁在线播放| 又黄又粗又硬又大视频| 午夜两性在线视频| 美女午夜性视频免费| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 首页视频小说图片口味搜索| 国产在线精品亚洲第一网站| 在线国产一区二区在线| 色在线成人网| 最近最新免费中文字幕在线| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看| 亚洲欧美日韩高清在线视频| 国产精品久久久久久亚洲av鲁大| 国产高清有码在线观看视频 | 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 午夜成年电影在线免费观看| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 男男h啪啪无遮挡| 精品电影一区二区在线| 日本免费a在线| 亚洲avbb在线观看| 中文亚洲av片在线观看爽| 88av欧美| 亚洲成a人片在线一区二区| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 成人亚洲精品一区在线观看| 午夜福利视频1000在线观看| 国产成人一区二区三区免费视频网站| 少妇的丰满在线观看| 免费观看精品视频网站| 免费在线观看影片大全网站| 中文字幕另类日韩欧美亚洲嫩草| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 听说在线观看完整版免费高清| www国产在线视频色| 精品福利观看| 国产精品,欧美在线| 亚洲成av人片免费观看| 热re99久久国产66热| 亚洲 国产 在线| 变态另类丝袜制服| 男女之事视频高清在线观看| 国产欧美日韩一区二区精品| 国产精品亚洲美女久久久| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆国产av国片精品| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 男女之事视频高清在线观看| 欧美日韩一级在线毛片| 国产成人欧美在线观看| 国产在线精品亚洲第一网站| 成人永久免费在线观看视频| 999久久久精品免费观看国产| 国产精品,欧美在线| 久久久国产成人免费| 淫妇啪啪啪对白视频| 曰老女人黄片| av有码第一页| www.精华液| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| 最新美女视频免费是黄的| 老司机靠b影院| 精品国产乱码久久久久久男人| 精品久久久久久成人av| 身体一侧抽搐| 亚洲一码二码三码区别大吗| 怎么达到女性高潮| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 日本三级黄在线观看| 日韩国内少妇激情av| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 午夜影院日韩av| 国内揄拍国产精品人妻在线 | 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 男人舔奶头视频| 女生性感内裤真人,穿戴方法视频| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 日本五十路高清| 久久亚洲真实| 99久久99久久久精品蜜桃| av欧美777| 好男人在线观看高清免费视频 | 叶爱在线成人免费视频播放| 最新美女视频免费是黄的| 日韩欧美国产一区二区入口| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 亚洲激情在线av| 一进一出抽搐动态| 女同久久另类99精品国产91| 中文字幕另类日韩欧美亚洲嫩草| 99在线视频只有这里精品首页| 国产国语露脸激情在线看| 亚洲人成网站高清观看| 搡老岳熟女国产| 禁无遮挡网站| 757午夜福利合集在线观看| 亚洲精品色激情综合| bbb黄色大片| 国产精品国产高清国产av| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 不卡一级毛片| 亚洲av电影在线进入| 欧美丝袜亚洲另类 | 老司机深夜福利视频在线观看| 亚洲中文字幕日韩| 美女免费视频网站| 香蕉av资源在线| av在线天堂中文字幕| 母亲3免费完整高清在线观看| 欧美人与性动交α欧美精品济南到| svipshipincom国产片| 老司机深夜福利视频在线观看| 此物有八面人人有两片| 亚洲人成77777在线视频| 成年免费大片在线观看| 久久久久久人人人人人| cao死你这个sao货| 亚洲国产日韩欧美精品在线观看 | www国产在线视频色| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 俄罗斯特黄特色一大片| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 成人午夜高清在线视频 | 欧美性猛交╳xxx乱大交人| 久久久久精品国产欧美久久久| 伊人久久大香线蕉亚洲五| 最近最新免费中文字幕在线| 99国产精品一区二区三区| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 久久久久国内视频| 欧美激情久久久久久爽电影| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3 | 亚洲av日韩精品久久久久久密| 亚洲精品久久国产高清桃花| 国产1区2区3区精品| 美女午夜性视频免费| 精品熟女少妇八av免费久了| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 欧美大码av| 国产三级在线视频| 久久九九热精品免费| www日本在线高清视频| 变态另类丝袜制服| 中文在线观看免费www的网站 | 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 男女午夜视频在线观看| av福利片在线| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站 | 亚洲国产毛片av蜜桃av| 久99久视频精品免费| 国语自产精品视频在线第100页| 亚洲人成77777在线视频| 观看免费一级毛片| avwww免费| 久久久精品国产亚洲av高清涩受| 久久久久久免费高清国产稀缺| 搡老妇女老女人老熟妇| 国产熟女xx| 国产私拍福利视频在线观看| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 99久久国产精品久久久| 久久婷婷成人综合色麻豆| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 哪里可以看免费的av片| √禁漫天堂资源中文www| 此物有八面人人有两片| 一级作爱视频免费观看| 欧美三级亚洲精品| 丝袜人妻中文字幕| 一级a爱视频在线免费观看| 91av网站免费观看| 精品高清国产在线一区| 国产精品一区二区三区四区久久 | 自线自在国产av| 免费看十八禁软件| 国产伦一二天堂av在线观看| 久久精品aⅴ一区二区三区四区| 久久久久久大精品| 国产男靠女视频免费网站| 长腿黑丝高跟| 精品无人区乱码1区二区| 精品国产国语对白av| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 日本三级黄在线观看| 一进一出抽搐gif免费好疼| 久久亚洲真实| 50天的宝宝边吃奶边哭怎么回事| 黄网站色视频无遮挡免费观看| 国产成年人精品一区二区| 午夜激情福利司机影院| 黄片播放在线免费| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 妹子高潮喷水视频| 给我免费播放毛片高清在线观看| 精品不卡国产一区二区三区| 麻豆av在线久日| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 看黄色毛片网站| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 深夜精品福利| 黄色a级毛片大全视频| 国产精品久久久人人做人人爽| 午夜福利成人在线免费观看| 国产成人系列免费观看| 免费看日本二区| 午夜福利在线在线| 欧美人与性动交α欧美精品济南到| 熟女电影av网| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 免费搜索国产男女视频| 午夜激情av网站| 日韩欧美免费精品| 一本大道久久a久久精品| 久久久久久大精品| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀| 国产av一区在线观看免费| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 精品久久久久久久毛片微露脸| 国产成人av激情在线播放| 宅男免费午夜| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 欧美大码av| 一进一出好大好爽视频| 成人18禁高潮啪啪吃奶动态图| 丰满的人妻完整版| 国产精品永久免费网站| 欧美黑人精品巨大| 级片在线观看| 在线免费观看的www视频| 黄色丝袜av网址大全| 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久| 一区二区日韩欧美中文字幕| 级片在线观看| 亚洲男人天堂网一区| 最新美女视频免费是黄的| 久久精品国产清高在天天线| 九色国产91popny在线| 国产精品,欧美在线| 国产单亲对白刺激| 国产真人三级小视频在线观看| 精品欧美一区二区三区在线| 久久狼人影院| 法律面前人人平等表现在哪些方面| 久久狼人影院| 在线播放国产精品三级| 久久天堂一区二区三区四区| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 日日爽夜夜爽网站| or卡值多少钱| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| 色婷婷久久久亚洲欧美| 免费人成视频x8x8入口观看| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 国产伦一二天堂av在线观看| 亚洲av熟女| 亚洲一区中文字幕在线| 国产精品 国内视频| 亚洲欧美精品综合一区二区三区| 午夜免费激情av| 一区二区三区激情视频| 欧美色视频一区免费| 国产一级毛片七仙女欲春2 | 精品不卡国产一区二区三区| 久久九九热精品免费| 不卡一级毛片| av福利片在线| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| 久久人人精品亚洲av| 可以免费在线观看a视频的电影网站| 村上凉子中文字幕在线| 在线av久久热| 精品国产一区二区三区四区第35| 在线播放国产精品三级| 亚洲国产欧洲综合997久久, | 精品免费久久久久久久清纯| 欧美日韩精品网址| 国产精华一区二区三区| 午夜视频精品福利| 免费在线观看亚洲国产| 国产在线观看jvid| www.熟女人妻精品国产| 99热只有精品国产| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区| 搞女人的毛片| 亚洲av成人不卡在线观看播放网| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 制服诱惑二区| 精品国产亚洲在线| 国产av又大| 悠悠久久av| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 俺也久久电影网| 在线观看免费视频日本深夜| 高清毛片免费观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 黄色片一级片一级黄色片| 每晚都被弄得嗷嗷叫到高潮| 久久人人精品亚洲av| 中文字幕人妻熟女乱码| 婷婷精品国产亚洲av在线| 国产成人av教育| 精品人妻1区二区| 精品久久蜜臀av无| 黄色女人牲交| xxx96com| 亚洲av日韩精品久久久久久密| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 国产激情偷乱视频一区二区| 久久中文字幕人妻熟女| 天天一区二区日本电影三级| 老鸭窝网址在线观看| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| av中文乱码字幕在线| 国产v大片淫在线免费观看| 亚洲片人在线观看| 国产在线精品亚洲第一网站| av有码第一页| 日韩国内少妇激情av| 99久久无色码亚洲精品果冻| 久久精品91蜜桃| 亚洲人成电影免费在线| 亚洲美女黄片视频| 欧美中文综合在线视频| 国产精品一区二区三区四区久久 | 韩国av一区二区三区四区| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 亚洲成人久久爱视频| 国产野战对白在线观看| 日本三级黄在线观看| 岛国视频午夜一区免费看| 久久 成人 亚洲| 日韩欧美免费精品| 黄色成人免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产乱子伦精品免费另类| 精品久久久久久成人av| 99精品欧美一区二区三区四区| 麻豆一二三区av精品| 叶爱在线成人免费视频播放| 国产黄片美女视频| 久久午夜亚洲精品久久| av中文乱码字幕在线| 亚洲国产中文字幕在线视频| 亚洲国产欧洲综合997久久, | 亚洲黑人精品在线| 在线观看www视频免费| 无人区码免费观看不卡| 99re在线观看精品视频| 人人澡人人妻人| 国产精品爽爽va在线观看网站 | 91成年电影在线观看| 亚洲最大成人中文| 香蕉国产在线看| 婷婷精品国产亚洲av在线| 日韩欧美在线二视频| 波多野结衣高清作品| 欧美日本视频| 精品久久久久久久末码| 国内少妇人妻偷人精品xxx网站 | 国产麻豆成人av免费视频| 久久国产精品男人的天堂亚洲| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 欧美日韩精品网址| 久久久国产成人免费| 亚洲成人精品中文字幕电影| 亚洲国产精品久久男人天堂| 美女高潮到喷水免费观看| 日本熟妇午夜| 成人手机av| 久久精品人妻少妇| 亚洲国产精品久久男人天堂| 色综合站精品国产| 亚洲午夜精品一区,二区,三区| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 99热只有精品国产| 欧美日本视频| 十八禁人妻一区二区| 波多野结衣高清无吗| 亚洲男人的天堂狠狠| 天堂√8在线中文| 搞女人的毛片| 香蕉国产在线看| 老汉色∧v一级毛片| 禁无遮挡网站| 一级黄色大片毛片| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 色综合站精品国产| 国产精品电影一区二区三区| 日韩欧美三级三区| 国产亚洲精品av在线| 在线观看午夜福利视频| 午夜免费成人在线视频| 正在播放国产对白刺激| 精品久久久久久久毛片微露脸| 欧美日韩精品网址| 国产国语露脸激情在线看| 日韩精品免费视频一区二区三区| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 成人av一区二区三区在线看| 欧美成人免费av一区二区三区| 美女高潮喷水抽搐中文字幕| 又黄又粗又硬又大视频| 久久九九热精品免费| 2021天堂中文幕一二区在线观 | videosex国产| 免费无遮挡裸体视频| av福利片在线| 亚洲精品久久成人aⅴ小说| 国产精品野战在线观看| 老鸭窝网址在线观看| 97碰自拍视频| 国产av一区在线观看免费| 淫秽高清视频在线观看| 久久香蕉精品热| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影 | 老鸭窝网址在线观看| 日韩欧美国产一区二区入口| 国产高清videossex| 国产一区二区激情短视频| 亚洲色图av天堂| 中文字幕精品亚洲无线码一区 | 可以免费在线观看a视频的电影网站| 亚洲久久久国产精品| 天天一区二区日本电影三级| 亚洲人成电影免费在线| 国产蜜桃级精品一区二区三区| 国产成人精品久久二区二区免费| 视频在线观看一区二区三区| 日本五十路高清| 亚洲人成网站高清观看| 一夜夜www| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 丝袜在线中文字幕| 国产成人啪精品午夜网站| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 99精品欧美一区二区三区四区| 女性被躁到高潮视频| 日本一区二区免费在线视频| 精品国产美女av久久久久小说| 国产熟女xx| 成人手机av| avwww免费| 色综合婷婷激情| 国产色视频综合| 18禁黄网站禁片免费观看直播| 日日夜夜操网爽| 免费看十八禁软件| 亚洲国产精品sss在线观看| 高潮久久久久久久久久久不卡| 久久久久久久精品吃奶| 日韩精品青青久久久久久| 91大片在线观看| 满18在线观看网站| 国产精品久久久久久亚洲av鲁大| 国产aⅴ精品一区二区三区波| 制服丝袜大香蕉在线| 成人av一区二区三区在线看| 国产av一区在线观看免费| 日本免费a在线| 午夜视频精品福利| 国产精品 欧美亚洲| 制服丝袜大香蕉在线| 日韩免费av在线播放| 九色国产91popny在线|